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 for determining the number of principal components when the respective variance estimator proposed by these authors is replaced by the bias-corrected estimator. The new estimator is also used to derive new asymptotics for the related goodness-of-fit statistic under the high-dimensional scheme.

Introduction

Principal component analysis (PCA) is a very popular technique in multivariate analysis for dimensionality reduction and feature extraction. Due to dramatic development in data-collection technology, high-dimensional data are nowadays common in many fields. Natural high-dimensional data, such as images, signal processing, documents and biological data often reside in a low-dimensional subspace or low-dimensional manifold [START_REF] Ding | Bayesian robust principal component analysis[END_REF]. In financial econometrics, it is commonly believed that the variations in a large number of economic variables can be modeled by a small number of reference variables [START_REF] Stock | New indexes of coincident and leading economic indicators[END_REF][START_REF] Forni | Reference cycles: the NBER methodology revisited[END_REF][START_REF] Bai | Determining the number of factors in approximate factor models[END_REF][START_REF] Bai | Inference theory for factor models of large dimensions[END_REF]. Consequently, PCA is a recommended tool for analysis of such high-dimensional data.

There is an underlying probabilistic model behind PCA, called probabilistic principal component analysis (PPCA), defined as follows. The observation vectors {x i } 1≤i≤n are p-dimensional and satisfy the equation

x i = Λf i + e i + µ , i = 1, . . . , n.
(1)

Here, f i is a m-dimensional principal components with m ≪ p, Λ is a p × m matrix of loadings, and µ represents the general mean and (e i ) are a sequence of independent Gaussian errors with covariance matrix Ψ = σ 2 I p . The parameter σ 2

is the noise variance we are interested in. The components (f i ) are also Gaussian and unobserved.

To ensure the identification of the model, constraints have to be introduced on the parameters. There are several possibilities for the choice of such constraints, see e.g. Table 1 in [START_REF] Bai | Statistical analysis of factor models of high dimension[END_REF]. A traditional choice is the following (Anderson, 2003, Chapter 14):

• Ef i = 0 and Ef i f ′ i = I;

• The matrix Γ := Λ ′ Λ is diagonal with distinct diagonal elements.

Therefore, the population covariance matrix (PCM) of {x i } is

Σ = ΛΛ ′ + σ 2 I. (2) 
Finding a reliable estimator of σ 2 is a nontrivial issue for high-dimensional data which we now pursue.

The PPCA model (1) can be viewed as a special instance of the approximate factor model [START_REF] Chamberlain | Arbitrage, factor structure, and mean-variance analysis on large asset markets[END_REF] when the noise covariance Ψ is a general diagonal matrix. (The model is also called a strict factor model in statistical literature, see [START_REF] Anderson | An introduction to multivariate statistical analysis[END_REF]). For related recent papers on inference of large approximate (or dynamic) factor models, we refer to [START_REF] Bai | Inference theory for factor models of large dimensions[END_REF], [START_REF] Forni | Reference cycles: the NBER methodology revisited[END_REF] and [START_REF] Doz | A quasi-maximum likelihood approach for large, approximate dynamic factor models[END_REF].

Let x be the sample mean and define the sample covariance matrix

S n = 1 n -1 n i=1 (x i -x)(x i -x) ′ .
(3)

Let λ n,1 ≥ λ n,2 ≥ • • • ≥ λ n,p be the eigenvalues of S n . The maximum likelihood estimator of the noise variance is

σ 2 = 1 p -m p i=m+1 λ n,i . (4) 
In the classic setting where the dimension p is relatively small compared to the sample size n (low-dimensional setting), the consistency of σ 2 is established in [START_REF] Anderson | Statistical inference in factor analysis[END_REF]. Moreover, it is asymptotically normal with the standard √ n-convergence rate, as n → ∞,

√ n( σ 2 -σ 2 ) D -→ N (0, s 2 ), s 2 = 2σ 4 p -m . (5) 
Actually, [START_REF] Anderson | The asymptotic normal distribution of estimators in factor analysis under general conditions[END_REF] provides a general CLT for m.l.e. in an approximate factor model that encompasses the present PPCA model. For the reader's convenience, we provide in Subsection 6.5 a detailed deviation of (5) from this general CLT.

The situation is, however radically different when p is large compared to the sample size n. Recent advances in high-dimensional statistics indicate that in such high-dimensional situation, the above asymptotic result is no more valid and indeed, it has been widely observed in the literature that σ 2 seriously underestimates the true noise variance σ 2 . Basically, when p becomes large, the sample principal eigenvalues and principal components are no longer consistent estimates of their population counterparts (Baik and Silverstein, 2006b;[START_REF] Johnstone | On consistency and sparsity for principal components analysis in high dimensions[END_REF]; Kritchman and Nadler, 2008b). Many estimation methods developed in lowdimensional setting have been shown to perform poorly even for moderately large p and n [START_REF] Cragg | Inferring the rank of a matrix[END_REF].

As all meaningful inference procedures in the model will unavoidably use some estimator of the noise variance σ 2 , such a severe bias needs to be corrected for high-dimensional data. There are several estimators proposed to deal with the high-dimensional situation. Kritchman and Nadler (2008a) proposes an estimator by solving a system of implicit equations; [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF] The main aim of this paper is to provide a new estimator of the noise variance for which a rigorous asymptotic theory can be established in the high-dimensional setting. First, by using recent advances in random matrix theory, we found a CLT for the m.l.e. σ 2 in the high-dimensional setting (Theorem 1 in Section 2). Next, using this identification and random matrix theory, we propose a new estimator σ 2 * for the noise variance by correcting this bias. The asymptotic normality of the new estimator is thus established with explicit asymptotic mean and variance.

Although the asymptotic Gaussian distribution of the bias-corrected estima-tor σ 2 * is established under the high-dimensional setting p → ∞, n → ∞ and p/n → c > 0, if we set c = 0, i.e. the dimension p is infinitely smaller than n, this Gaussian limit coincides with the classical low-dimensional limit given in (5). In this sense, the new asymptotic theory extends in a continuous manner the classical low-dimensional result to the high-dimensional situation. Finite sample properties of the bias-corrected estimator σ 2 * have been checked via Monte-Carlo experiments in comparison with the above-mentioned three existing estimators. In terms of mean squared errors and in all the tested scenarios, σ 2 * outperforms very significantly two of them, and is slightly preferable than the third one, see Table 3.

In order to demonstrate further potential benefits achievable by the implementation of the bias-corrected estimator σ 2 * , we develop three applications. Two of these applications concern an important inference problem in PPCA, namely, the determination of the number of principal components (PCs). This problem involves the noise variance estimation and many methods for choosing PCs have been proposed in the literature. We consider two benchmark procedures from different fields. The first one is proposed in [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF] that employs PPCA to signal processing and proposes the Stein's unbiased risk estimator (SURE) to find the number of PCs. The second one is from [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] which develops six criteria with penalty on both p and n to identify the number of factors in the approximate factor model. The approximate factor model allows the errors (e i ) be correlated. PPCA can be considered as a simplified instance of this model and indeed, [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] applies also their criteria to PPCA. Notice that the determination criteria in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] are popular and widely cited in the literature. Furthermore, both the procedures in [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF] and [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] implement a specific estimator of the noise variance σ 2 . By substituting the bias-corrected estimator σ 2 * for their estimators, we demonstrate by extensive simulation that these procedures are uniformly and significantly improved.

The third application of the bias-corrected estimator σ 2 * concerns the goodnessof-fit test for the PPCA model. The LR test statistic as well as their classical (lowdimensional) chi-squared asymptotics are well-known since the work of Amemiya and [START_REF] Amemiya | Asymptotic chi-square tests for a large class of factor analysis models[END_REF]. These results are again challenged by high-dimensional data and the classical chi-squared limit is no more valid. Following an approach devised in [START_REF] Bai | Corrections to LRT on large-dimensional covariance matrix by RMT[END_REF], we propose a correction to this goodness-of-fit test statistic involving our new estimator σ 2 * of noise variance to cope with the high-dimensional effects and establish its asymptotic normality.

The remaining sections are organized as follows. In Section 2, we present the main results of the paper. In Section 3, our new estimator σ 2 * is substituted for an estimator from the authors of the SURE criterion and it is shown that this substitution improves greatly the SURE criterion. Similarly, in Section 4, the estimator σ 2 * is applied to the criteria proposed by [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] to determine the number of PCs and again an improvement of these criteria is obtained. In Section 5, we develop the corrected likelihood ratio test for the goodness-of-fit of a PPCA model in the high-dimensional framework using the new estimator σ 2 * . Technical proofs are gathered together in Section 6. Section 7 concludes.

Main results

The PPCA model (1) is a spiked population model [START_REF] Johnstone | On the distribution of the largest eigenvalue in principal components analysis[END_REF] since the

eigenvalues of PCM Σ are spec(Σ) = (α 1 , . . . , α 1 n 1 , . . . , α K , . . . , α K n K , 0, . . . , 0 p-m ) + σ 2 (1, . . . , 1 p ) = σ 2 (α * 1 , . . . , α * 1 n 1 , . . . , α * K , . . . , α * K n K , 1, • • • , 1 p-m ), (6) 
where (α i ) are non-null eigenvalues of ΛΛ ′ with multiplicity numbers (n i ) satisfying

n 1 +• • •+n K = m and the notation α * i = α i /σ 2 +1 is used.
To develop a meaningful asymptotic theory in the high-dimensional context, we assume that p and n are related so that when n → ∞, c n = p/(n -1) → c > 0, that is, p can be large compared to the sample size n and for the asymptotic theory, p and n tend to infinity proportionally. Define the function

φ(α) = α + cα α -1 , α = 1 ,
and set s 0 = 0 and

s i = n 1 + • • • + n i for 1 ≤ i ≤ K. The set J i = {s i-1 + 1, . . . , s i }
is then the indexes among {1, . . . , p} associated to α i counting the multiplicities.

Following Baik and Silverstein (2006a), assumed that α

* 1 ≥ • • • ≥ α * m > 1 + √ c, i.e
all the eigenvalues α i are greater than σ 2 √ c. It is then known that, for the spiked

sample eigenvalues λ n,k of S n , 1 ≤ k ≤ m, almost surely if k ∈ J i , λ n,k -→ σ 2 φ(α * i ) = α i + σ 2 + σ 2 c 1 + σ 2 α i . ( 7 
)
Moreover, the remaining sample eigenvalues {λ n,k } m<k≤p , called noise eigenvalues, will converge to a continuous distribution with support interval [a(c), b(c)] where

a(c) = σ 2 (1 - √ c) 2 and b(c) = σ 2 (1 + √ c) 2 .
In particular, for all 1 ≤ i ≤ L with a prefixed range L and almost surely, λ n,m+i → b(c) . It is worth noticing that in (7), if we let c → 0, we recover the low-dimensional limits λ n,k → α i + σ 2 (population spike eigenvalues) and λ n,k → σ 2 (population noise eigenvalues) discussed earlier.

In a further step, CLT for the spiked eigenvalues is established in [START_REF] Bai | Central limit theorems for eigenvalues in a spiked population model[END_REF] (see also [START_REF] Paul | Asymptotics of sample eigenstructure for a large dimensional spiked covariance model[END_REF]): the n i -dimensional vector

{ √ n(λ n,k -σ 2 φ(α * k )),k ∈ J i } (8)
converges to a well-determined n i -dimensional limiting distribution. Moreover, this limiting distribution is Gaussian if and only if the corresponding population spike eigenvalue α i is simple, i.e. n i = 1.

As explained in the Introduction, when the dimension p is large compared to the sample size n, the m.l.e. σ 2 in (4) has a negative bias. In order to identify this bias, we first establish a central limit theorem for σ 2 under the high-dimensional scheme.

Theorem 1. Consider the PPCA model (1) with population covariance matrix Σ = ΛΛ ′ + σ 2 I p where both the principal components and the noise are Gaussian.

Assume that p → ∞, n → ∞ and c n = p/(n -1) → c > 0. Then, we have

(p -m) σ 2 √ 2c ( σ 2 -σ 2 ) + b(σ 2 ) D -→ N (0, 1), where b(σ 2 ) = c 2 m + σ 2 m i=1 1 α i .
Therefore, for high-dimensional data, the m.l.e. σ 2 has an asymptotic bias -b(σ 2 ) (after normalization). This bias is a complex function of the noise variance and the m non-null eigenvalues of the loading matrix ΛΛ ′ . Notice that the above CLT is still valid if cn = (pm)/n is substituted for c. Now if indeed p ≪ n, i.e.

the dimension p is infinitely smaller than the sample size n, so that cn ≃ 0 and b(σ 2 ) ≃ 0, and hence

(p -m) σ 2 √ 2c ( σ 2 -σ 2 ) + b(σ 2 ) ≃ √ p -m σ 2 √ 2 √ n( σ 2 -σ 2 ) D -→ N (0, 1) .
This is nothing but the CLT (5) for σ 2 known under the classical low-dimensional scheme. In a sense, Theorem 1 constitutes a natural and continuous extension of the classical CLT to the high-dimensional context.

The previous theory recommends to correct the negative bias of σ 2 . However, the bias b(σ 2 ) depends on the number m and the values α i of the spikes. These parameters are likely unknown in real-data applications and they need to be estimated. In the literature, consistent estimators of m have been proposed, e.g. in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF], Kritchman and Nadler (2008a), [START_REF] Onatski | Testing hypotheses about the number of factors in large factor models[END_REF] and [START_REF] Passemier | On determining the number of spikes in a highdimensional spiked population model[END_REF]. For the values of the spikes α i , it is easy to see that it can be estimated by inverting the function φ in (7) at the corresponding eigenvalues λ n,j .

Moreover, by applying the delta-method to (8), we can obtain the asymptotic distribution of this estimator, see [START_REF] Bai | Estimation of spiked eigenvalues in spiked models[END_REF].

As the bias depends on σ 2 which we want to estimate, a natural correction is to use the plug-in estimator

σ 2 * = σ 2 + b( σ 2 ) p -m σ 2 √ 2c n . ( 9 
)
This estimator will be hereafter referred as the bias-corrected estimator. Notice that here the number of factors m can be replaced by any consistent estimate as discussed above without affecting the limiting distribution of the estimator. The following CLT is an easy consequence of Theorem 1.

Theorem 2. We assume the same conditions as in Theorem 1. Then, we have

p -m σ 2 √ 2c n σ 2 * -σ 2 D -→ N (0, 1) .
Compared to the m.l.e. σ 2 in Theorem 1, the bias-corrected estimator σ 2 * has no more a bias after normalization by p-m σ 2 √ 2cn , and it should be a much better estimator than σ 2 .

Monte-Carlo experiments

We first check by simulation the effect of bias-correction obtained in σ 2 * and its asymptotic normality. Independent Gaussian samples of size n are considered in three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 4, c = 1;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 2, c = 0.2;

• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 3, c = 1.5.

In Table 1, we compare the empirical bias of σ 2 (i.e. the empirical mean of

σ 2 -σ 2 = 1 p-m p i=m+1 λ n,i -σ 2 ) over 1000 replications with the theoretical one -σ 2 √ 2cb(σ 2 )/(p -m) in different settings.
In all the three models, the empirical and theoretical bias are close each other. As expected, their difference vanishes when p and n increase. The table also shows that this bias is quite significant even for large dimension and sample size such as (p, n) = (1500, 1000). 

(p -m) σ 2 √ 2c n ( σ 2 -σ 2 ) + b(σ 2 )
of the three models above, with sample size n = 100 and dimensions p = c × n, compared to the density of the standard Gaussian distribution. The sampling distribution is almost normal.

To assess the quality of the bias-corrected estimator σ 2 * , we conduct some simulation experiments using the same settings. Table 2 compares the empirical means, mean absolute deviations (MAD) and the mean squared errors (MSE) of σ 2 and σ 2 * over 1000 replications. The improvement of σ 2 * over σ 2 is very significant in term of MAD in all the tested cases (the difference in term of MSE is less remarkable because the squares become quite small numbers). 

σ 2 √ 2c ( σ 2 -σ 2 )+b(σ 2
) compared with the density of a standard Gaussian distribution.

Next, we compare our bias-corrected estimator to three existing estimators in the literature. For the reader's convenience, we recall their definitions:

1. The estimator σ 2 KN of Kritchman and Nadler (2008a): it is defined as the solution of the following non-linear system of m + 1 equations involving the m + 1 unknowns ρ 1 , . . . , ρ m and σ 2 KN :

σ 2 KN - 1 p -m p j=m+1 λ n,j + m j=1
(λ n,jρ j ) = 0, and

ρ 2 j -ρ j λ n,j + σ 2 KN -σ 2 KN p -m n + λ n,j σ 2 KN = 0, j = 1, . . . , m.
We use the computing code available on the authors' web-page to carry out the simulation.

2. The estimator σ 2 US of [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF]: it is defined as the ratio

σ 2 US = median(λ n,m+1 , . . . , λ n,p ) m p/n,1 ,
where m α,1 is the median of the Marčenko-Pastur distribution F α,1 (more details on this distribution is given in Subsection 6.1).

3. The estimator σ 2 median of [START_REF] Johnstone | On consistency and sparsity for principal components analysis in high dimensions[END_REF]: it is defined as the median of the p sample variances

σ 2 median = median 1 n n i=1 x 2 ij , 1 ≤ j ≤ p .
Clearly for this estimator, the data {x ij } are assumed centered. 3 Application to the SURE criterion [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF] proposes to use Stein's unbiased risk estimator, SURE, to choose the number of PCs. This criterion uses the noise variance estimator σ 2 U S defined in Section 2. It aims at minimizing the Euclidean distance between the underlying estimator of the population mean µ and its true value. The proposed 

R m = (p -m) σ 2 U S + σ 4 U S m j=1 1 λ j + 2 σ 2 U S (1 -1/n)m -2 σ 4 U S (1 -1/n) m j=1 1 λ j + 4(1 -1/n) σ 4 U S n m j=1 1 λ j + C m , (10) 
where

C m = 4(1 -1/n) σ 2 U S n m j=1 p i=m+1 λ j -σ 2 U S λ j -λ i + 2(1 -1/n) σ 2 U S n m(m -1) - 2(1 -1/n) σ 2 U S n (p -1) m j=1 1 - σ 2 U S λ j .
Recall that σ 2 U S is also related to m. From Section 2, we have known that σ 2 U S

is not as good as our bias-corrected estimator. To examine further this difference, we replace σ 2 U S with σ 2 * in (10), referred then as SURE * , to see whether the performance of SURE can be improved.

Then simulation experiments are conducted to compare SURE with SURE * .

The setup follows the paper [START_REF] Ulfarsson | Dimension estimation in noisy PCA with SURE and random matrix theory[END_REF] and the data are simulated according to (1) with the parameters p = 64, p/n = [2/3, 1/2, 2/5], m = [5,10,15,20] and σ 2 = 1. The loading matrix is set to Λ = FD 1/2 , where F is constructed by generating a p × m matrix of Gaussian random variables and then orthogonalizing the resulting matrix, and

D = diag(λ 1 , λ 2 , . . . , λ m-1 , λ m ) = diag (m + 1) 2 , m 2 , . . . , 3 2 , λ m , λ m = 1.5.
All simulations were repeated 1500 times. cases, the detection rate is 100%. Therefore, by implementing our bias-corrected estimator of the noise variance instead of the one provided by its authors, the criterion SURE has a much better performance.

4 Application to determination criteria of [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] In econometrics, the assumption of additive white noise is reasonable for asset returns with low frequencies (e.g., monthly returns of stocks) [START_REF] Ma | Sparse principal component analysis and iterative thresholding[END_REF]. [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] proposes six criteria to estimate the number of PCs (or factors) under the framework of large cross-sections (N ) and large time dimensions (T ). These criteria penalize both dimensions N and T and outperform the usual AIC and BIC, which are functions of N or T alone, under the assumption that both N and T grow to infinity. Notice that the dimension-sample-size pair is denoted here as (N, T ) instead of (p, n). These six criteria are as follows:

P C p1 (m) = V (m, F m ) + m σ 2 BN N + T N T ln N T N + T ; P C p2 (m) = V (m, F m ) + m σ 2 BN N + T N T ln C 2 N T ; P C p3 (m) = V (m, F m ) + m σ 2 BN ln C 2 N T C 2 N T ; IC p1 (m) = ln V (m, F m ) + m N + T N T ln N T N + T ; IC p2 (m) = ln V (m, F m ) + m N + T N T ln C 2 N T ; IC p3 (m) = ln V (m, F m ) + m ln C 2 N T C 2 N T , (11) 
where

σ 2 BN is a consistent estimate of (N T ) -1 N i=1 T j=1 E(e ij ) 2 , V (m, F m ) = (N T ) -1 N i=1 ê′
i êi , and C 2 N T = min{N, T }. Notice that the difference between the P C p and the IC p criteria is that the first family uses the V function while the second family uses its logarithm. In applications, σ 2 BN is replaced by V (m 0 , F m 0 ), where m 0 is a predetermined maximum value of m. We can see that the calculations of σ 2 BN and V (m, F m ) have no explicit formula and are based on the estimation of the residuals (ê i ). It is worth mentioning that σ 2 BN is indeed the estimator of the noise variance if the underlying model is the PPCA model. Now we substitute the proposed bias-corrected estimator σ 2 * for empirical σ 2 BN and update in accordance the statistic V (m, F m ). The modified criteria using σ 2 * are denoted as P C * p1 , P C * p2 , P C * p3 , IC * p1 , IC * p2 and IC * p3 .

Simulation experiments are conducted to check whether the performance of the three P C p criteria is improved by the bias-corrected estimator. The results of three IC p criteria are not presented here since they are very similar in our context to the results of the P C p criteria. As in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF], the data are generated from the model:

X it = m j=1 λ ij F tj + √ θe it , (12) 
where the PCs, the loadings and the errors (e it ) are N (0, 1) variates, the common component of X it has variance m and the idiosyncratic component has variance θ. Notice that the noise variance here is σ 2 = θ and Λ = (λ ij ). Typically, a PC corresponding to α j is detectable when α j ≥ 1 + N T θ, see ( 7). We conduct extensive simulation by reproducing all the configuration of N and T used in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF]. In particular, the last five rows of each table below correspond to small dimensions (either N or T is small).

Tables 5-8 report the empirical means of the estimator of the number of PCs over 1000 replications, for m = 1, 3 and 5 respectively, with standard errors in parentheses. When a standard error is actually zero, no standard error is thus indicated. For all cases, the predetermined maximum number m 0 of PCs is set to 8. When the true number of PCs is 1 (Table 5), the criteria P C * p can correctly detect the number almost surely and the corresponding standard errors are all zeros. In comparison, there are 11 cases where the criteria P C p lose efficiency in finding the true number of PCs with a non-zero standard error. In the small dimensions situation (last five rows), all P C * p and P C p fail when the value of N is 10: they all report the maximum value m 0 . But the criteria P C * p outperform P C p in the last three cases in terms of mean and standard error. In Table 6, although the criteria P C * p have some determination errors in a few cases, these errors are much smaller than the corresponding ones from the initial criteria P C p . For the last three cases of small dimensions, the results of criteria P C * p are also much better than that of P C p . In Table 7, the common component and idiosyncratic component have the same variance 5 which is large and it can be verified that in this setting, some of the 5 PC eigenvalues α j do not satisfy the detection condition

α j ≥ 1 + N T θ.
Consequently, the criteria P C * p are no longer uniformly better than P C p . In Table 8, when the variance of idiosyncratic component is smaller than that of the common component, the criteria P C * p have again an overall better performance than the criteria P C p . In conclusion, except some cases in Table 7, these criteria proposed in [START_REF] Bai | Determining the number of factors in approximate factor models[END_REF] can have a better performance using the bias-corrected estimator proposed in this paper for PPCA models.

Application to the goodness-of-fit test of a PPCA model

As a third application of the bias-corrected estimator σ 2 * , we consider the following goodness-of-fit test for the PPCA model (1). The null hypothesis is then

H 0 : Σ = ΛΛ ′ + σ 2 I p ,
where the number of PCs m is specified. Following [START_REF] Anderson | Statistical inference in factor analysis[END_REF], the likelihood ratio test (LRT) statistic is where

T n = -nL * ,
L * = p j=m+1 log λ n,j σ 2 ,
and σ 2 is the m.l.e.(4) of the variance. Keeping p fixed while letting n → ∞, the classical low-dimensional theory states that T n converges to χ 2 q , where q = p(p + 1)/2 + m(m -1)/2pm -1, see [START_REF] Anderson | Statistical inference in factor analysis[END_REF]. However, this classical approximation is again useless in the large-dimensional setting. Indeed, it will be shown below that this criterion leads to a high false-positive rate. In particular, the test becomes biased since the size will be much higher than the nominal level (see Table 9).

In a way similar to Section 2, we now construct a corrected version of T n using Proposition 1 and calculus done in [START_REF] Bai | Corrections to LRT on large-dimensional covariance matrix by RMT[END_REF] and [START_REF] Zheng | Central limit theorems for linear spectral statistics of large dimensional f-matrices[END_REF]. As we consider the logarithm of the eigenvalues of the sample covariance matrix, we will assume in the sequel that p < n and c < 1 to avoid null eigenvalues.

Theorem 3. Assume the same conditions as in Theorem 1 and in addition c < 1.

Then, we have

v(c) -1 2 {L * -m(c) -ph(c n ) -η + (p -m) log(β)} D -→ N (0, 1),
where

m(c) = log (1 -c) 2 , h(c n ) = c n -1 c n log(1 -c n ) -1 , η = m i=1 log(1 + cσ 2 α -1 i ) , β = 1 - c p -m (m + σ 2 m i=1 α -1 i ) , v(c) = -2 log(1 -c) + 2c β 1 β -2 .
Note that the above statistic depends on the unknown variance σ 2 and the spike eigenvalues (α i ). First of all, as explained in Section 2, consistent estimates of (α i ) are available. By using these estimates and substituting bias-corrected estimate σ 2 * for σ 2 , we obtain consistent estimates v(c n ), η and β of v(c), η and β, respectively.

Therefore, to test H 0 , it is natural to use the statistic

∆ n := v(c n ) -1 2 (L * -m(c n ) -ph(c n ) -η + (p -m) log( β)) .
Since ∆ n is asymptotically standard normal, the critical region {∆ n > q α } where q α is the αth upper quantile of the standard normal, will have an asymptotic size α. This test will be hereafter referred as the corrected likelihood ratio test (CLRT in short).

Monte-Carlo experiments

We consider again Models 1 and 2 described in Section 2, and a new one (Model 4):

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8, 7, 0, . . . , 0) + σ 2 (1, . . . , 1), σ 2 = 1, varying c.

Table 9 gives the empirical sizes of the classical likelihood ratio test (LRT)

and the new corrected likelihood ratio test (CLRT) above. For the LRT, we use the correction proposed by [START_REF] Bartlett | Test of significance in factor analysis[END_REF], that is replacing T n = -nL * by Tn = -(n-(2p+11)/6-2m/3)L * . The computations are done under 10000 independent replications and the nominal test level is 0.05.

Proofs

Before giving the proofs, we first recall some important results from the random matrix theory which laid the foundation for the proofs of the main results of the paper.

Useful results from random matrix theory

Random matrix theory has become a powerful tool to address new inference problems in high-dimensional data. For general background and references, we refer to review papers [START_REF] Johnstone | High dimensional statistical inference and random matrices[END_REF] and [START_REF] Johnstone | Statistical challenges of high-dimensional data[END_REF].

Let H be a probability measure on R + and c > 0 a constant. We define the map

g(s) = g c,H (s) = 1 s + c t 1 + ts dH(t) (13) 
in the set C + = {z ∈ C : ℑz > 0}. The map g is a one-to-one mapping from C + onto itself (see [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF], Chapter 6), and the inverse map m = g -1 satisfies all the requirements of the Stieltjes transform of a probability measure on [0, ∞). We call this measure F ¯c,H . Next, a companion measure F c,H is introduced by the equation cF c,H = (c -1) δ 0 + F ¯c,H (note that in this equation, measures can be signed). The measure F c,H is referred as the generalized Marčenko-Pastur distribution with index (c, H).

Let F n = 1 p p i=1 δ λ n,i be the empirical spectral distribution (ESD) of the sample covariance matrix S n defined in (3) with the {λ n,i } denoting its eigenvalues.

Then, it is well-known that under suitable moment conditions, F n converges to the Marčenko-Pastur distribution of index (c, δ σ 2 ), simply denoted as F c,σ 2 , with the following density function

p c,σ 2 (x) =      1 2πxcσ 2 {b(c) -x}{x -a(c)} , a(c) ≤ x ≤ b(c) , 0 , otherwise.
The distribution has an additional mass (1 -1/c) at the origin if c > 1.

The ESD H n of Σ is

H n = p -m p δ σ 2 + 1 p m i=1 δ α i +σ 2 ,
and H n → δ σ 2 . Define the normalized empirical process

G n (f ) = p R f (x)[F n -F cn,Hn ](dx), f ∈ A,
where A is the set of analytic functions f : U → C, with U an open set of C such that [1 (0,1) (c)a(c), b(c)] ⊂ U. We will need the following CLT which is a combination of Theorem 1.1 of [START_REF] Bai | CLT for linear spectral statistics of large-dimensional sample covariance matrices[END_REF] and a recent addition proposed in [START_REF] Zheng | Substitution principle for CLT of linear spectral statistics of high-dimensional sample covariance matrices with applications to hypothesis testing[END_REF].

Proposition 1. We assume the same conditions as in Theorem 1. Then, for any functions f 1 , . . . , f k ∈ A, the random vector (G n (f 1 ), . . . , G n (f k )) converges to a k-dimensional Gaussian vector with mean vector

m(f j ) = f j (a(c)) + f j (b(c)) 4 - 1 2π b(c) a(c) f j (x) 4cσ 4 -(x -σ 2 -cσ 2 ) 2 dx, j = 1, . . . , k,
and covariance function . . . , k,(14) where m(z) is the Stieltjes transform of F ¯c,σ 2 = (1c)δ 0 + cF c,σ 2 . The contours C 1 and C 2 are non overlapping and both contain the support of F c,σ 2 .

v(f j , f l ) = - 1 2π 2 C 1 C 2 f j (z 1 )f l (z 2 ) (m(z 1 ) -m(z 2 )) 2 dm(z 1 )dm(z 2 ), j, l = 1,
An important and subtle point here is that the centering term in G n (f ) in the above CLT is defined with respect to the Marcčenko-Pastur distribution F cn,Hn with "current" index (c n , H n ) instead of the limiting distribution F c,σ 2 with index (c, σ 2 ). In contrast, the limiting mean function m(f j ) and covariance function v(f j , f l ) depend on the limiting distribution F c,σ 2 only.

Proof of Theorem 1

We have

(p -m) σ 2 = p i=1 λ n,i - m i=1 λ n,i . By (7), m i=1 λ n,i -→ m i=1 α i + cσ 4 α i + σ 2 m(1 + c) a.s. ( 15 
)
For the first term, we have

p i=1 λ i = p xdF n (x) = p x d(F n -F cn,Hn )(x) + p x dF cn,Hn (x)
= G n (x) + p x dF cn,Hn (x).

By Proposition 1, the first term is asymptotically normal

G n (x) = p i=1 λ n,i -p x dF cn,Hn (x) D -→ N (m(x), v(x)),
with asymptotic mean

m(x) = 0 , (16) 
and asymptotic variance

v(x) = 2cσ 4 . ( 17 
)
The derivation of these two formula are given in the Section 6. Furthermore, by Lemma 1 of Bai et al. (2010),

x dF cn,Hn (x) = t dH n (t) = σ 2 + 1 p m i=1 α i . So we have p i=1 λ n,i -pσ 2 - m i=1 α i D -→ N (0, 2cσ 4 ). (18) 
By ( 15) and ( 18) and using Slutsky's lemma, we obtain

(p -m)( σ 2 -σ 2 ) + cσ 2 m + σ 2 m i=1 1 α i D
-→ N (0, 2cσ 4 ).

Proof of Theorem 2

We have

p -m σ 2 √ 2c n σ 2 * -σ 2 = p -m σ 2 √ 2c n σ 2 -σ 2 + b σ 2 σ 2 σ 2 = p -m σ 2 √ 2c n σ 2 -σ 2 + b(σ 2 ) + 1 σ 2 b σ 2 σ 2 -b(σ 2 )σ 2 .
Since σ 2 P -→ σ 2 , by continuity, the second expression tends to 0 in probability and the conclusion follows from Theorem 1.

Proof of Theorem 3

We have

L * = p i=m+1 log λ n,i σ 2 = p i=m+1 log λ n,i σ 2 - p i=m+1 log σ 2 σ 2 = p i=m+1 log λ n,i σ 2 -(p -m) log 1 p -m p i=m+1 λ n,i σ 2 = L 1 -(p -m) log L 2 p -m ,
where we have defined a two-dimensional vector (L 1 , L 2 ) = ( p i=m+1 log

λ n,i σ 2 , p i=m+1 λ n,i σ 2 ).
CLT when σ 2 = 1. To start with, we consider the case σ 2 = 1. We have

L 1 = p log(x) dF n (x) - m i=1 log λ n,i = p log(x) d(F n -F cn,Hn )(x) + p log(x) dF cn,Hn (x) - m i=1 log λ n,i .
Similarly, we have

L 2 = p x d(F n -F cn,Hn )(x) + p x dF cn,Hn (x) - m i=1 λ n,i .
By Proposition 1, we find that

p   log(x) d(F n -F cn,Hn )(x) x d(F n -F cn,Hn )(x)   D -→ N     m 1 (c) m 2 (c)   ,   v 1 (c) v 1,2 (c) v 1,2 (c) v 2 (c)     (19)
with m 2 (c) = 0 and v 2 (c) = 2c and

m 1 (c) = log (1 -c) 2 , ( 20 
) v 1 (c) = -2 log (1 -c), (21) 
v 1,2 (c) = 2c. ( 22 
)
Formulae of m 2 and v 2 have been established in the proof of Theorem 1 and the others are derived in next subsection.

In Theorem 1, with σ 2 = 1, we found that

x dF cn,Hn (x) = 1 + 1 p m i=1 α i , and m i=1 λ n,i a.s. -→ m i=1 α i + c α i + m(1 + c).
For the last term of L 1 , by ( 7), we have log λ n,i -→ log(φ(α i + 1)) = log (α i + 1)(1 + cα -1 i ) a.s.

Furthermore, by [START_REF] Wang | A note on the CLT of the LSS for sample covariance matrix from a spiked population model[END_REF], we have log(x) dF cn,Hn (

x) = 1 p m i=1 log(α i + 1) + h(c n ) + o 1 p , where h(c n ) = log(x)dF cn,δ 1 (x) = c n -1 c n log(1 -c n ) -1. ( 23 
)
can be calculated using the density of the Marčenko-Pastur law (see 6.4). Summarising, we have obtained that

L 1 -m 1 (c) -ph(c n ) + η(c, α) D -→ N (0, v 1 (c)) , where h(c n ) = cn-1 cn log(1 -c n ) -1 and η(c, α) = m i=1 log(1 + cσ 2 α -1 i ). Similarly, we have L 2 -(p -m) + ρ(c, α) D -→ N (0, v 2 (c)) , where ρ(c, α) = c(m + m i=1 α -1 i ).
Using ( 19) and Slutsky's lemma,

  L 1 L 2   D -→ N     m 1 (c) + ph(c n ) -η(c, α) p -m -ρ(c, α)   ,   v 1 (c) v 1,2 (c) v 1,2 (c n ) v 2 (c n )     , with h(c n ) = cn-1 cn log(1 -c n ) -1, η(c, α) = m i=1 log(1 + cσ 2 α -1 i ) and ρ(c, α) = c(m + m i=1 α -1 i ).
CLT with general σ 2 . When σ 2 = 1, spec(Σ) = (α 1 + 1, . . . , α m + 1, 1, . . . , 1), whereas in the general case

spec(Σ) = (α 1 + σ 2 , . . . , α m + σ 2 , σ 2 , . . . , σ 2 ) = σ 2 α 1 σ 2 + 1, . . . , α m σ 2 + 1, . . . , 1 .
Thus, if we consider λ i /σ 2 , we will find the same CLT by replacing the (α i ) 1≤i≤m by α i /σ 2 . Furthermore, we divide L 2 by pm to find 

 L 1 L 2 p-m   D -→ N     m 1 (c) + ph(c n ) -η(c, α/σ 2 ) 1 -ρ(c,α/σ 2 ) p-m   ,   2c (p-m) 2 2c p-m 2c p-m -2 log(1 -c)     , with η(c, α/σ 2 ) = m i=1 log(1 + cσ 2 α -1 i ), ρ(c, α/σ 2 ) = c(m + σ 2 m i=1 α -1 i ) and h(c n ) = cn-1 cn log(1 -c n ) -1.
Asymptotic distribution of L * . We have L * = g(L 1 , L 2 /(p-m)), with g(x, y) =

x -(pm) log(y). We will apply the multivariate delta-method on (24) with the function g. We have ▽g(x, y) = 1, -p-m y and

L * D -→ N (β 1 -(p -m) log(β 2 ), ▽g(β 1 , β 2 ) cov(L 1 , L 2 /(p -m)) ▽ g(β 1 , β 2 ) ′ ), with β 1 = m 1 (c) + ph(c n ) -η(c, α/σ 2 ) and β 2 = 1 -ρ(c,α/σ 2 )
p-m . After some standard calculation, we finally find

L * D -→ N m 1 (c) + ph(c n ) -η c, α σ 2 -(p -m) log(β 2 ), -2 log(1 -c) + 2c β 2 1 β 2 -2 .

Complementary proofs

Proof of ( 5)

The general theory of the m.l.e. for the PPCA model (1) in the classical setting has been developed in [START_REF] Anderson | The asymptotic normal distribution of estimators in factor analysis under general conditions[END_REF] with in particular the following result.

Proposition 2. Let Θ = (θ ij ) 1≤i,j≤p = Ψ -Λ(Λ ′ Ψ -1 Λ) -1 Λ ′ . If (θ 2 ij ) 1≤i
,j≤p is nonsingular, if Λ and Ψ are identified by the condition that Λ ′ ΨΛ is diagonal and the diagonal elements are different and ordered, if

S n → ΛΛ ′ + Ψ in probability and if √ n(S n -Σ) has a limiting distribution, then √ n( Λ -Λ) and √ n( Ψ -Ψ) have a limiting distribution. The covariance of √ n( Ψ ii -Ψ ii ) and √ n( Ψ jj -Ψ jj ) in the limiting distribution is 2Ψ 2 ii Ψ 2 jj ξ ij (1 ≤ i, j ≤ p), where (ξ ij ) = (θ 2 ij ) -1 .
To prove the CLT (5), by Proposition 2, we know that the inverse of the Fisher information matrix is I -1 (ψ 11 , . . . , ψ pp ) = (2ψ 2 ii ψ 2 jj ξ ij ) ij . We have to change the parametrization: in our case, we have

ψ 11 = • • • = ψ pp . Let g : R → R p ,
a → (a, . . . , a). The information matrix in this new parametrization becomes

I(σ 2 ) = J ′ I(g(σ 2 ))J,
where J is the Jacobian matrix of g. As

I(g(σ 2 )) = 1 2σ 8 (θ 2 ij ) ij ,
we have

I(σ 2 ) = 1 2σ 8 p i,j=1 θ 2 ij , and Θ = (θ ij ) ij = Ψ -Λ(Λ ′ Ψ -1 Λ) -1 Λ ′ = σ 2 (I p -Λ(Λ ′ Λ) -1 Λ ′ ).
By hypothesis, we have Then, in Proposition 1, we have

Λ ′ Λ = diag(d 2 1 , . . . , d 2 
v(f j , f l ) = - 1 2π 2
f j (σ 2 z 1 )f l (σ 2 z 2 ) (s(z 1 )s(z 2 )) 2 ds(z 1 ) ds(z 2 ), j, l = 1, . . . , k. (24)

For g(x) = x, we have v(g) = -1 2π 2 g(σ 2 z 1 )g(σ 2 z 2 ) (s(z 1 )s(z 2 )) 2 ds(z 1 ) ds(z 2 ) = -σ 4 2π 2 z 1 z 2 (s(z 1 )s(z 2 )) 2 ds(z 1 ) ds(z 2 ) = 2cσ 4 , where -1 2π 2 z 1 z 2 (s(z 1 )-s(z 2 )) 2 ds(z 1 ) ds(z 2 ) = 2c is calculated in [START_REF] Bai | Corrections to LRT on large-dimensional covariance matrix by RMT[END_REF] (it corresponds to v(z 1 , z 2 ), Section 5, proof of (3.4)).

Proof of (20)

By Proposition 1, for σ 2 = 1 and g(x) = log(x), by using the variable change Proof of ( 21)

By Proposition 1 and (24), for σ 2 = 1 and g(x) = x, we have v(g) = -1 2π 2 g(z 1 )g(z 2 ) (s(z 1 )s(z 2 )) 2 ds(z 1 ) ds(z 2 ) = -1 2π 2 log(z 1 ) log(z 2 ) (s(z 1 )s(z 2 )) 2 ds(z 1 )ds(z 2 ) = -2 log(1c n ), where the last integral is calculated in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF].

Proof of ( 23 where the last integral is calculated in [START_REF] Bai | Spectral analysis of large dimensional random matrices[END_REF].

Proof of (22)

In the normal case with σ 2 = 1, [START_REF] Zheng | Central limit theorems for linear spectral statistics of large dimensional f-matrices[END_REF] gives the following equivalent expression of (14):

v(f j , f l ) = -lim r→1 + κ 4π 2 |ξ 1 |=|ξ 2 |=1 f j (|1 + hξ 1 | 2 )f l (|1 + hξ 2 | 2 ) 1 (ξ 1 -rξ 2 ) 2 dξ 1 dξ 2 ,
where κ = 2 in the real case and h = √ c in our case. We take f j (x) = log(x) and f l (x) = x, so we need to calculate v(log(x), x) =lim

r→1 + 1 2π 2 |ξ 1 |=|ξ 2 |=1 |1 + √ cξ 2 | 2 log(|1 + √ cξ 1 | 2 ) (ξ 1 -rξ 2 ) 2 dξ 1 dξ 2 .
We follow the calculations done in [START_REF] Zheng | Central limit theorems for linear spectral statistics of large dimensional f-matrices[END_REF]: when |ξ| = 1, |1 + √ cξ| 2 =

(1 + √ cξ)(1 + √ cξ -1 ), so log(|1 + √ cξ| 2 ) = 1 2 (log(1 + √ cξ) 2 + log(1 + √ cξ -1 ) 2 ).

Consequently,

|ξ 1 |=1 log(|1 + √ cξ 1 | 2 ) (ξ 1 -rξ 2 ) 2 dξ 1 = 1 2 |ξ 1 |=1 log(1 + √ cξ 1 ) 2 (ξ 1 -rξ 2 ) 2 dξ 1 + 1 2 |ξ 1 |=1 log(1 + √ cξ -1 1 ) 2 (ξ 1 -rξ 2 ) 2 dξ 1 = 1 2 |ξ 1 |=1 log(1 + √ cξ 1 ) 2 1 (ξ 1 -rξ 2 ) 2 + 1 (1 -rξ 1 ξ 2 ) 2 dξ 1 = 0 + iπ 1 (rξ 2 ) 2 2 √ c 1 + √ c rξ 2 = 2iπ √ c rξ 2 (rξ 2 + √ c) .
Thus,

v(log(x), x) = 1 iπ |ξ 2 |=1 |1 + √ cξ 2 | 2 √ c ξ 2 (ξ 2 + √ c) dξ 2 = 1 iπ |ξ|=1 1 + c + c(ξ + ξ -1 ) √ c ξ(ξ + √ c) dξ = 1 iπ |ξ|=1 √ c(1 + c) ξ(ξ + √ c) + c ξ + √ c + c ξ 2 (ξ + √ c) dξ = 2(1 + c -(1 + c) + c + 1 -1) = 2c.

Conclusions

In this paper, we propose a bias-corrected estimator of the noise variance for PPCA models in the high-dimensional framework. The main appeal of our estimator is that it is developed under the assumption that p/n → c > 0 as p, n → ∞ and is thus appropriate for a wide range of large-dimensional datasets. Extensive Monte-Carlo experiments demonstrated the superiority of the proposed estimator over several existing estimators (notice however no theoretical justification has

  introduces an estimator using the median of the sample eigenvalues {λ n,k }; and Johnstone and Lu (2009) uses the median of the sample variances. However, these estimators are assessed by Monte-Carlo experiments only and their theoretical properties have not been investigated.
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  cn,δ 1 is the Marčenko-Pastur distribution of index c n . By using the variable changex = 1 + c n -2 √ c n cos θ, 0 ≤ θ ≤ π, we have log(x)dF cn,δ 1 (xc n -2 √ c n cos θ) 1 + c n -2 √ c n cos θ 4c n sin 2 1 + c n -2 √ c n cos θ log |1 -√ c n e iθ | 2 dθ = c n -1 c n log(1c n ) -1,

Table 1 :

 1 Comparison between the empirical and the theoretical bias in various settings.

		Settings		Empirical bias Theoretical bias |Difference|
		p = 100	n = 100	-0.1556	-0.1589	0.0023
	Model 1	p = 400	n = 400	-0.0379	-0.0388	0.0009
		p = 800	n = 800	-0.0189	-0.0193	0.0004
		p = 20	n = 100	-0.0654	-0.0704	0.0050
	Model 2	p = 80	n = 400	-0.0150	-0.0162	0.0012
		p = 200	n = 1000	-0.0064	-0.0063	0.0001
		p = 150	n = 100	-0.0801	-0.0795	0.0006
	Model 3	p = 600	n = 400	-0.0400	-0.0397	0.0003
		p = 1500 n = 1000	-0.0157	-0.0159	0.0002

Figure 1 presents the histograms from 1000 replications of

Table 3

 3 

gives the ratios of the empirical MSEs of these estimators over the empirical MSE of the bias-corrected estimator σ 2 * . The performances of σ 2 * and

Table 2 :

 2 Empirical mean, MAD and MSE of σ 2 and σ 2 * in various settings.

	Mod.	Settings p	n	σ 2	σ 2	MAD	MSE	σ 2 *	MAD	MSE
		100	100		3.8464 0.1536 0.0032 3.9979 0.0021	0.0035
	1	400	400	4	3.9616 0.0384 0.0002 4.0000 < 10 -5 0.0002
		800	800		3.9809 0.0191 0.0001 4.0002 0.0002	0.0001
		20	100		1.9340 0.0660 0.0043 2.0012 0.0012	0.0047
	2	80	400	2	1.9841 0.0159 0.0003 2.0001 0.0001	0.0003
		200 1000		1.9939 0.0061 < 10 -5 2.0002 0.0002 < 10 -5
		150	100		2.8400 0.1600 0.0011 2.9926 0.0074	0.0013
	3	600	400	3	2.9605 0.0395 0.0001 2.9999 0.0001	0.0001
		1500 1000		2.9839 0.0161 < 10 -5 2.9998 0.0002 < 10 -5
	σ 2 KN are similar and σ 2 * being slightly better. The estimator σ 2 US shows slightly
	better than the m.l.e. σ 2 . The estimator σ 2 median is better than σ 2 US and the m.l.e.
	σ 2 . But σ 2 median and σ 2 US performs poorly compared to σ 2 * and σ 2 KN . The reader
	is, however reminded that the theoretic properties of σ 2 KN , σ 2 US and σ 2 median are
	unknown and so far there have been checked via simulations only.

Table 3 :

 3 Comparison between three existing estimators and the proposed one in terms of ratios of MSE:

		MSE σ 2 KN MSE σ 2 *		,	MSE σ 2 US MSE σ 2 *	and	MSE σ 2 median * MSE σ 2	.
	Mod.	Settings p	n		σ 2	σ 2 KN	σ 2 U S	σ 2 median
		100	100		1.01 4.40	1.47
	1	400	400	4	1.00 6.50	1.59
		800	800		1.00 4.00	1.62
		20	100		1.04 1.85	1.67
	2	80	400	2	1.00 2.67	1.52
		200 1000		1.00 10.10	1.53
		150	100		1.07 7.08	1.26
	3	600	400	3	1.00 7.00	1.52
		1500 1000		0.96 10.10	1.60

Table 4 :

 4 Table 4 shows the percentage of correct selection of PCs for SURE and SURE * . It can be seen that SURE * largely Comparison between SURE and SURE * in terms of percentage of correct selection of PCs.

	m		p/n = 2/3 p/n = 1/2 p/n = 2/5
	5	SURE * SURE	1.000 0.408	1.000 0.621	1.000 0.807
	10	SURE * SURE	0.990 0.512	1.000 0.739	0.998 0.858
	15	SURE * SURE	0.904 0.598	0.978 0.783	0.989 0.911
	20	SURE * SURE	0.908 0.617	0.966 0.810	0.990 0.899

outperforms SURE in all of the tested cases, most of times by a wide margin. All the percentages of correct selection of SURE * are larger than 90% and in 4 out of 12

Table 5 :

 5 Comparison between P C * p1 , P C * p2 , P C * p3 and P C p1 , P C p2 , P C p3 in terms of the mean estimation numbers of PCs for m = 1, θ = 1.

	N	T	P C * p1	P C * p2	P C * p3	P C p1	P C p2	P C p3
	100	40	1.00	1.00	1.00	1.17(0.37)	1.01(0.10)	3.78(0.75)
	100	60	1.00	1.00	1.00	1.00	1.00	3.63(0.76)
	200	60	1.00	1.00	1.00	1.00	1.00	1.00
	500	60	1.00	1.00	1.00	1.00	1.00	1.00
	1000	60	1.00	1.00	1.00	1.00	1.00	1.00
	2000	60	1.00	1.00	1.00	1.00	1.00	1.00
	100	100	1.00	1.00	1.00	1.00	1.00	5.36(0.80)
	200	100	1.00	1.00	1.00	1.00	1.00	1.00
	500	100	1.00	1.00	1.00	1.00	1.00	1.00
	1000	100	1.00	1.00	1.00	1.00	1.00	1.00
	2000	100	1.00	1.00	1.00	1.00	1.00	1.00
	40	100	1.00	1.00	1.00	1.79(0.72)	1.19(0.40)	4.91(0.90)
	60	100	1.00	1.00	1.00	1.01(0.08)	1.00	4.30(0.85)
	60	200	1.00	1.00	1.00	1.00	1.00	1.02(0.16)
	60	500	1.00	1.00	1.00	1.00	1.00	1.00
	60	1000	1.00	1.00	1.00	1.00	1.00	1.00
	60	2000	1.00	1.00	1.00	1.00	1.00	1.00
	4000	60	1.00	1.00	1.00	1.00	1.00	1.00
	4000	100	1.00	1.00	1.00	1.00	1.00	1.00
	8000	60	1.00	1.00	1.00	1.00	1.00	1.00
	8000	100	1.00	1.00	1.00	1.00	1.00	1.00
	60	4000	1.00	1.00	1.00	1.00	1.00	1.00
	100	4000	1.00	1.00	1.00	1.00	1.00	1.00
	60	8000	1.00	1.00	1.00	1.00	1.00	1.00
	100	8000	1.00	1.00	1.00	1.00	1.00	1.00
	10	50	8.00	8.00	8.00	8.00	8.00	8.00
	10	100	8.00	8.00	8.00	8.00	8.00	8.00
	20	100	1.01(0.15)	1.01(0.12)	1.08(0.53)	6.96(0.88)	6.35(0.98)	7.84(0.40)
	100	10	1.08(0.73)	1.03(0.50)	1.15(1.01)	8.00	8.00	8.00
	100	20	1.00(0.03)	1.00(0.03)	1.00(0.03)	5.88(0.76)	5.12(0.77)	7.35(0.63)

Table 6 :

 6 Comparison between P C * p1 , P C * p2 , P C * p3 and P C p1 , P C p2 , P C p3 in terms of the mean estimation numbers of PCs for m = 3, θ = 3.

	N	T	P C * p1	P C * p2	P C * p3	P C p1	P C p2	P C p3
	100	40	2.98(0.15)	2.95(0.22)	3.00(0.06)	3.00	3.00	3.90
	100	60	3.00(0.03)	3.00(0.04)	3.00	3.01(0.08)	3.00	4.37(0.64)
	200	60	3.00	3.00	3.00	3.00	3.00	4.18(0.63)
	500	60	3.00	3.00	3.00	3.00	3.00	3.00
	1000	60	3.00	3.00	3.00	3.00	3.00	
	2000	60	3.00	3.00	3.00	3.00	3.00	3.00
	100	100	3.00	3.00	3.00	3.00	3.00	5.62(0.72)
	200	100	3.00	3.00	3.00	3.00	3.00	3.00
	500	100	3.00	3.00	3.00	3.00	3.00	3.00
	1000	100	3.00	3.00	3.00	3.00	3.00	3.00
	2000	60	3.00	3.00	3.00	3.00	3.00	3.00
	40	100	2.99(0.10)	2.98(0.14)	3.00	3.07(0.26)	3.01(0.07)	5.04(0.72)
	60	100	3.00	3.00(0.03)	3.00	3.00	3.00	4.65(0.69)
	60	200	3.00	3.00	3.00	3.00	3.00	3.00
	60	500	3.00	3.00	3.00	3.00	3.00	3.00
	60	1000	3.00	3.00	3.00	3.00	3.00	3.00
	60	2000	3.00	3.00	3.00	3.00	3.00	3.00
	4000	60	3.00	3.00	3.00	3.00	3.00	3.00
	4000	100	3.00	3.00	3.00	3.00	3.00	3.00
	8000	60	3.00	3.00	3.00	3.00	3.00	3.00
	8000	100	3.00	3.00	3.00	3.00	3.00	3.00
	60	4000	3.00	3.00	3.00	3.00	3.00	3.00
	100	4000	3.00	3.00	3.00	3.00	3.00	3.00
	60	8000	3.00	3.00	3.00	3.00	3.00	3.00
	100	8000	3.00	3.00	3.00	3.00	3.00	3.00
	10	50	8.00	8.00	8.00	8.00	8.00	8.00
	10	100	8.00	8.00	8.00	8.00	8.00	8.00
	20	100	2.89(0.32)	2.85(0.37)	2.95(0.27)	6.55(0.74)	5.96(0.77)	7.62(0.55)
	100	10	2.57(1.35)	2.43(1.19)	2.77(1.54)	8.00	8.00	8.00
	100	20	2.46(0.63)	2.37(0.65)	2.65(0.52)	6.15(0.69)	5.46(0.68)	7.49(0.59)

Table 7 :

 7 Comparison between P C * p1 , P C * p2 , P C * p3 and P C p1 , P C p2 , P C p3 in terms of the mean estimation numbers of PCs for m = 5, θ = 5.

	N	T	P C * p1	P C * p2	P C * p3	P C p1	P C p2	P C p3
	100	40	3.83(0.77)	3.49(0.77)	4.51(0.58)	5.00(0.07)	4.98(0.15)	5.36(0.51)
	100	60	4.66(0.50)	4.36(0.61)	4.98(0.13)	5.00(0.03)	5.00(0.06)	5.27(0.45)
	200	60	4.95(0.22)	4.90(0.30)	4.99(0.08)	5.00	5.00	5.00
	500	60	5.00(0.04)	5.00(0.07)	5.00(0.03)	5.00	5.00	5.00
	1000	60	5.00(0.04)	5.00(0.04)	5.00	5.00	5.00	5.00
	2000	60	5.00(0.03)	5.00(0.03)	5.00(0.03)	5.00	5.00	5.00
	100	100	4.(0.12)	4.90(0.30)	5.00	5.00	5.00	6.18(0.63)
	200	100	5.00	5.00	5.00	5.00	5.00	5.00
	500	100	5.00	5.00	5.00	5.00	5.00	5.00
	1000	100	5.00	5.00	5.00	5.00	5.00	5.00
	2000	60	5.00	5.00	5.00	5.00	5.00	5.00
	40	100	4.25(0.68)	3.92(0.75)	4.77(0.44)	4.98(0.04)	5.66(0.14)	5.66(0.57)
	60	100	4.76(0.44)	4.47(0.60)	4.76(0.10)	5.00(0.03)	4.99(0.08)	5.46(0.56)
	60	200	4.97(0.17)	4.94(0.24)	5.00	5.00	5.00	5.00
	60	500	5.00(0.05)	5.00(0.06)	5.00(0.04)	5.00	5.00	5.00
	60	1000	5.00(0.03)	5.00(0.03)	5.00	5.00	5.00	5.00
	60	2000	5.00	5.00	5.00	5.00	5.00	5.00
	4000	60	5.00	5.00	5.00	5.00	5.00	5.00
	4000	100	5.00	5.00	5.00	5.00	5.00	5.00
	8000	60	5.00	5.00	5.00	5.00	5.00	5.00
	8000	100	5.00	5.00	5.00	5.00	5.00	5.00
	60	4000	5.00	5.00	5.00	5.00	5.00	5.000
	100	4000	5.00	5.00	5.00	5.00	5.00	5.00
	60	8000	5.00	5.00	5.00	5.00	5.00	5.00
	100	8000	5.00	5.00	5.00	5.00	5.00	5.00
	10	50	8.00	8.00	8.00	8.00	8.00	8.00
	10	100	8.00	8.00	8.00	8.00	8.00	8.00
	20	100	3.64(0.91)	3.38(0.94)	4.08(0.79)	6.65(0.64)	6.12(0.64)	7.63(0.51)
	100	10	3.10(2.01)	2.83(1.86)	3.53(2.27)	8.00	8.00	8.00
	100	20	2.18(0.92)	1.93(0.92)	2.65(0.0.90)	6.56(0.62)	5.97(0.62)	7.66(0.50)

Table 8 :

 8 Comparison between P C * p1 , P C * p2 , P C * p3 and P C p1 , P C p2 , P C p3 in terms of the mean estimation numbers of PCs for m = 5, θ = 3.

	N	T	P C * p1	P C * p2	P C * p3	P C p1	P C p2	P C p3
	100	40	4.91(0.30)	4.81(0.41)	4.99(0.11)	5.00(0.03)	5.00	5.59(0.57)
	100	60	5.00(0.04)	4.99(0.11)	5.00	5.00	5.00	5.58(0.57)
	200	60	5.00	5.00	5.00	5.00	5.00	5.00
	500	60	5.00	5.00	5.00	5.00	5.00	5.00
	1000	60	5.00	5.00	5.00	5.00	5.00	5.00
	2000	60	5.00	5.00	5.00	5.00	5.00	5.00
	100	100	5.00		5.00	5.00	5.00	6.84(0.65)
	200	100	5.00	5.00	5.00	5.00	5.00	5.00
	500	100	5.00	5.00	5.00	5.00	5.00	5.00
	1000	100	5.00	5.00	5.00	5.00	5.00	5.00
	2000	100	5.00	5.00	5.00	5.00	5.00	5.00
	40	100	4.97(0.17)	4.92(0.27)	5.00(0.04)	5.02(0.12)	5.00	6.22(0.66)
	60	100	5.00(0.04)	4.99(0.08)	5.00	5.00	5.00	6.03(0.64)
	60	200	5.00	5.00	5.00	5.00	5.00	6.03(0.03)
	60	500	5.00	5.00	5.00	5.00	5.00	5.00
	60	1000	5.00	5.00	5.00	5.00	5.00	5.00
	60	2000	5.00	5.00	5.00	5.00	5.00	5.00
	4000	60	5.00	5.00	5.00	5.00	5.00	5.00
	4000	100	5.00	5.00	5.00	5.00	5.00	5.00
	8000	60	5.00	5.00	5.00	5.00	5.00	5.00
	8000	100	5.00	5.00	5.00	5.00	5.00	5.00
	60	4000	5.00	5.00	5.00	5.00	5.00	5.00
	100	4000	5.00	5.00	5.00	5.00	5.00	5.00
	60	8000	5.00	5.00	5.00	5.00	5.00	5.00
	100	8000	5.00	5.00	5.00	5.00	5.00	5.00
	10	50	8.00	8.00	8.00	8.00	8.00	8.00
	10	100	8.00	8.00	8.00	8.00	8.00	8.00
	20	100	4.74(0.51)	4.62(0.57)	4.92(0.45)	7.11(0.63)	6.65(0.64)	7.85(0.37)
	100	10	4.59(1.99)	4.35(1.91)	4.88(2.09)	8.00	8.00	8.00
	100	20	3.86(0.79)	3.69(0.81)	4.13(0.73)	6.74(0.63)	6.19(0.62)	7.77(0.43)

The empirical sizes of the new CLRT are very close to the nominal one, except when the ratio p/n is very small (less than 0.1). On the contrary, the empirical sizes of the classical LRT are much higher than the nominal level especially when c is not too small, and the test will always reject the null hypothesis when p becomes large. In particular when p/n ≥ 1 2 , the LRT test tends to reject automatically the null.

been proposed in the literature for these estimators). Moreover, by implementing the proposed estimator of the noise variance within two well-known determination algorithms for the number of principal components, we demonstrate that significant improvement can be obtained. In an additional application and using this new estimator, we construct the asymptotic theory of the goodness-of-fit test for highdimensional PPCA models. The overall manage from the paper is that in a highdimensional PPCA model, when an estimator of the noise variance σ 2 is needed, the bias-corrected estimator σ 2 * from the paper should be recommended.