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Abstract

In this paper, we develop new statistical theory for probabilistic principal

component analysis models in high dimensions. The focus is the estimation

of the noise variance, which is an important and unresolved issue when the

number of variables is large in comparison with the sample size. We first

unveil the reasons of a widely observed downward bias of the maximum like-

lihood estimator of the variance when the data dimension is high. We then

propose a bias-corrected estimator using random matrix theory and establish

its asymptotic normality. The superiority of the new (bias-corrected) esti-

mator over existing alternatives is first checked by Monte-Carlo experiments

with various combinations of (p, n) (dimension and sample size). In order

to demonstrate further potential benefits from the results of the paper to
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general probability PCA analysis, we provide evidence of net improvements

in two popular procedures (Ulfarsson and Solo, 2008; Bai and Ng, 2002) for

determining the number of principal components when the respective vari-

ance estimator proposed by these authors is replaced by the bias-corrected

estimator. The new estimator is also used to derive new asymptotics for the

related goodness-of-fit statistic under the high-dimensional scheme.

Keywords. Probabilistic principal component analysis, high-dimensional

data, noise variance estimator, random matrix theory, goodness-of-fit.

1 Introduction

Principal component analysis (PCA) is a very popular technique in multivariate

analysis for dimensionality reduction and feature extraction. Due to dramatic

development in data-collection technology, high-dimensional data are nowadays

common in many fields. Natural high-dimensional data, such as images, signal

processing, documents and biological data often reside in a low-dimensional sub-

space or low-dimensional manifold (Ding et al., 2011). In financial econometrics,

it is commonly believed that the variations in a large number of economic vari-

ables can be modeled by a small number of reference variables (Stock and Watson,

1989; Forni et al., 2000; Bai and Ng, 2002; Bai, 2003). Consequently, PCA is a

recommended tool for analysis of such high-dimensional data.

There is an underlying probabilistic model behind PCA, called probabilistic

principal component analysis (PPCA), defined as follows. The observation vectors
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{xi}1≤i≤n are p-dimensional and satisfy the equation

xi = Λfi + ei + µ , i = 1, . . . , n. (1)

Here, fi is a m-dimensional principal components with m ≪ p, Λ is a p × m

matrix of loadings, and µ represents the general mean and (ei) are a sequence of

independent Gaussian errors with covariance matrix Ψ = σ2Ip. The parameter σ2

is the noise variance we are interested in. The components (fi) are also Gaussian

and unobserved.

To ensure the identification of the model, constraints have to be introduced on

the parameters. There are several possibilities for the choice of such constraints, see

e.g. Table 1 in Bai and Li (2012). A traditional choice is the following (Anderson,

2003, Chapter 14):

• Efi = 0 and Efif
′
i = I;

• The matrix Γ := Λ′Λ is diagonal with distinct diagonal elements.

Therefore, the population covariance matrix (PCM) of {xi} is

Σ = ΛΛ′ + σ2I. (2)

Finding a reliable estimator of σ2 is a nontrivial issue for high-dimensional data

which we now pursue.

The PPCA model (1) can be viewed as a special instance of the approximate

factor model (Chamberlain and Rothschild, 1983) when the noise covariance Ψ

is a general diagonal matrix. (The model is also called a strict factor model in
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statistical literature, see Anderson (2003)). For related recent papers on inference

of large approximate (or dynamic) factor models, we refer to Bai (2003), Forni

et al. (2000) and Doz et al. (2012).

Let x̄ be the sample mean and define the sample covariance matrix

Sn =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)′. (3)

Let λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be the eigenvalues of Sn. The maximum likelihood

estimator of the noise variance is

σ̂2 =
1

p−m

p∑

i=m+1

λn,i. (4)

In the classic setting where the dimension p is relatively small compared to

the sample size n (low-dimensional setting), the consistency of σ̂2 is established

in Anderson and Rubin (1956). Moreover, it is asymptotically normal with the

standard
√
n-convergence rate, as n→ ∞,

√
n(σ̂2 − σ2)

D−→ N (0, s2), s2 =
2σ4

p−m
. (5)

Actually, Anderson and Amemiya (1988) provides a general CLT for m.l.e. in an

approximate factor model that encompasses the present PPCA model. For the

reader’s convenience, we provide in Subsection 6.5 a detailed deviation of (5) from

this general CLT.

The situation is, however radically different when p is large compared to the

sample size n. Recent advances in high-dimensional statistics indicate that in

such high-dimensional situation, the above asymptotic result is no more valid and
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indeed, it has been widely observed in the literature that σ̂2 seriously underesti-

mates the true noise variance σ2. Basically, when p becomes large, the sample

principal eigenvalues and principal components are no longer consistent estimates

of their population counterparts (Baik and Silverstein, 2006b; Johnstone and Lu,

2009; Kritchman and Nadler, 2008b). Many estimation methods developed in low-

dimensional setting have been shown to perform poorly even for moderately large

p and n (Cragg and Donald, 1997).

As all meaningful inference procedures in the model will unavoidably use some

estimator of the noise variance σ2, such a severe bias needs to be corrected for

high-dimensional data. There are several estimators proposed to deal with the

high-dimensional situation. Kritchman and Nadler (2008a) proposes an estimator

by solving a system of implicit equations; Ulfarsson and Solo (2008) introduces an

estimator using the median of the sample eigenvalues {λn,k}; and Johnstone and

Lu (2009) uses the median of the sample variances. However, these estimators are

assessed by Monte-Carlo experiments only and their theoretical properties have

not been investigated.

The main aim of this paper is to provide a new estimator of the noise variance

for which a rigorous asymptotic theory can be established in the high-dimensional

setting. First, by using recent advances in random matrix theory, we found a CLT

for the m.l.e. σ̂2 in the high-dimensional setting (Theorem 1 in Section 2). Next,

using this identification and random matrix theory, we propose a new estimator

σ̂2
∗ for the noise variance by correcting this bias. The asymptotic normality of the

new estimator is thus established with explicit asymptotic mean and variance.

Although the asymptotic Gaussian distribution of the bias-corrected estima-
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tor σ̂2
∗ is established under the high-dimensional setting p → ∞, n → ∞ and

p/n → c > 0, if we set c = 0, i.e. the dimension p is infinitely smaller than

n, this Gaussian limit coincides with the classical low-dimensional limit given in

(5). In this sense, the new asymptotic theory extends in a continuous manner the

classical low-dimensional result to the high-dimensional situation. Finite sample

properties of the bias-corrected estimator σ̂2
∗ have been checked via Monte-Carlo

experiments in comparison with the above-mentioned three existing estimators. In

terms of mean squared errors and in all the tested scenarios, σ̂2
∗ outperforms very

significantly two of them, and is slightly preferable than the third one, see Table

3.

In order to demonstrate further potential benefits achievable by the implemen-

tation of the bias-corrected estimator σ̂2
∗, we develop three applications. Two of

these applications concern an important inference problem in PPCA, namely, the

determination of the number of principal components (PCs). This problem in-

volves the noise variance estimation and many methods for choosing PCs have

been proposed in the literature. We consider two benchmark procedures from

different fields. The first one is proposed in Ulfarsson and Solo (2008) that em-

ploys PPCA to signal processing and proposes the Stein’s unbiased risk estimator

(SURE) to find the number of PCs. The second one is from Bai and Ng (2002)

which develops six criteria with penalty on both p and n to identify the number of

factors in the approximate factor model. The approximate factor model allows the

errors (ei) be correlated. PPCA can be considered as a simplified instance of this

model and indeed, Bai and Ng (2002) applies also their criteria to PPCA. Notice

that the determination criteria in Bai and Ng (2002) are popular and widely cited

in the literature. Furthermore, both the procedures in Ulfarsson and Solo (2008)
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and Bai and Ng (2002) implement a specific estimator of the noise variance σ2. By

substituting the bias-corrected estimator σ̂2
∗ for their estimators, we demonstrate

by extensive simulation that these procedures are uniformly and significantly im-

proved.

The third application of the bias-corrected estimator σ̂2
∗ concerns the goodness-

of-fit test for the PPCA model. The LR test statistic as well as their classical (low-

dimensional) chi-squared asymptotics are well-known since the work of Amemiya

and Anderson (1990). These results are again challenged by high-dimensional data

and the classical chi-squared limit is no more valid. Following an approach devised

in Bai et al. (2009), we propose a correction to this goodness-of-fit test statistic

involving our new estimator σ̂2
∗ of noise variance to cope with the high-dimensional

effects and establish its asymptotic normality.

The remaining sections are organized as follows. In Section 2, we present the

main results of the paper. In Section 3, our new estimator σ̂2
∗ is substituted for

an estimator from the authors of the SURE criterion and it is shown that this

substitution improves greatly the SURE criterion. Similarly, in Section 4, the

estimator σ̂2
∗ is applied to the criteria proposed by Bai and Ng (2002) to determine

the number of PCs and again an improvement of these criteria is obtained. In

Section 5, we develop the corrected likelihood ratio test for the goodness-of-fit of

a PPCA model in the high-dimensional framework using the new estimator σ̂2
∗.

Technical proofs are gathered together in Section 6. Section 7 concludes.
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2 Main results

The PPCA model (1) is a spiked population model (Johnstone, 2001) since the

eigenvalues of PCM Σ are

spec(Σ) = (α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

)

= σ2(α∗
1, . . . , α

∗
1︸ ︷︷ ︸

n1

, . . . , α∗
K , . . . , α

∗
K︸ ︷︷ ︸

nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

), (6)

where (αi) are non-null eigenvalues ofΛΛ′ with multiplicity numbers (ni) satisfying

n1+· · ·+nK = m and the notation α∗
i = αi/σ

2+1 is used. To develop a meaningful

asymptotic theory in the high-dimensional context, we assume that p and n are

related so that when n → ∞, cn = p/(n − 1) → c > 0, that is, p can be large

compared to the sample size n and for the asymptotic theory, p and n tend to

infinity proportionally. Define the function

φ(α) = α +
cα

α− 1
, α 6= 1 ,

and set s0 = 0 and si = n1+ · · ·+ni for 1 ≤ i ≤ K. The set Ji = {si−1+1, . . . , si}
is then the indexes among {1, . . . , p} associated to αi counting the multiplicities.

Following Baik and Silverstein (2006a), assumed that α∗
1 ≥ · · · ≥ α∗

m > 1+
√
c, i.e

all the eigenvalues αi are greater than σ
2
√
c. It is then known that, for the spiked

sample eigenvalues λn,k of Sn, 1 ≤ k ≤ m, almost surely if k ∈ Ji,

λn,k −→ σ2φ(α∗
i ) = αi + σ2 + σ2c

(
1 +

σ2

αi

)
. (7)

Moreover, the remaining sample eigenvalues {λn,k}m<k≤p, called noise eigenvalues,

will converge to a continuous distribution with support interval [a(c), b(c)] where

a(c) = σ2(1−√
c)2 and b(c) = σ2(1 +

√
c)2. In particular, for all 1 ≤ i ≤ L with a

8



prefixed range L and almost surely, λn,m+i → b(c) . It is worth noticing that in (7),

if we let c → 0, we recover the low-dimensional limits λn,k → αi + σ2 (population

spike eigenvalues) and λn,k → σ2 (population noise eigenvalues) discussed earlier.

In a further step, CLT for the spiked eigenvalues is established in Bai and Yao

(2008) (see also Paul (2007)): the ni-dimensional vector

{√n(λn,k − σ2φ(α∗
k)),k ∈ Ji} (8)

converges to a well-determined ni-dimensional limiting distribution. Moreover,

this limiting distribution is Gaussian if and only if the corresponding population

spike eigenvalue αi is simple, i.e. ni = 1.

As explained in the Introduction, when the dimension p is large compared to

the sample size n, the m.l.e. σ̂2 in (4) has a negative bias. In order to identify this

bias, we first establish a central limit theorem for σ̂2 under the high-dimensional

scheme.

Theorem 1. Consider the PPCA model (1) with population covariance matrix

Σ = ΛΛ′ + σ2Ip where both the principal components and the noise are Gaussian.

Assume that p→ ∞, n→ ∞ and cn = p/(n− 1) → c > 0. Then, we have

(p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2)
D−→ N (0, 1),

where b(σ2) =
√

c
2

(
m+ σ2

∑m
i=1

1
αi

)
.

Therefore, for high-dimensional data, the m.l.e. σ̂2 has an asymptotic bias

−b(σ2) (after normalization). This bias is a complex function of the noise variance

and the m non-null eigenvalues of the loading matrix ΛΛ′. Notice that the above
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CLT is still valid if c̃n = (p−m)/n is substituted for c. Now if indeed p ≪ n, i.e.

the dimension p is infinitely smaller than the sample size n, so that c̃n ≃ 0 and

b(σ2) ≃ 0, and hence

(p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2) ≃
√
p−m

σ2
√
2

√
n(σ̂2 − σ2)

D−→ N (0, 1) .

This is nothing but the CLT (5) for σ̂2 known under the classical low-dimensional

scheme. In a sense, Theorem 1 constitutes a natural and continuous extension of

the classical CLT to the high-dimensional context.

The previous theory recommends to correct the negative bias of σ̂2. However,

the bias b(σ2) depends on the number m and the values αi of the spikes. These

parameters are likely unknown in real-data applications and they need to be esti-

mated. In the literature, consistent estimators of m have been proposed, e.g. in

Bai and Ng (2002), Kritchman and Nadler (2008a), Onatski (2009) and Passemier

and Yao (2012). For the values of the spikes αi, it is easy to see that it can be

estimated by inverting the function φ in (7) at the corresponding eigenvalues λn,j.

Moreover, by applying the delta-method to (8), we can obtain the asymptotic

distribution of this estimator, see Bai and Ding (2012).

As the bias depends on σ2 which we want to estimate, a natural correction is

to use the plug-in estimator

σ̂2
∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√
2cn. (9)

This estimator will be hereafter referred as the bias-corrected estimator. Notice

that here the number of factors m can be replaced by any consistent estimate as

discussed above without affecting the limiting distribution of the estimator. The

following CLT is an easy consequence of Theorem 1.
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Theorem 2. We assume the same conditions as in Theorem 1. Then, we have

p−m

σ2
√
2cn

(
σ̂2
∗ − σ2

) D−→ N (0, 1) .

Compared to the m.l.e. σ̂2 in Theorem 1, the bias-corrected estimator σ̂2
∗ has

no more a bias after normalization by p−m
σ2

√
2cn

, and it should be a much better

estimator than σ̂2.

2.1 Monte-Carlo experiments

We first check by simulation the effect of bias-correction obtained in σ̂2
∗ and its

asymptotic normality. Independent Gaussian samples of size n are considered in

three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 1;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 3, c = 1.5.

In Table 1, we compare the empirical bias of σ̂2 (i.e. the empirical mean of

σ̂2 − σ2 = 1
p−m

∑p
i=m+1 λn,i − σ2) over 1000 replications with the theoretical one

−σ2
√
2cb(σ2)/(p−m) in different settings. In all the three models, the empirical

and theoretical bias are close each other. As expected, their difference vanishes

when p and n increase. The table also shows that this bias is quite significant even

for large dimension and sample size such as (p, n) = (1500, 1000).
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Table 1: Comparison between the empirical and the theoretical bias in various

settings.

Settings Empirical bias Theoretical bias |Difference|

Model 1

p = 100 n = 100 -0.1556 -0.1589 0.0023

p = 400 n = 400 -0.0379 -0.0388 0.0009

p = 800 n = 800 -0.0189 -0.0193 0.0004

Model 2

p = 20 n = 100 -0.0654 -0.0704 0.0050

p = 80 n = 400 -0.0150 -0.0162 0.0012

p = 200 n = 1000 -0.0064 -0.0063 0.0001

Model 3

p = 150 n = 100 -0.0801 -0.0795 0.0006

p = 600 n = 400 -0.0400 -0.0397 0.0003

p = 1500 n = 1000 -0.0157 -0.0159 0.0002

Figure 1 presents the histograms from 1000 replications of

(p−m)

σ2
√
2cn

(σ̂2 − σ2) + b(σ2)

of the three models above, with sample size n = 100 and dimensions p = c × n,

compared to the density of the standard Gaussian distribution. The sampling

distribution is almost normal.

To assess the quality of the bias-corrected estimator σ̂2
∗, we conduct some simu-

lation experiments using the same settings. Table 2 compares the empirical means,

mean absolute deviations (MAD) and the mean squared errors (MSE) of σ̂2 and σ̂2
∗

over 1000 replications. The improvement of σ̂2
∗ over σ̂2 is very significant in term

of MAD in all the tested cases (the difference in term of MSE is less remarkable

because the squares become quite small numbers).
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Model 1 (p=n=100)
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Model 2 (p=20,n=100)
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Model 3 (p=150,n=100)
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Figure 1: Histogram of (p−m)

σ2
√

2c
(σ̂2−σ2)+b(σ2) compared with the density of a standard Gaussian

distribution.

13



Next, we compare our bias-corrected estimator to three existing estimators in

the literature. For the reader’s convenience, we recall their definitions:

1. The estimator σ̂2
KN of Kritchman and Nadler (2008a): it is defined as the

solution of the following non-linear system of m+ 1 equations involving the

m+ 1 unknowns ρ̂1, . . . , ρ̂m and σ̂2
KN:

σ̂2
KN − 1

p−m

[
p∑

j=m+1

λn,j +
m∑

j=1

(λn,j − ρ̂j)

]
= 0, and

ρ̂2j − ρ̂j

(
λn,j + σ̂2

KN − σ̂2
KN

p−m

n

)
+ λn,jσ̂

2
KN = 0, j = 1, . . . ,m.

We use the computing code available on the authors’ web-page to carry out

the simulation.

2. The estimator σ̂2
US of Ulfarsson and Solo (2008): it is defined as the ratio

σ̂2
US =

median(λn,m+1, . . . , λn,p)

mp/n,1

,

where mα,1 is the median of the Marčenko-Pastur distribution Fα,1 (more

details on this distribution is given in Subsection 6.1).

3. The estimator σ̂2
median of Johnstone and Lu (2009): it is defined as the median

of the p sample variances

σ̂2
median = median

(
1

n

n∑

i=1

x2ij, 1 ≤ j ≤ p

)
.

Clearly for this estimator, the data {xij} are assumed centered.

Table 3 gives the ratios of the empirical MSEs of these estimators over the

empirical MSE of the bias-corrected estimator σ̂2
∗. The performances of σ̂2

∗ and
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Table 2: Empirical mean, MAD and MSE of σ̂2 and σ̂2
∗ in various settings.

Settings
σ̂2 MAD MSE σ̂2

∗ MAD MSE
Mod. p n σ2

1

100 100

4

3.8464 0.1536 0.0032 3.9979 0.0021 0.0035

400 400 3.9616 0.0384 0.0002 4.0000 < 10−5 0.0002

800 800 3.9809 0.0191 0.0001 4.0002 0.0002 0.0001

2

20 100

2

1.9340 0.0660 0.0043 2.0012 0.0012 0.0047

80 400 1.9841 0.0159 0.0003 2.0001 0.0001 0.0003

200 1000 1.9939 0.0061 < 10−5 2.0002 0.0002 < 10−5

3

150 100

3

2.8400 0.1600 0.0011 2.9926 0.0074 0.0013

600 400 2.9605 0.0395 0.0001 2.9999 0.0001 0.0001

1500 1000 2.9839 0.0161 < 10−5 2.9998 0.0002 < 10−5

σ̂2
KN are similar and σ̂2

∗ being slightly better. The estimator σ̂2
US shows slightly

better than the m.l.e. σ̂2. The estimator σ̂2
median is better than σ̂2

US and the m.l.e.

σ̂2. But σ̂2
median and σ̂2

US performs poorly compared to σ̂2
∗ and σ̂2

KN. The reader

is, however reminded that the theoretic properties of σ̂2
KN, σ̂

2
US and σ̂2

median are

unknown and so far there have been checked via simulations only.

3 Application to the SURE criterion

Ulfarsson and Solo (2008) proposes to use Stein’s unbiased risk estimator, SURE,

to choose the number of PCs. This criterion uses the noise variance estimator σ̂2
US

defined in Section 2. It aims at minimizing the Euclidean distance between the

underlying estimator of the population mean µ and its true value. The proposed
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Table 3: Comparison between three existing estimators and the proposed one in

terms of ratios of MSE:
MSE
(
σ̂2
KN

)

MSE
(
σ̂2
∗

) ,
MSE
(
σ̂2
US

)

MSE
(
σ̂2
∗

) and
MSE
(
σ̂2
median

)

MSE
(
σ̂2
∗

) .

Settings
σ̂2
KN σ̂2

US σ̂2
median

Mod. p n σ2

1

100 100

4

1.01 4.40 1.47

400 400 1.00 6.50 1.59

800 800 1.00 4.00 1.62

2

20 100

2

1.04 1.85 1.67

80 400 1.00 2.67 1.52

200 1000 1.00 10.10 1.53

3

150 100

3

1.07 7.08 1.26

600 400 1.00 7.00 1.52

1500 1000 0.96 10.10 1.60
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SURE criterion for m number of PCs (to be minimized) is

Rm = (p−m)σ̂2
US + σ̂4

US

m∑

j=1

1

λj
+ 2σ̂2

US(1− 1/n)m

−2σ̂4
US(1− 1/n)

m∑

j=1

1

λj
+

4(1− 1/n)σ̂4
US

n

m∑

j=1

1

λj
+ Cm, (10)

where

Cm =
4(1− 1/n)σ̂2

US

n

m∑

j=1

p∑

i=m+1

λj − σ̂2
US

λj − λi
+

2(1− 1/n)σ̂2
US

n
m(m− 1)

−2(1− 1/n)σ̂2
US

n
(p− 1)

m∑

j=1

(
1− σ̂2

US

λj

)
.

Recall that σ̂2
US is also related to m. From Section 2, we have known that σ̂2

US

is not as good as our bias-corrected estimator. To examine further this differ-

ence, we replace σ̂2
US with σ̂2

∗ in (10), referred then as SURE∗, to see whether the

performance of SURE can be improved.

Then simulation experiments are conducted to compare SURE with SURE∗.

The setup follows the paper Ulfarsson and Solo (2008) and the data are simu-

lated according to (1) with the parameters p = 64, p/n = [2/3, 1/2, 2/5],m =

[5, 10, 15, 20] and σ2 = 1. The loading matrix is set to Λ = FD1/2, where F is

constructed by generating a p×m matrix of Gaussian random variables and then

orthogonalizing the resulting matrix, and

D = diag(λ1, λ2, . . . , λm−1, λm)

= diag
(
(m+ 1)2,m2, . . . , 32, λm

)
, λm = 1.5.

All simulations were repeated 1500 times. Table 4 shows the percentage of

correct selection of PCs for SURE and SURE∗. It can be seen that SURE∗ largely
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Table 4: Comparison between SURE and SURE∗ in terms of percentage of correct

selection of PCs.

m p/n = 2/3 p/n = 1/2 p/n = 2/5

5
SURE∗ 1.000 1.000 1.000

SURE 0.408 0.621 0.807

10
SURE∗ 0.990 1.000 0.998

SURE 0.512 0.739 0.858

15
SURE∗ 0.904 0.978 0.989

SURE 0.598 0.783 0.911

20
SURE∗ 0.908 0.966 0.990

SURE 0.617 0.810 0.899

outperforms SURE in all of the tested cases, most of times by a wide margin. All

the percentages of correct selection of SURE∗ are larger than 90% and in 4 out of 12

cases, the detection rate is 100%. Therefore, by implementing our bias-corrected

estimator of the noise variance instead of the one provided by its authors, the

criterion SURE has a much better performance.

4 Application to determination criteria of Bai

and Ng (2002)

In econometrics, the assumption of additive white noise is reasonable for asset

returns with low frequencies (e.g., monthly returns of stocks) (Ma, 2013). Bai and

Ng (2002) proposes six criteria to estimate the number of PCs (or factors) under
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the framework of large cross-sections (N) and large time dimensions (T ). These

criteria penalize both dimensions N and T and outperform the usual AIC and

BIC, which are functions of N or T alone, under the assumption that both N and

T grow to infinity. Notice that the dimension-sample-size pair is denoted here as

(N, T ) instead of (p, n). These six criteria are as follows:

PCp1(m) = V (m, F̂m) +mσ̂2
BN

(
N + T

NT

)
ln

(
NT

N + T

)
;

PCp2(m) = V (m, F̂m) +mσ̂2
BN

(
N + T

NT

)
lnC2

NT ;

PCp3(m) = V (m, F̂m) +mσ̂2
BN

(
lnC2

NT

C2
NT

)
;

ICp1(m) = ln
(
V (m, F̂m)

)
+m

(
N + T

NT

)
ln

(
NT

N + T

)
;

ICp2(m) = ln
(
V (m, F̂m)

)
+m

(
N + T

NT

)
lnC2

NT ;

ICp3(m) = ln
(
V (m, F̂m)

)
+m

(
lnC2

NT

C2
NT

)
, (11)

where σ̂2
BN is a consistent estimate of (NT )−1

∑N
i=1

∑T
j=1E(eij)

2, V (m, F̂m) =

(NT )−1
∑N

i=1 ê
′
iêi, and C

2
NT = min{N, T}. Notice that the difference between the

PCp and the ICp criteria is that the first family uses the V function while the

second family uses its logarithm. In applications, σ̂2
BN is replaced by V (m0, F̂

m0),

where m0 is a predetermined maximum value of m. We can see that the cal-

culations of σ̂2
BN and V (m, F̂m) have no explicit formula and are based on the

estimation of the residuals (êi). It is worth mentioning that σ̂2
BN is indeed the es-

timator of the noise variance if the underlying model is the PPCA model. Now we

substitute the proposed bias-corrected estimator σ̂2
∗ for empirical σ̂2

BN and update

in accordance the statistic V (m, F̂m). The modified criteria using σ̂2
∗ are denoted

as PC∗
p1, PC

∗
p2, PC

∗
p3, IC

∗
p1, IC

∗
p2 and IC∗

p3.
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Simulation experiments are conducted to check whether the performance of the

three PCp criteria is improved by the bias-corrected estimator. The results of three

ICp criteria are not presented here since they are very similar in our context to

the results of the PCp criteria. As in Bai and Ng (2002), the data are generated

from the model:

Xit =
m∑

j=1

λijFtj +
√
θeit, (12)

where the PCs, the loadings and the errors (eit) are N(0, 1) variates, the common

component of Xit has variance m and the idiosyncratic component has variance

θ. Notice that the noise variance here is σ2 = θ and Λ = (λij). Typically, a PC

corresponding to αj is detectable when αj ≥
(
1 +

√
N
T

)
θ, see (7). We conduct

extensive simulation by reproducing all the configuration of N and T used in Bai

and Ng (2002). In particular, the last five rows of each table below correspond to

small dimensions (either N or T is small).

Tables 5-8 report the empirical means of the estimator of the number of PCs

over 1000 replications, for m = 1, 3 and 5 respectively, with standard errors in

parentheses. When a standard error is actually zero, no standard error is thus

indicated. For all cases, the predetermined maximum number m0 of PCs is set to

8. When the true number of PCs is 1 (Table 5), the criteria PC∗
p can correctly

detect the number almost surely and the corresponding standard errors are all

zeros. In comparison, there are 11 cases where the criteria PCp lose efficiency

in finding the true number of PCs with a non-zero standard error. In the small

dimensions situation (last five rows), all PC∗
p and PCp fail when the value of N is

10: they all report the maximum value m0. But the criteria PC
∗
p outperform PCp

in the last three cases in terms of mean and standard error. In Table 6, although
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the criteria PC∗
p have some determination errors in a few cases, these errors are

much smaller than the corresponding ones from the initial criteria PCp. For the

last three cases of small dimensions, the results of criteria PC∗
p are also much

better than that of PCp. In Table 7, the common component and idiosyncratic

component have the same variance 5 which is large and it can be verified that in

this setting, some of the 5 PC eigenvalues αj do not satisfy the detection condition

αj ≥
(
1 +

√
N
T

)
θ. Consequently, the criteria PC∗

p are no longer uniformly better

than PCp. In Table 8, when the variance of idiosyncratic component is smaller

than that of the common component, the criteria PC∗
p have again an overall better

performance than the criteria PCp. In conclusion, except some cases in Table 7,

these criteria proposed in Bai and Ng (2002) can have a better performance using

the bias-corrected estimator proposed in this paper for PPCA models.

5 Application to the goodness-of-fit test of a PPCA

model

As a third application of the bias-corrected estimator σ̂2
∗, we consider the following

goodness-of-fit test for the PPCA model (1). The null hypothesis is then

H0 : Σ = ΛΛ′ + σ2Ip,

where the number of PCs m is specified. Following Anderson and Rubin (1956),

the likelihood ratio test (LRT) statistic is

Tn = −nL∗,
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Table 5: Comparison between PC∗
p1, PC

∗
p2, PC

∗
p3 and PCp1, PCp2, PCp3 in terms

of the mean estimation numbers of PCs for m = 1, θ = 1.

N T PC∗

p1
PC∗

p2
PC∗

p3
PCp1 PCp2 PCp3

100 40 1.00 1.00 1.00 1.17(0.37) 1.01(0.10) 3.78(0.75)

100 60 1.00 1.00 1.00 1.00 1.00 3.63(0.76)

200 60 1.00 1.00 1.00 1.00 1.00 1.00

500 60 1.00 1.00 1.00 1.00 1.00 1.00

1000 60 1.00 1.00 1.00 1.00 1.00 1.00

2000 60 1.00 1.00 1.00 1.00 1.00 1.00

100 100 1.00 1.00 1.00 1.00 1.00 5.36(0.80)

200 100 1.00 1.00 1.00 1.00 1.00 1.00

500 100 1.00 1.00 1.00 1.00 1.00 1.00

1000 100 1.00 1.00 1.00 1.00 1.00 1.00

2000 100 1.00 1.00 1.00 1.00 1.00 1.00

40 100 1.00 1.00 1.00 1.79(0.72) 1.19(0.40) 4.91(0.90)

60 100 1.00 1.00 1.00 1.01(0.08) 1.00 4.30(0.85)

60 200 1.00 1.00 1.00 1.00 1.00 1.02(0.16)

60 500 1.00 1.00 1.00 1.00 1.00 1.00

60 1000 1.00 1.00 1.00 1.00 1.00 1.00

60 2000 1.00 1.00 1.00 1.00 1.00 1.00

4000 60 1.00 1.00 1.00 1.00 1.00 1.00

4000 100 1.00 1.00 1.00 1.00 1.00 1.00

8000 60 1.00 1.00 1.00 1.00 1.00 1.00

8000 100 1.00 1.00 1.00 1.00 1.00 1.00

60 4000 1.00 1.00 1.00 1.00 1.00 1.00

100 4000 1.00 1.00 1.00 1.00 1.00 1.00

60 8000 1.00 1.00 1.00 1.00 1.00 1.00

100 8000 1.00 1.00 1.00 1.00 1.00 1.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 1.01(0.15) 1.01(0.12) 1.08(0.53) 6.96(0.88) 6.35(0.98) 7.84(0.40)

100 10 1.08(0.73) 1.03(0.50) 1.15(1.01) 8.00 8.00 8.00

100 20 1.00(0.03) 1.00(0.03) 1.00(0.03) 5.88(0.76) 5.12(0.77) 7.35(0.63)
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Table 6: Comparison between PC∗
p1, PC

∗
p2, PC

∗
p3 and PCp1, PCp2, PCp3 in terms

of the mean estimation numbers of PCs for m = 3, θ = 3.

N T PC∗

p1
PC∗

p2
PC∗

p3
PCp1 PCp2 PCp3

100 40 2.98(0.15) 2.95(0.22) 3.00(0.06) 3.00 3.00 3.90

100 60 3.00(0.03) 3.00(0.04) 3.00 3.01(0.08) 3.00 4.37(0.64)

200 60 3.00 3.00 3.00 3.00 3.00 4.18(0.63)

500 60 3.00 3.00 3.00 3.00 3.00 3.00

1000 60 3.00 3.00 3.00 3.00 3.00 3.00

2000 60 3.00 3.00 3.00 3.00 3.00 3.00

100 100 3.00 3.00 3.00 3.00 3.00 5.62(0.72)

200 100 3.00 3.00 3.00 3.00 3.00 3.00

500 100 3.00 3.00 3.00 3.00 3.00 3.00

1000 100 3.00 3.00 3.00 3.00 3.00 3.00

2000 60 3.00 3.00 3.00 3.00 3.00 3.00

40 100 2.99(0.10) 2.98(0.14) 3.00 3.07(0.26) 3.01(0.07) 5.04(0.72)

60 100 3.00 3.00(0.03) 3.00 3.00 3.00 4.65(0.69)

60 200 3.00 3.00 3.00 3.00 3.00 3.00

60 500 3.00 3.00 3.00 3.00 3.00 3.00

60 1000 3.00 3.00 3.00 3.00 3.00 3.00

60 2000 3.00 3.00 3.00 3.00 3.00 3.00

4000 60 3.00 3.00 3.00 3.00 3.00 3.00

4000 100 3.00 3.00 3.00 3.00 3.00 3.00

8000 60 3.00 3.00 3.00 3.00 3.00 3.00

8000 100 3.00 3.00 3.00 3.00 3.00 3.00

60 4000 3.00 3.00 3.00 3.00 3.00 3.00

100 4000 3.00 3.00 3.00 3.00 3.00 3.00

60 8000 3.00 3.00 3.00 3.00 3.00 3.00

100 8000 3.00 3.00 3.00 3.00 3.00 3.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 2.89(0.32) 2.85(0.37) 2.95(0.27) 6.55(0.74) 5.96(0.77) 7.62(0.55)

100 10 2.57(1.35) 2.43(1.19) 2.77(1.54) 8.00 8.00 8.00

100 20 2.46(0.63) 2.37(0.65) 2.65(0.52) 6.15(0.69) 5.46(0.68) 7.49(0.59)
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Table 7: Comparison between PC∗
p1, PC

∗
p2, PC

∗
p3 and PCp1, PCp2, PCp3 in terms

of the mean estimation numbers of PCs for m = 5, θ = 5.

N T PC∗

p1
PC∗

p2
PC∗

p3
PCp1 PCp2 PCp3

100 40 3.83(0.77) 3.49(0.77) 4.51(0.58) 5.00(0.07) 4.98(0.15) 5.36(0.51)

100 60 4.66(0.50) 4.36(0.61) 4.98(0.13) 5.00(0.03) 5.00(0.06) 5.27(0.45)

200 60 4.95(0.22) 4.90(0.30) 4.99(0.08) 5.00 5.00 5.00

500 60 5.00(0.04) 5.00(0.07) 5.00(0.03) 5.00 5.00 5.00

1000 60 5.00(0.04) 5.00(0.04) 5.00 5.00 5.00 5.00

2000 60 5.00(0.03) 5.00(0.03) 5.00(0.03) 5.00 5.00 5.00

100 100 4.(0.12) 4.90(0.30) 5.00 5.00 5.00 6.18(0.63)

200 100 5.00 5.00 5.00 5.00 5.00 5.00

500 100 5.00 5.00 5.00 5.00 5.00 5.00

1000 100 5.00 5.00 5.00 5.00 5.00 5.00

2000 60 5.00 5.00 5.00 5.00 5.00 5.00

40 100 4.25(0.68) 3.92(0.75) 4.77(0.44) 4.98(0.04) 5.66(0.14) 5.66(0.57)

60 100 4.76(0.44) 4.47(0.60) 4.76(0.10) 5.00(0.03) 4.99(0.08) 5.46(0.56)

60 200 4.97(0.17) 4.94(0.24) 5.00 5.00 5.00 5.00

60 500 5.00(0.05) 5.00(0.06) 5.00(0.04) 5.00 5.00 5.00

60 1000 5.00(0.03) 5.00(0.03) 5.00 5.00 5.00 5.00

60 2000 5.00 5.00 5.00 5.00 5.00 5.00

4000 60 5.00 5.00 5.00 5.00 5.00 5.00

4000 100 5.00 5.00 5.00 5.00 5.00 5.00

8000 60 5.00 5.00 5.00 5.00 5.00 5.00

8000 100 5.00 5.00 5.00 5.00 5.00 5.00

60 4000 5.00 5.00 5.00 5.00 5.00 5.000

100 4000 5.00 5.00 5.00 5.00 5.00 5.00

60 8000 5.00 5.00 5.00 5.00 5.00 5.00

100 8000 5.00 5.00 5.00 5.00 5.00 5.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 3.64(0.91) 3.38(0.94) 4.08(0.79) 6.65(0.64) 6.12(0.64) 7.63(0.51)

100 10 3.10(2.01) 2.83(1.86) 3.53(2.27) 8.00 8.00 8.00

100 20 2.18(0.92) 1.93(0.92) 2.65(0.0.90) 6.56(0.62) 5.97(0.62) 7.66(0.50)
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Table 8: Comparison between PC∗
p1, PC

∗
p2, PC

∗
p3 and PCp1, PCp2, PCp3 in terms

of the mean estimation numbers of PCs for m = 5, θ = 3.

N T PC∗

p1
PC∗

p2
PC∗

p3
PCp1 PCp2 PCp3

100 40 4.91(0.30) 4.81(0.41) 4.99(0.11) 5.00(0.03) 5.00 5.59(0.57)

100 60 5.00(0.04) 4.99(0.11) 5.00 5.00 5.00 5.58(0.57)

200 60 5.00 5.00 5.00 5.00 5.00 5.00

500 60 5.00 5.00 5.00 5.00 5.00 5.00

1000 60 5.00 5.00 5.00 5.00 5.00 5.00

2000 60 5.00 5.00 5.00 5.00 5.00 5.00

100 100 5.00 5.00 5.00 5.00 5.00 6.84(0.65)

200 100 5.00 5.00 5.00 5.00 5.00 5.00

500 100 5.00 5.00 5.00 5.00 5.00 5.00

1000 100 5.00 5.00 5.00 5.00 5.00 5.00

2000 100 5.00 5.00 5.00 5.00 5.00 5.00

40 100 4.97(0.17) 4.92(0.27) 5.00(0.04) 5.02(0.12) 5.00 6.22(0.66)

60 100 5.00(0.04) 4.99(0.08) 5.00 5.00 5.00 6.03(0.64)

60 200 5.00 5.00 5.00 5.00 5.00 6.03(0.03)

60 500 5.00 5.00 5.00 5.00 5.00 5.00

60 1000 5.00 5.00 5.00 5.00 5.00 5.00

60 2000 5.00 5.00 5.00 5.00 5.00 5.00

4000 60 5.00 5.00 5.00 5.00 5.00 5.00

4000 100 5.00 5.00 5.00 5.00 5.00 5.00

8000 60 5.00 5.00 5.00 5.00 5.00 5.00

8000 100 5.00 5.00 5.00 5.00 5.00 5.00

60 4000 5.00 5.00 5.00 5.00 5.00 5.00

100 4000 5.00 5.00 5.00 5.00 5.00 5.00

60 8000 5.00 5.00 5.00 5.00 5.00 5.00

100 8000 5.00 5.00 5.00 5.00 5.00 5.00

10 50 8.00 8.00 8.00 8.00 8.00 8.00

10 100 8.00 8.00 8.00 8.00 8.00 8.00

20 100 4.74(0.51) 4.62(0.57) 4.92(0.45) 7.11(0.63) 6.65(0.64) 7.85(0.37)

100 10 4.59(1.99) 4.35(1.91) 4.88(2.09) 8.00 8.00 8.00

100 20 3.86(0.79) 3.69(0.81) 4.13(0.73) 6.74(0.63) 6.19(0.62) 7.77(0.43)
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where

L∗ =

p∑

j=m+1

log
λn,j
σ̂2

,

and σ̂2 is the m.l.e.(4) of the variance. Keeping p fixed while letting n → ∞,

the classical low-dimensional theory states that Tn converges to χ2
q, where q =

p(p+1)/2+m(m− 1)/2− pm− 1, see Anderson and Rubin (1956). However, this

classical approximation is again useless in the large-dimensional setting. Indeed,

it will be shown below that this criterion leads to a high false-positive rate. In

particular, the test becomes biased since the size will be much higher than the

nominal level (see Table 9).

In a way similar to Section 2, we now construct a corrected version of Tn using

Proposition 1 and calculus done in Bai et al. (2009) and Zheng (2012). As we

consider the logarithm of the eigenvalues of the sample covariance matrix, we will

assume in the sequel that p < n and c < 1 to avoid null eigenvalues.

Theorem 3. Assume the same conditions as in Theorem 1 and in addition c < 1.

Then, we have

v(c)−
1
2 {L∗ −m(c)− ph(cn)− η + (p−m) log(β)} D−→ N (0, 1),

where

m(c) =
log (1− c)

2
, h(cn) =

cn − 1

cn
log(1− cn)− 1 ,

η =
m∑

i=1

log(1 + cσ2α−1
i ) , β = 1− c

p−m
(m+ σ2

m∑

i=1

α−1
i ) ,

v(c) = −2 log(1− c) +
2c

β

(
1

β
− 2

)
.
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Note that the above statistic depends on the unknown variance σ2 and the spike

eigenvalues (αi). First of all, as explained in Section 2, consistent estimates of (αi)

are available. By using these estimates and substituting bias-corrected estimate σ̂2
∗

for σ2, we obtain consistent estimates v̂(cn), η̂ and β̂ of v(c), η and β, respectively.

Therefore, to test H0, it is natural to use the statistic

∆n := v̂(cn)
− 1

2 (L∗ −m(cn)− ph(cn)− η̂ + (p−m) log(β̂)) .

Since ∆n is asymptotically standard normal, the critical region {∆n > qα} where

qα is the αth upper quantile of the standard normal, will have an asymptotic size

α. This test will be hereafter referred as the corrected likelihood ratio test (CLRT

in short).

5.1 Monte-Carlo experiments

We consider again Models 1 and 2 described in Section 2, and a new one (Model 4):

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8, 7, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 1, varying c.

Table 9 gives the empirical sizes of the classical likelihood ratio test (LRT)

and the new corrected likelihood ratio test (CLRT) above. For the LRT, we use

the correction proposed by Bartlett (1950), that is replacing Tn = −nL∗ by T̃n =

−(n−(2p+11)/6−2m/3)L∗. The computations are done under 10000 independent

replications and the nominal test level is 0.05.
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Table 9: Comparison of the empirical size of the classical likelihood ratio test

(LRT) and the corrected likelihood ratio test (CLRT) in various settings.

Settings Empirical size of CLRT Empirical size of LRT

Model 1

p = 90 n = 100 0.0497 0.9995

p = 180 n = 200 0.0491 1

p = 720 n = 800 0.0496 1

Model 2

p = 20 n = 100 0.0324 0.0294

p = 80 n = 400 0.0507 0.0390

p = 200 n = 1000 0.0541 0.0552

Model 4

p = 5 n = 500 0.0108 0.0483

p = 10 n = 500 0.0190 0.0465

p = 50 n = 500 0.0424 0.0445

p = 100 n = 500 0.0459 0.0461

p = 200 n = 500 0.0491 0.2212

p = 250 n = 500 0.0492 0.7395

p = 300 n = 500 0.0509 0.9994

The empirical sizes of the new CLRT are very close to the nominal one, except

when the ratio p/n is very small (less than 0.1). On the contrary, the empirical

sizes of the classical LRT are much higher than the nominal level especially when c

is not too small, and the test will always reject the null hypothesis when p becomes

large. In particular when p/n ≥ 1
2
, the LRT test tends to reject automatically the

null.
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6 Proofs

Before giving the proofs, we first recall some important results from the random

matrix theory which laid the foundation for the proofs of the main results of the

paper.

6.1 Useful results from random matrix theory

Random matrix theory has become a powerful tool to address new inference prob-

lems in high-dimensional data. For general background and references, we refer to

review papers Johnstone (2007) and Johnstone and Titterington (2009).

Let H be a probability measure on R
+ and c > 0 a constant. We define the

map

g(s) = gc,H(s) =
1

s
+ c

∫
t

1 + ts
dH(t) (13)

in the set C+ = {z ∈ C : ℑz > 0}. The map g is a one-to-one mapping from C
+

onto itself (see Bai and Silverstein (2010), Chapter 6), and the inverse mapm = g−1

satisfies all the requirements of the Stieltjes transform of a probability measure on

[0,∞). We call this measure F
¯ c,H . Next, a companion measure Fc,H is introduced

by the equation cFc,H = (c− 1) δ0 + F
¯ c,H (note that in this equation, measures

can be signed). The measure Fc,H is referred as the generalized Marčenko-Pastur

distribution with index (c,H).

Let Fn = 1
p

∑p
i=1 δλn,i

be the empirical spectral distribution (ESD) of the sam-

ple covariance matrix Sn defined in (3) with the {λn,i} denoting its eigenvalues.
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Then, it is well-known that under suitable moment conditions, Fn converges to the

Marčenko-Pastur distribution of index (c, δσ2), simply denoted as Fc,σ2 , with the

following density function

pc,σ2(x) =





1
2πxcσ2

√
{b(c)− x}{x− a(c)} , a(c) ≤ x ≤ b(c) ,

0 , otherwise.

The distribution has an additional mass (1− 1/c) at the origin if c > 1.

The ESD Hn of Σ is

Hn =
p−m

p
δσ2 +

1

p

m∑

i=1

δαi+σ2 ,

and Hn → δσ2 . Define the normalized empirical process

Gn(f) = p

∫

R

f(x)[Fn − Fcn,Hn
](dx), f ∈ A,

where A is the set of analytic functions f : U → C, with U an open set of C

such that [1(0,1)(c)a(c), b(c)] ⊂ U . We will need the following CLT which is a

combination of Theorem 1.1 of Bai and Silverstein (2004) and a recent addition

proposed in Zheng et al. (2014).

Proposition 1. We assume the same conditions as in Theorem 1. Then, for any

functions f1, . . . , fk ∈ A, the random vector (Gn(f1), . . . , Gn(fk)) converges to a

k-dimensional Gaussian vector with mean vector

m(fj) =
fj(a(c)) + fj(b(c))

4
− 1

2π

∫ b(c)

a(c)

fj(x)√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k,

and covariance function

v(fj, fl) = − 1

2π2

∮

C1

∮

C2

fj(z1)fl(z2)

(m(z1)−m(z2))2
dm(z1)dm(z2), j, l = 1, . . . , k,(14)
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where m(z) is the Stieltjes transform of F
¯ c,σ2 = (1 − c)δ0 + cFc,σ2. The contours

C1 and C2 are non overlapping and both contain the support of Fc,σ2.

An important and subtle point here is that the centering term in Gn(f) in the

above CLT is defined with respect to the Marcčenko-Pastur distribution Fcn,Hn

with “current” index (cn, Hn) instead of the limiting distribution Fc,σ2 with index

(c, σ2). In contrast, the limiting mean function m(fj) and covariance function

v(fj, fl) depend on the limiting distribution Fc,σ2 only.

6.2 Proof of Theorem 1

We have

(p−m)σ̂2 =

p∑

i=1

λn,i −
m∑

i=1

λn,i.

By (7),

m∑

i=1

λn,i −→
m∑

i=1

(
αi +

cσ4

αi

)
+ σ2m(1 + c) a.s. (15)

For the first term, we have

p∑

i=1

λi = p

∫
xdFn(x)

= p

∫
x d(Fn − Fcn,Hn

)(x) + p

∫
x dFcn,Hn

(x)

= Gn(x) + p

∫
x dFcn,Hn

(x).

By Proposition 1, the first term is asymptotically normal

Gn(x) =

p∑

i=1

λn,i − p

∫
x dFcn,Hn

(x)
D−→ N (m(x), v(x)),
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with asymptotic mean

m(x) = 0 , (16)

and asymptotic variance

v(x) = 2cσ4 . (17)

The derivation of these two formula are given in the Section 6. Furthermore, by

Lemma 1 of Bai et al. (2010),

∫
x dFcn,Hn

(x) =

∫
t dHn(t) = σ2 +

1

p

m∑

i=1

αi.

So we have

p∑

i=1

λn,i − pσ2 −
m∑

i=1

αi
D−→ N (0, 2cσ4). (18)

By (15) and (18) and using Slutsky’s lemma, we obtain

(p−m)(σ̂2 − σ2) + cσ2

(
m+ σ2

m∑

i=1

1

αi

)
D−→ N (0, 2cσ4).

6.3 Proof of Theorem 2

We have

p−m

σ2
√
2cn

(
σ̂2
∗ − σ2

)
=

p−m

σ2
√
2cn

(
σ̂2 − σ2

)
+ b
(
σ̂2
) σ̂2

σ2

=

{
p−m

σ2
√
2cn

(
σ̂2 − σ2

)
+ b(σ2)

}
+

1

σ2

{
b
(
σ̂2
)
σ̂2 − b(σ2)σ2

}
.

Since σ̂2 P−→ σ2, by continuity, the second expression tends to 0 in probability and

the conclusion follows from Theorem 1.
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6.4 Proof of Theorem 3

We have

L∗ =

p∑

i=m+1

log
λn,i
σ̂2

=

p∑

i=m+1

log
λn,i
σ2

−
p∑

i=m+1

log
σ̂2

σ2

=

p∑

i=m+1

log
λn,i
σ2

− (p−m) log

(
1

p−m

p∑

i=m+1

λn,i
σ2

)

= L1 − (p−m) log

(
L2

p−m

)
,

where we have defined a two-dimensional vector (L1, L2) = (
∑p

i=m+1 log
λn,i

σ2 ,
∑p

i=m+1
λn,i

σ2 ).

CLT when σ2 = 1. To start with, we consider the case σ2 = 1. We have

L1 = p

∫
log(x) dFn(x)−

m∑

i=1

log λn,i

= p

∫
log(x) d(Fn − Fcn,Hn

)(x) + p

∫
log(x) dFcn,Hn

(x)−
m∑

i=1

log λn,i.

Similarly, we have

L2 = p

∫
x d(Fn − Fcn,Hn

)(x) + p

∫
x dFcn,Hn

(x)−
m∑

i=1

λn,i.

By Proposition 1, we find that

p



∫
log(x) d(Fn − Fcn,Hn

)(x)
∫
x d(Fn − Fcn,Hn

)(x)


 D−→ N




 m1(c)

m2(c)


 ,


 v1(c) v1,2(c)

v1,2(c) v2(c)




(19)

with m2(c) = 0 and v2(c) = 2c and

m1(c) =
log (1− c)

2
, (20)

33



v1(c) = −2 log (1− c), (21)

v1,2(c) = 2c. (22)

Formulae of m2 and v2 have been established in the proof of Theorem 1 and the

others are derived in next subsection.

In Theorem 1, with σ2 = 1, we found that

∫
x dFcn,Hn

(x) = 1 +
1

p

m∑

i=1

αi,

and
m∑

i=1

λn,i
a.s.−→

m∑

i=1

(
αi +

c

αi

)
+m(1 + c).

For the last term of L1, by (7), we have

log λn,i −→ log(φ(αi + 1)) = log
(
(αi + 1)(1 + cα−1

i )
)
a.s.

Furthermore, by Wang et al. (2013), we have

∫
log(x) dFcn,Hn

(x) =
1

p

m∑

i=1

log(αi + 1) + h(cn) + o

(
1

p

)
,

where

h(cn) =

∫
log(x)dFcn,δ1(x) =

cn − 1

cn
log(1− cn)− 1. (23)

can be calculated using the density of the Marčenko-Pastur law (see 6.4). Sum-

marising, we have obtained that

L1 −m1(c)− ph(cn) + η(c, α)
D−→ N (0, v1(c)) ,
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where h(cn) =
cn−1
cn

log(1− cn)− 1 and η(c, α) =
∑m

i=1 log(1 + cσ2α−1
i ). Similarly,

we have

L2 − (p−m) + ρ(c, α)
D−→ N (0, v2(c)) ,

where ρ(c, α) = c(m+
∑m

i=1 α
−1
i ).

Using (19) and Slutsky’s lemma,


 L1

L2


 D−→ N




 m1(c) + ph(cn)− η(c, α)

p−m− ρ(c, α)


 ,


 v1(c) v1,2(c)

v1,2(cn) v2(cn)




 ,

with h(cn) = cn−1
cn

log(1 − cn) − 1, η(c, α) =
∑m

i=1 log(1 + cσ2α−1
i ) and ρ(c, α) =

c(m+
∑m

i=1 α
−1
i ).

CLT with general σ2. When σ2 = 1,

spec(Σ) = (α1 + 1, . . . , αm + 1, 1, . . . , 1),

whereas in the general case

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2)

= σ2
(α1

σ2
+ 1, . . . ,

αm

σ2
+ 1, . . . , 1

)
.

Thus, if we consider λi/σ
2, we will find the same CLT by replacing the (αi)1≤i≤m

by αi/σ
2. Furthermore, we divide L2 by p−m to find


 L1

L2

p−m


 D−→ N




 m1(c) + ph(cn)− η(c, α/σ2)

1− ρ(c,α/σ2)
p−m


 ,




2c
(p−m)2

2c
p−m

2c
p−m

−2 log(1− c)




 ,

with η(c, α/σ2) =
∑m

i=1 log(1 + cσ2α−1
i ), ρ(c, α/σ2) = c(m + σ2

∑m
i=1 α

−1
i ) and

h(cn) =
cn−1
cn

log(1− cn)− 1.
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Asymptotic distribution of L∗. We have L∗ = g(L1, L2/(p−m)), with g(x, y) =

x− (p−m) log(y). We will apply the multivariate delta-method on (24) with the

function g. We have ▽g(x, y) =
(
1,−p−m

y

)
and

L∗ D−→ N (β1 − (p−m) log(β2),▽g(β1, β2) cov(L1, L2/(p−m))▽ g(β1, β2)
′),

with β1 = m1(c) + ph(cn)− η(c, α/σ2) and β2 = 1− ρ(c,α/σ2)
p−m

. After some standard

calculation, we finally find

L∗ D−→ N
(
m1(c) + ph(cn)− η

(
c,
α

σ2

)
− (p−m) log(β2),−2 log(1− c) +

2c

β2

(
1

β2
− 2

))
.

6.5 Complementary proofs

Proof of (5)

The general theory of the m.l.e. for the PPCA model (1) in the classical setting has

been developed in Anderson and Amemiya (1988) with in particular the following

result.

Proposition 2. Let Θ = (θij)1≤i,j≤p = Ψ − Λ(Λ′Ψ−1Λ)−1Λ′. If (θ2ij)1≤i,j≤p is

nonsingular, if Λ and Ψ are identified by the condition that Λ′ΨΛ is diagonal and

the diagonal elements are different and ordered, if Sn → ΛΛ′ + Ψ in probability

and if
√
n(Sn −Σ) has a limiting distribution, then

√
n(Λ̂−Λ) and

√
n(Ψ̂−Ψ)

have a limiting distribution. The covariance of
√
n(Ψ̂ii −Ψii) and

√
n(Ψ̂jj −Ψjj)

in the limiting distribution is 2Ψ2
iiΨ

2
jjξ

ij (1 ≤ i, j ≤ p), where (ξij) = (θ2ij)
−1.

To prove the CLT (5), by Proposition 2, we know that the inverse of the

Fisher information matrix is I−1(ψ11, . . . , ψpp) = (2ψ2
iiψ

2
jjξ

ij)ij. We have to change
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the parametrization: in our case, we have ψ11 = · · · = ψpp. Let g : R → R
p,

a 7→ (a, . . . , a). The information matrix in this new parametrization becomes

I(σ2) = J ′I(g(σ2))J ,

where J is the Jacobian matrix of g. As

I(g(σ2)) =
1

2σ8
(θ2ij)ij,

we have

I(σ2) =
1

2σ8

p∑

i,j=1

θ2ij,

and

Θ = (θij)ij = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′

= σ2(Ip −Λ(Λ′Λ)−1Λ′).

By hypothesis, we have Λ′Λ = diag(d21, . . . , d
2
m). Consider the Singular Value

Decomposition of Λ, Λ = UDV, where U is a p× p matrix such that UU′ = Ip,

V is a m×m matrix such that V′V = Im, and D is a p×m diagonal matrix with

d1, . . . , dm as diagonal elements. As Λ′Λ is diagonal, V = Im, so Λ = UD. By

elementary calculus, one can find that

Λ(Λ′Λ)−1Λ′ = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
p−m

),

so

Θ = σ2diag(0, . . . , 0︸ ︷︷ ︸
m

, 1, . . . , 1︸ ︷︷ ︸
p−m

).

Finally,

I(σ2) =
1

2σ8
(p−m)σ4 =

p−m

2σ4
,
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and the asymptotic variance of σ̂2 is

s2 = I−1(σ2) =
2σ4

p−m
.

Proof of (16)

By Proposition 1, for g(x) = x, by using the variable change x = σ2(1 + c −
2
√
c cos θ), 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k

=
σ2(1 + c)

2
− σ2

2π

∫ π

0

(1 + c− 2
√
c cos θ) dθ

= 0.

Proof of (17)

Let s(z) be the Stieltjes transform of (1− c)1[0,∞) + cFc,δ1 . One can show that

m(z) =
1

σ2
s
( z
σ2

)
.

Then, in Proposition 1, we have

v(fj, fl) = − 1

2π2

∮ ∮
fj(σ

2z1)fl(σ
2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2), j, l = 1, . . . , k. (24)

For g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(σ2z1)g(σ

2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − σ4

2π2

∮ ∮
z1z2

(s(z1)− s(z2))2
ds(z1) ds(z2)

= 2cσ4,
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where − 1
2π2

∮ ∮
z1z2

(s(z1)−s(z2))2
ds(z1) ds(z2) = 2c is calculated in Bai et al. (2009) (it

corresponds to v(z1, z2), Section 5, proof of (3.4)).

Proof of (20)

By Proposition 1, for σ2 = 1 and g(x) = log(x), by using the variable change

x = 1 + c− 2
√
c cos θ, 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4c− (x− 1− c)2

dx, j = 1, . . . , k

=
log(1− c)

2
− 1

2π

∫ π

0

log(1 + c− 2
√
c cos θ) dθ

=
log(1− c)

2
− 1

4π

∫ 2π

0

log |1−√
ceiθ|2 dθ

=
log(1− c)

2
,

where
∫ 2π

0
log |1−√

ceiθ|2 dθ = 0 is calculated in Bai and Silverstein (2010).

Proof of (21)

By Proposition 1 and (24), for σ2 = 1 and g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − 1

2π2

∮ ∮
log(z1) log(z2)

(s(z1)− s(z2))2
ds(z1)ds(z2)

= −2 log(1− cn),

where the last integral is calculated in Bai and Silverstein (2010).
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Proof of (23)

Fcn,δ1 is the Marčenko-Pastur distribution of index cn. By using the variable change

x = 1 + cn − 2
√
cn cos θ, 0 ≤ θ ≤ π, we have

∫
log(x)dFcn,δ1(x) =

∫ b(cn)

a(cn)

log x

2πxcn

√
(b(cn)− x)(x− a(cn)) dx

=
1

2πcn

∫ π

0

log(1 + cn − 2
√
cn cos θ)

1 + cn − 2
√
cn cos θ

4cn sin
2 θ dθ

=
1

2π

∫ 2π

0

2 sin2 θ

1 + cn − 2
√
cn cos θ

log |1−√
cne

iθ|2 dθ

=
cn − 1

cn
log(1− cn)− 1,

where the last integral is calculated in Bai and Silverstein (2010).

Proof of (22)

In the normal case with σ2 = 1, Zheng (2012) gives the following equivalent ex-

pression of (14):

v(fj, fl) = − lim
r→1+

κ

4π2

∮ ∮

|ξ1|=|ξ2|=1

fj(|1 + hξ1|2)fl(|1 + hξ2|2)
1

(ξ1 − rξ2)2
dξ1 dξ2,

where κ = 2 in the real case and h =
√
c in our case. We take fj(x) = log(x) and

fl(x) = x, so we need to calculate

v(log(x), x) = − lim
r→1+

1

2π2

∮ ∮

|ξ1|=|ξ2|=1

|1 +√
cξ2|2

log(|1 +√
cξ1|2)

(ξ1 − rξ2)2
dξ1 dξ2.

We follow the calculations done in Zheng (2012): when |ξ| = 1, |1 +
√
cξ|2 =

(1 +
√
cξ)(1 +

√
cξ−1), so log(|1 + √

cξ|2) = 1
2
(log(1 +

√
cξ)2 + log(1 +

√
cξ−1)2).
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Consequently,
∮

|ξ1|=1

log(|1 +√
cξ1|2)

(ξ1 − rξ2)2
dξ1 =

1

2

∮

|ξ1|=1

log(1 +
√
cξ1)

2

(ξ1 − rξ2)2
dξ1 +

1

2

∮

|ξ1|=1

log(1 +
√
cξ−1

1 )2

(ξ1 − rξ2)2
dξ1

=
1

2

∮

|ξ1|=1

log(1 +
√
cξ1)

2

(
1

(ξ1 − rξ2)2
+

1

(1− rξ1ξ2)2

)
dξ1

= 0 + iπ

(
1

(rξ2)2
2
√
c

1 +
√
c

rξ2

)

= 2iπ

√
c

rξ2(rξ2 +
√
c)
.

Thus,

v(log(x), x) =
1

iπ

∮

|ξ2|=1

|1 +√
cξ2|2

√
c

ξ2(ξ2 +
√
c)

dξ2

=
1

iπ

∮

|ξ|=1

(
1 + c+ c(ξ + ξ−1)

) √
c

ξ(ξ +
√
c)

dξ

=
1

iπ

∮

|ξ|=1

(√
c(1 + c)

ξ(ξ +
√
c)

+
c

ξ +
√
c
+

c

ξ2(ξ +
√
c)

)
dξ

= 2(1 + c− (1 + c) + c+ 1− 1)

= 2c.

7 Conclusions

In this paper, we propose a bias-corrected estimator of the noise variance for PPCA

models in the high-dimensional framework. The main appeal of our estimator

is that it is developed under the assumption that p/n → c > 0 as p, n → ∞
and is thus appropriate for a wide range of large-dimensional datasets. Extensive

Monte-Carlo experiments demonstrated the superiority of the proposed estimator

over several existing estimators (notice however no theoretical justification has
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been proposed in the literature for these estimators). Moreover, by implementing

the proposed estimator of the noise variance within two well-known determination

algorithms for the number of principal components, we demonstrate that significant

improvement can be obtained. In an additional application and using this new

estimator, we construct the asymptotic theory of the goodness-of-fit test for high-

dimensional PPCA models. The overall manage from the paper is that in a high-

dimensional PPCA model, when an estimator of the noise variance σ2 is needed,

the bias-corrected estimator σ̂2
∗ from the paper should be recommended.
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model. Ann. Inst. Henri Poincaré Probab. Stat., 44(3):447–474, 2008.

Z. Bai, D. Jiang, J. Yao, and S. Zheng. Corrections to LRT on large-dimensional

covariance matrix by RMT. Ann. Statist., 37(6B):3822–3840, 2009.

Z. Bai, J. Chen, and J. Yao. On estimation of the population spectral distribution

from a high-dimensional sample covariance matrix. Aust. N. Z. J. Stat., 52(4):

423–437, 2010.

J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of

spiked population models. J. Multivariate Anal., 97(6):1382–1408, 2006a.

43



J. Baik and J. W. Silverstein. Eigenvalues of large sample covariance matrices of

spiked population models. Journal of Multivariate Analysis, 97(6):1382–1408,

2006b.

M. S. Bartlett. Test of significance in factor analysis. Brit. Jour. Psych., 3:97–104,

1950.

G. Chamberlain and M. Rothschild. Arbitrage, factor structure, and mean-variance

analysis on large asset markets. Econometrica, 51(5):1281–1304, 1983.

J. G. Cragg and S. G. Donald. Inferring the rank of a matrix. Journal of econo-

metrics, 76(1):223–250, 1997.

X. Ding, L. He, and L. Carin. Bayesian robust principal component analysis. Image

Processing, IEEE Transactions on, 20(12):3419–3430, 2011.

C. Doz, D. Giannone, and L. Reichlin. A quasi–maximum likelihood approach for

large, approximate dynamic factor models. Review of economics and statistics,

94(4):1014–1024, 2012.

M. Forni, M. Hallin, M. Lippi, and L. Reichlin. Reference cycles: the NBER

methodology revisited. Number 2400. Citeseer, 2000.

I. M. Johnstone. On the distribution of the largest eigenvalue in principal compo-

nents analysis. Ann. Statist., 29(2):295–327, 2001.

I. M. Johnstone. High dimensional statistical inference and random matrices. In

International Congress of Mathematicians. Vol. I, pages 307–333. Eur. Math.
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