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Abstract

In the classic setting where the dimension p is small compared to the
sample size n, an asymptotic likelihood estimation theory is well-known for
the factor model by letting n tending to infinity while keeping p fixed. This
theory is however no more valid for high-dimensional data where typically
the dimension p is large compared to the sample size. In this paper, we de-
velop new asymptotic results under the high-dimensional setting in a strict
factor model with homoscedastic noise variance. For the maximum likeli-
hood estimator of the noise variance, first we identify the reasons of a widely
observed downward bias of the estimator. Second, a bias-corrected estima-
tor is proposed using this knowledge. Third, we establish an asymptotically
normal distribution for this corrected estimator under the high-dimensional
setting. The second contribution of the paper concerns the correction of
the likelihood-ratio statistic of the goodness-of-fit test to make it adapted
to high-dimensional observations. The corrected statistic is proved asymp-
totically normal. Throughout the paper, Monte-Carlo experiments are con-
ducted to assess the finite-sample behaviour of the methods. An application
to returns of S&P 500 stock prices is also proposed.

Keywords. High-dimensional Factor model, noise variance estimator,
goodness-of-fit test, likelihood ratio, random matrix theory.

1 Introduction

Recently, factor models have become a favoured tool for the analysis of high-
dimensional data since these models are efficient for reduction of data dimension.
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Important references on the topic include the early works of Forni et al. (2000),
Bai (2003) and Bai and Ng (2002) where some main statistical questions on the
models have been addressed. As for more recent developments, factor models are
used in Fan et al. (2008) to approximate a general high-dimensional covariance
matrix, and in Lam et al. (2011) and Lam and Yao (2012) to approximate dy-
namics of high-dimensional time series; finally Bai and Li (2012) and Bai and Liao
(2012) have addressed the general problem of inference for large-dimensional fac-
tor models using the likelihood function and/or the method of large covariance
matrix thresholding. Moreover, in the signal processing community, factor models
are referred as “signal plus noise” model and recent statistical developments are
reported in Kritchman and Nadler (2008), Bianchi et al. (2011) and Hachem et al.
(2012).

More precisely, we consider the following factor model following the presen-
tation of (Anderson, 2003, Chapter 14): the observation vectors {xi}1≤i≤n are
p-dimensional and satisfy the equation

xi = Λfi + ei + µ , i = 1, . . . , n. (1)

Here, fi is a m-dimensional common factors with m ≪ p, Λ a p × m matrix
of factor loadings, and µ represents the general mean and (ei) is a sequence of
independent idiosyncratic errors. The random factors fi and the noise ei have a
Gaussian distribution and they are both unobserved.

To ensure the identification of the model constraints have to be introduced on
the parameters. There are several possibilities for the choice of such constraints,
see e.g. Table 1 in Bai and Li (2012). A traditional choice is the following:

• Efi = 0 and Efif
′
i = I; Ψ = cov(ei) is diagonal;

• The matrix Γ := Λ′Ψ−1Λ is diagonal with distinct diagonal elements.

Therefore, the population covariance matrix (PCM) of {xi} is

Σ = ΛΛ′ +Ψ. (2)

Since the number of factor m is much smaller than the dimension p, Σ can be
seen as a finite-rank perturbation of the error covariance matrix Ψ. Finally, the
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special case where Ψ = σ2I (σ2 > 0) is called a strict factor model, i.e. the error
is cross-sectionally homogeneous and uncorrelated.

The likelihood-based estimation theory in a factor model has been known since
Lawley (1940) as follows. Let x̄ be the sample mean and define the sample covari-
ance matrix

Sn =
1

n− 1

n∑

i=1

(xi − x̄)(xi − x̄)′.

Let λn,1 ≥ λn,2 ≥ · · · ≥ λn,p be the eigenvalues of Sn. The maximum likelihood
estimator (m.l.e.) of µ is x̄ and those of Λ and Ψ are obtained by solving the
following implicit equations

Λ(Γ+ Im) = SnΨ
−1Λ, (3)

diag(ΛΛ′ +Ψ) = diag(Sn) , with Γ = Λ′Ψ−1Λ diagonal. (4)

These equations can be solved using EM-type algorithms, see Zhao et al. (2008) for
a review. The asymptotic normality of the maximum likelihood estimators Λ̂ (resp.
Ψ̂) of Λ (resp. Ψ) is established in Anderson and Amemiya (1988) (actually under
a more general setting than assuming normal distributions, see Proposition 2).

For the strict factor model case, the estimation of Ψ = σ2Ip is simplified to
that of σ2. The equations (3) and (4) become

Λ(Γ+ Im) =
1

σ2
SnΛ , (5)

pσ2 = tr(Sn −ΛΛ′), with Γ =
1

σ2
Λ′Λ diagonal. (6)

In contrast to the general case, these equations can be solved explicitly (Anderson
and Rubin, 1956) to obtain the m.l.e.:

σ̂2 =
1

p−m

p∑

i=m+1

λn,i, (7)

Λ̂k =
(
λn,k − σ̂2

) 1

2 vn,k, 1 ≤ k ≤ m, (8)

where for vn,k is the normalized eigenvector of Sn corresponding to λn,k (1 ≤ k ≤ p).

In the classical setting, hereafter referred as the low-dimensional setting, the
asymptotic likelihood theory is developed by fixing the dimension p while the
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sample size n → ∞. This theory assesses that the m.l.e.’s are asymptotically
normal with the standard

√
n-convergence rate (Anderson and Amemiya, 1988).

In particular, as n→ ∞,

√
n(σ̂2 − σ2)

L−→ N (0, s2), s2 =
2σ4

p−m
. (9)

The situation is radically different when p is large compared to the sample size
n. Recent advances in high-dimensional statistics indicate that the above asymp-
totic results are no more valid with high-dimensional data. First of all, it has
been widely observed in the literature that σ̂2 seriously underestimates the true
noise variance σ2 in such situation. As all meaningful inference procedures in the
model will unavoidably use this variance estimate, such a severe bias is more than
desappointing and need to be corrected. Two corrected estimator have been re-
ported in the literature: Kritchman and Nadler (2008) proposes an estimator by
solving a system of implicit equations; and Ulfarsson and Solo (2008) introduces
an estimator using the median of the sample eigenvalues {λn,k}. However, these
estimators are assessed by Monte-Carlo experiments and their theoretic properties
(bias, consistency or asymptotic normality) are unknown. As a first contribution
of the paper, we are able to identify completely the aforementioned negative bias
of the variance estimator σ2 in the high-dimensional context. Using this identi-
fication, we further propose a bias-corrected estimator for the noise variance and
prove its asymptotic normality (with explicit asymptotic mean and variance). An
interesting feature that this new asymptotic limit coincide with the classical low-
dimensional limit (9) when the dimension to sample size ratio p/n shrinks to zero.
Therefore, the new asymptotic limit is a natural extension of the classical result
to the high-dimensional context. This is done in Section 3.

Next, in Section 4, we consider the likelihood ratio test for the goodness-of-fit
to a strict factor model. Under the low-dimensional scheme for small dimension p,
the classical theory assesses a limiting chi-squared distribution for the test statistic
(Amemiya and Anderson, 1990). Under the large dimensional scheme, this limit
is no more valid and the realised size of the test becomes much larger than the
nominal significance level. Following an approach devised in Bai et al. (2009), we
propose a correction to this goodness-of-fit test statistic to cope with the high-
dimensional effects and establishes an asymptotic normal limit. As mentioned
earlier, this results uses the corrected estimator of the variance discussed above.
As an application, we discuss the problem of determining the number of factors
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for the Standard & Poor 500 stock returns.

The remaining sections are organized as follows. In Section 2, we recall some
results from random matrix theory which will be used in establishing our main
results. Technical details of secondary importance are presented in the Appendix.
Throughout the paper, Monte-Carlo experiments are conducted to assess the qual-
ity of the proposed methods.

2 Useful results from random matrix theory

Random matrix theory has become a powerful tool to address new inference prob-
lems raised by high-dimensional data. For general background and references, we
refer to review papers Johnstone (2007) and Johnstone and Titterington (2009).
Here we recall some important results that will be used afterwards.

2.1 Results about spiked population model

The strict factor model is a spiked population model (Johnstone, 2001) since the
eigenvalues of Σ are

spec(Σ) = (α1, . . . , α1︸ ︷︷ ︸
n1

, . . . , αK , . . . , αK︸ ︷︷ ︸
nK

, 0, . . . , 0︸ ︷︷ ︸
p−m

) + σ2(1, . . . , 1︸ ︷︷ ︸
p

)

= σ2(α∗
1, . . . , α

∗
1︸ ︷︷ ︸

n1

, . . . , α∗
K , . . . , α

∗
K︸ ︷︷ ︸

nK

, 1, · · · , 1︸ ︷︷ ︸
p−m

), (10)

where (αi) are non-null eigevalues of ΛΛ′ with multiplicity numbers (ni) satisfying
n1 + · · ·+ nK = m and we have used the notation α∗

i = αi/σ
2 + 1.

In the low-dimensional setting, as n → ∞, Sn → Σ so that by continuity, for
1 ≤ k ≤ m λn,k → αi + σ2 for some i and for m < k ≤ p, λn,k → σ2. Again the
situation is different in the high-dimensional context. More precisely, assume that
p and n are related so that when n → ∞, cn = p/(n − 1) → c > 0. Therefore, p
can be large compared to the sample size n and for the asymptotic theory, p and
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n tend to infinity proportionally. Define the function

φ(α) = α +
cα

α− 1
, α 6= 1 ,

and set s0 = 0 and si = n1+ · · ·+ni for 1 ≤ i ≤ K. The set Ji = {si−1+1, . . . , si}
is then the indexes among {1, . . . , p} associated to αi counting the multiplicities.
Following Baik and Silverstein (2006), assumed that α∗

1 ≥ · · · ≥ α∗
m > 1 +

√
c, i.e

all the eigenvalues αi are greater than σ
2
√
c. It is then known that, for the spiked

eigenvalues λn,k, 1 ≤ k ≤ m, almost surely if k ∈ Ji,

λn,k −→ σ2φ(α∗
i ) = αi + σ2 + σ2c

(
1 +

σ2

αi

)
. (11)

Moreover, the remaining sample eigenvalues {λn,k}m<k≤p, called noise eigenvalues,
will converge to a continuous distribution with support interval [a(c), b(c)] where
a(c) = σ2(1 −√

c)2 and b(c) = σ2(1 +
√
c)2. In particular, for all 1 ≤ i ≤ L with

a prefixed range L and almost surely, λn,m+i → b(c) . It is worth noticing that in
(11), if we let c → 0, we recover the low-dimensional limits λn,k → αi + σ2 (spike
eigenvalues) and λn,k → σ2 (noise eigenvalues) discussed earlier.

In a further step, CLT for the spiked eigenvalues is established in Bai and Yao
(2008): the ni-dimensional vector

{√n(λn,k − σ2φ(α∗
k)), k ∈ Ji} (12)

converges to a well-determined ni-dimensional limiting distribution. Moreover,
this limiting distribution is Gaussian if and only if the corresponding popualtion
spike eigenvalue αi is simple, i.e. ni = 1.

2.2 Empirical spectral distribution and Marčenko-Pastur
distributions

Let H be a probability measure on R
+ and c > 0 a constant. We define the map

g(s) = gc,H(s) =
1

s
+ c

∫
t

1 + ts
dH(t) (13)

in the set C+ = {z ∈ C : ℑz > 0}. The map g is a one-to-one map from C
+ onto

itself (see Bai and Silverstein (2010), chapter 6), and the inverse map m = g−1
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satisfies all the requirements of the Stieltjes transform of a probability measure on
[0,∞). We call this measure F

¯c,H . Next, a companion measure Fc,H is introduced
by the equation cFc,H = (c− 1) δ0 + F

¯c,H (note that in this equation, measures
can be signed). The measure Fc,H is referred as the generalized Marčenko-Pastur
distribution with index (c,H).

Let Fn = 1
p

∑p
i=1 δλn,i

be the empirical spectral distribution (ESD) of Sn. Then,

Fn converges to the Marčenko-Pastur distribution of index (c, δσ2), simply denoted
as Fc,σ2 , with the following density function

pc,σ2(x) =

{
1

2πxcσ2

√
{b(c)− x}{x− a(c)} , a(c) ≤ x ≤ b(c) ,

0 , otherwise.

The distribution has an additional mass (1− 1/c) at the origin if c > 1.

Let Hn = FΣ be the ESD of Σ. We have

Hn =
p−m

p
δσ2 +

1

p

m∑

i=1

δαi+σ2

and Hn → δσ2 .

2.3 CLT for linear spectral statistic of a high-dimensional
covariance matrix

Define the normalized empirical process

Gn(f) = p

∫

R

f(x)[Fn − Fcn,Hn
](dx), f ∈ A,

where A is the set of analytic functions f : U → C, with U an open set of C
such that [1(0,1)(c)a(c), b(c)] ⊂ U . We will need the following CLT which is a
combination of Theorem 1.1 of Bai and Silverstein (2004) and a recent addition
proposed in Zheng and Bai (2013).

Proposition 1. Consider the strict factor model (1) with population covariance

matrix Σ = ΛΛ′+σ2Ip where both the random factors and the noise are Gaussian.
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Assume that p → ∞, n → ∞ and cn = p/(n − 1) → c > 0. Then, for any

functions f1, . . . , fk ∈ A, the random vector (Gn(f1), . . . , Gn(fk)) converges to a

k-dimensional Gaussian vector with mean vector

m(fj) =
fj(a(c)) + fj(b(c))

4
− 1

2π

∫ b(c)

a(c)

fj(x)√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k,

and covariance function

v(fj, fl) = − 1

2π2

∮ ∮
fj(z1)fl(z2)

(m(z1)−m(z2))2
dm(z1)dm(z2), j, l = 1, . . . , k, (14)

where m(z) is the Stieltjes transform of F c,σ2 = (1 − c)δ0 + cFc,σ2. The contours

are non overlapping and both contain the support of Fc,σ2.

An important and subtle point here is that the centering term in Gn(f) in
the above CLT is defined with respec to the Marcčenko-Pastur distribution Fcn,Hn

with “current” index (cn, Hn) instead of the limiting distribution Fc,σ2 with index
(c, σ2). In contrast, the limiting mean function m(fj) and covariance function
v(fj, fl) depend on the limiting distribution Fc,σ2 only.

3 Estimation of the homoscedastic noise vari-

ance

As explained in Introduction, when the dimension p is large compared to the sample
size n, the m.l.e. σ̂2 in (7) has a negative bias. In this section, we identify this
bias and establishes its asymptotic normality under the high-dimensional scheme.

Theorem 1. We assume the same conditions as in Proposition 1. Then, we have

(p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2)
L−→ N (0, 1),

where b(σ2) =
√

c
2

(
m+ σ2

∑m
i=1

1
αi

)
.

Therefore for high-dimensional data, the m.l.e. σ̂2 has an asymptotic bias
−b(σ2) (after normalization). This bias is a complex function of the noise variance
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and the m non-null eigenvalues of the loading matrix ΛΛ′. It is worth noticing
that the above CLT is still valid if c̃n = (p−m)/n is substituted for c. Now if we
let p≪ n so tha c̃n ≃ 0 and b(σ2) ≃ 0, and hence

(p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2) ≃
√
p−m

σ2
√
2

(σ̂2 − σ2) .

This is nothing but the CLT (9) for σ̂2 known under the classical low-dimensional
scheme. From this point of view, Theorem 1 consitutes a natural extension of the
classical CLT to the high-dimensional context.

Proof of Theorem 1. We have

(p−m)σ̂2 =

p∑

i=1

λn,i −
m∑

i=1

λn,i.

By (11),

m∑

i=1

λn,i −→
m∑

i=1

(
αi +

cσ4

αi

)
+ σ2m(1 + c) a.s. (15)

For the first term, we have

p∑

i=1

λi = p

∫
xdFn(x)

= p

∫
x d(Fn − Fcn,Hn

)(x) + p

∫
x dFcn,Hn

(x)

= Gn(x) + p

∫
x dFcn,Hn

(x).

By Proposition 1, the first term is asymptotically normal

Gn(x) =

p∑

i=1

λn,i − p

∫
x dFcn,Hn

(x)
L−→ N (m(x), v(x)),

with asymptotic mean

m(x) = 0 , (16)
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and asymptotic variance

v(x) = 2cσ4 . (17)

The derivation of these two formula are given in the appendix. Furthermore, by
Lemma 1 of Bai et al. (2010),

∫
x dFcn,Hn

(x) =

∫
t dHn(t) = σ2 +

1

p

m∑

i=1

αi.

So we have

p∑

i=1

λn,i − pσ2 −
m∑

i=1

αi
L−→ N (0, 2cσ4). (18)

By (15) and (18) and using Slutsky’s lemma, we obtain

(p−m)(σ̂2 − σ2) + cσ2

(
m+ σ2

m∑

i=1

1

αi

)
L−→ N (0, 2cσ4).

3.1 Monte-carloexperiments

We consider an i.i.d. Gaussian sample of size n in three different settings:

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 1;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 3: spec(Σ) = (12, 10, 8, 8, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 3, c = 1.5.

Figure 1 presents the histograms from 1000 replications of

(p−m)

σ2
√
2c

(σ̂2 − σ2) + b(σ2)
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Model 1 (p=n=100)
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Model 2 (p=20,n=100)
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Model 2 (p=80,n=400)
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Model 3 (p=150,n=100)
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Model 3 (p=600,n=400)
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Figure 1: Histogram of (p−m)

σ2
√

2c
(σ̂2−σ2)+b(σ2) compared with the density of a standard Gaussian

law.

for the three models above, with different sample size n and p = c× n, compared
to the density of the standard normal probability law. Even for a moderate sample
size like n = 100, the distribution is almost normal.
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In Table 1, we compare the empirical bias of σ̂2 (i.e. the empirical mean of
σ2 − σ̂2 = σ2 − 1

p−m

∑p
i=m+1 λn,i) over 1000 replications with the theoretical one

−σ2
√
2cb(σ2)/(p−m) in different settings. In all the three models, the empirical

and theoretical bias are close each other. As expected, their difference vanishes
when p and n increase.

Table 1: Comparison between the empirical and the theoretical bias in various
settings.

Settings Empirical bias Theoretical bias |Difference|

Model 1
p = 100 n = 100 -0.1556 -0.1589 0.0023
p = 400 n = 400 -0.0379 -0.0388 0.0009
p = 800 n = 800 -0.0189 -0.0193 0.0004

Model 2
p = 20 n = 100 -0.0654 -0.0704 0.0050
p = 80 n = 400 -0.0150 -0.0162 0.0012
p = 200 n = 1000 -0.0064 -0.0063 0.0001

Model 3
p = 150 n = 100 -0.0801 -0.0795 0.0006
p = 600 n = 400 -0.0400 -0.0397 0.0003
p = 1500 n = 1000 -0.0157 -0.0159 0.0002

3.2 A bias-corrected estimator

The previous theory recommends to correct the negative bias of σ̂2. However,
the bias b(σ2) depends on the number m and the values αi of the spikes. These
parameters could not be known in real-data applications and they need to be first
estimated. In the literature, consistent estimators of m have been proposed, e.g.
in Kritchman and Nadler (2008), Onatski (2009) and Passemier and Yao (2012).

For the values of the spikes αi, it is easy to see that it can be done by inverting
the function φ in (11) at the corresponding eigenvalues λj. Moreover, by apply-
ing the delta-method to (12), we can obtain the asymptotic distribution of this
estimator, see Bai and Ding (2012).

As the bias depends on σ2 which we want to estimate, a natural correction is
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to use the plug-in estimator

σ̂2
∗ = σ̂2 +

b(σ̂2)

p−m
σ̂2
√
2c.

Notice that in this formula, the number of factors m can be replaces by any consis-
tent estimate as discussed above without affecting its limiting distribution. Using
Theorem 1 and the delta-method, we obtain the following CLT

Theorem 2. We assume the same conditions as in Proposition 1. Then, we have

ṽ(c)−
1

2

{
σ̂2
∗ − σ2 + b̃(σ2)

}
L−→ N (0, 1),

where

b̃(σ2) =
c
√
2cσ2

(p−m)2

(
mb(σ2) + 2σ2b(σ2)

m∑

i=1

α−1
i

)
−2c2σ4b(σ2)2

∑m
i=1 α

−1
i

(p−m)3
= O

(
1

p2

)
,

and

ṽ(c) =
2cσ4

(p−m)2

(
1 +

cm

p−m
+

4c2σ4

(pm)3

m∑

i=1

α−1
i

)2

=
2cσ4

(p−m)2

(
1 +O

(
1

p

))
.

Basically, this theorem states that

p−m

σ2
√
2c

(
σ̂2
∗ − σ2

) L−→ N (0, 1) .

Compared to the m.l.e. σ̂2 in Theorem 1, the new estimator has no more a bias
after normalization by p−m

σ2
√
2c
. The terms b̃(σ2) and ṽ(c) in the theorem give more

details for the centering parameter and the normalization rate.

To assess the quality of this bias-corrected estimator σ̂2
∗, we conduct some sim-

ulation experiments using the previous settings: Tables 2 and 3 give the empirical
mean of σ̂2

∗ over 1000 replications compared with the empirical mean of σ̂2, as
well as the mean squared errors and mean absolute deviations. For comparison,
the same statistics are also given for the estimator σ̂2

KN of Kritchman and Nadler
(2008) and the estimator σ̂2

US of Ulfarsson and Solo (2008). These two estimators
are defined as follow:
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• σ̂2
KN is the solution of the following non-linear system of m + 1 equations

involving the m+ 1 unknowns ρ̂1, . . . , ρ̂m and σ̂2
KN

σ̂2
KN − 1

p−m

[
p∑

j=m+1

λn,j +
m∑

j=1

(λn,j − ρ̂j)

]
= 0,

ρ̂2j − ρ̂j

(
λn,j + σ̂2

KN − σ̂2
KN

p−m

n

)
+ λn,jσ̂

2
KN = 0.

We used the computing code available on the author’s web-page to carry out
the simulations.

• σ̂2
US is defined as

σ̂2
US =

median(λn,m+1, . . . , λn,p)

p−1
c,1(0.5)

,

where p−1
c,1 is quantile function of the Marčenko-Pastur distribution Fc,1.

Table 2: Empirical mean, MSE (between brackets) and mean absolute deviation
of σ̂2 and σ̂2

∗ in various settings.

Settings
σ̂2 |σ2 − σ̂2| σ̂2

∗ |σ2 − σ̂2
∗|Mod. p n σ2

1
100 100

4
3.8464 (0.0032) 0.1536 3.9979 (0.0035) 0.0021

400 400 3.9616 (0.0002) 0.0384 4.0000 (0.0002) < 10−5

800 800 3.9809 (0.0001) 0.0191 4.0002 (0.0001) 0.0002

2
20 100

2
1.9340 (0.0043) 0.0660 2.0012 (0.0047) 0.0012

80 400 1.9841 (0.0003) 0.0159 2.0001 (0.0003) 0.0001
200 1000 1.9939 (< 10−5) 0.0061 2.0002 (< 10−5) 0.0002

3
150 100

3
2.8400 (0.0011) 0.1600 2.9926 (0.0013) 0.0074

600 400 2.9605 (0.0001) 0.0395 2.9999 (0.0001) 0.0001
1500 1000 2.9839 (< 10−5) 0.0161 2.9998 (< 10−5) 0.0002

In all three models considered, the bias-corrected estimator σ̂2
∗ is far much

better than the original m.l.e. σ̂2: here mean absolute deviations are reduced
by 95% at least. The performances of σ̂2

∗ and σ̂2
KN are similar. The estimator

σ̂2
US shows slightly better performance than the m.l.e. σ̂2, but performs poorly

compared to σ̂2
∗ and σ̂2

KN. Notice however the theoretic properties of σ̂
2
KN and σ̂2

US

are unknown and so far there have been checked via simulations only.
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Table 3: Empirical mean, MSE (between brackets) and mean absolute deviation
of σ̂2

KN and σ̂2
US in various settings.

Settings
σ̂2
KN |σ2 − σ̂2

KN| σ̂2
US |σ2 − σ̂2

US|Mod. p n σ2

1
100 100

4
4.0030 (0.0036) 0.0030 3.8384 (0.0154) 0.1616

400 400 4.0003 (0.0002) 0.0003 3.9585 (0.0013) 0.0415
800 800 4.0002 (0.0001) 0.0002 3.9794 (0.0004) 0.0206

2
20 100

2
1.9997 (0.0048) 0.0003 1.9400 (0.0087) 0.0600

80 400 2.0001 (0.0003) 0.0001 1.9851 (0.0008) 0.0149
200 1000 2.0002 (< 10−5) 0.0002 1.9942 (0.0001) 0.0058

3
150 100

3
2.9935 (0.0016) 0.0065 2.7750 (0.0092) 0.2250

600 400 3.0006 (0.0001) 0.0006 2.9450 (0.0007) 0.0550
1500 1000 2.9999 (< 10−5) 0.0001 2.9773 (0.0001) 0.0227

4 Corrected likelihood ratio test of the hypoth-

esis that the factor model fits

As a second statistical problem in the high-dimensional factor model, we consider
the following goodness-of-fit test. The null hypothesis is then

H0 : Σ = ΛΛ′ + σ2Ip,

where the number of factors m is specified. Following Anderson and Rubin (1956),
the likelihood ratio test (LRT) statistic is

Tn = −nL∗,

where

L∗ =

p∑

j=m+1

log
λn,j
σ̂2

,

and σ̂2 is the m.l.e. (7) of the variance.. Keeping p fixed while letting n → ∞,
the low-dimensional theory states that Tn converges to χ2

q, where q = p(p+1)/2+
m(m − 1)/2 − pm − 1, see Anderson and Rubin (1956). However, this classical
approximation is again useless in the large-dimensional setting. Indeed, it will be
shown below that this criterion leads to a high false-positive rate. In particular,
the test becomes biased since the size will be much higher than the nominal level
(see Table 4).

15



In a way similar to Section 3, we now construct a corrected version of Tn using
Proposition 1 and calculus done in Bai et al. (2009) and Zheng (2012). As we
consider the logarithm of the eigenvalues of the sample covariance matrix, we will
assume in the sequel that c < 1 to avoid null eigenvalues.

Theorem 3. Assume the same conditions as in Proposition 1 and in addition

c < 1. Then, we have

v(c)−
1

2 {L∗ −m(c)− ph(cn)− η + (p−m) log(β)} L−→ N (0, 1),

where

m(c) =
log (1− c)

2
, h(cn) =

cn − 1

cn
log(1− cn)− 1 ,

η =
m∑

i=1

log(1 + cσ2α−1
i ) , β = 1− c

p−m
(m+ σ2

m∑

i=1

α−1
i ) ,

v(c) = −2 log(1− c) +
2c

β

(
1

β
− 2

)
.

Note that the above statistic depends on the unknown variance σ2 and the spike
eigenvalues (αi). First of all, as explained in Section 3.2, consistent estimates of (αi)
are available. By using these estimates and substituting bias-corrected estimate σ̂2

∗
for σ2, we obtain consistent estimates v̂(cn), η̂ and β̂ of v(c), η and β, respectively.
Therefore, to test H0, it is natural to use the statistic

∆n := v̂(cn)
− 1

2 (L∗ −m(cn)− ph(cn)− η̂ + (p−m) log(β̂)) .

Since ∆n is asymptotically standard normal, the critical region {∆n > qα} where
qα is the αth upper quantile of standard normal, will have an asymptotic size α.
This test will be hereafter referred as the corrected likelihood ratio test (CLRT in
short).
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Proof of Theorem 3. We have

L∗ =

p∑

i=m+1

log
λn,i
σ̂2

=

p∑

i=m+1

log
λn,i
σ2

−
p∑

i=m+1

log
σ̂2

σ2

=

p∑

i=m+1

log
λn,i
σ2

− (p−m) log

(
1

p−m

p∑

i=m+1

λn,i
σ2

)

= L1 − (p−m) log

(
L2

p−m

)
,

where we have defined a two-dimensional vector (L1, L2) = (
∑p

i=m+1 log
λn,i

σ2 ,
∑p

i=m+1
λn,i

σ2 ).

CLT when σ2 = 1. To start with, we consider the case σ2 = 1. We have

L1 = p

∫
log(x) dFn(x)−

m∑

i=1

log λn,i

= p

∫
log(x) d(Fn − Fcn,Hn

)(x) + p

∫
log(x) dFcn,Hn

(x)−
m∑

i=1

log λn,i.

Similarly, we have

L2 = p

∫
x d(Fn − Fcn,Hn

)(x) + p

∫
x dFcn,Hn

(x)−
m∑

i=1

λn,i.

By Proposition 1, we find that

p

( ∫
log(x) d(Fn − Fcn,Hn

)(x)∫
x d(Fn − Fcn,Hn

)(x)

)
L−→ N

((
m1(c)
m2(c)

)
,

(
v1(c) v1,2(c)
v1,2(c) v2(c)

))
(19)

with m2(c) = 0 and v2(c) = 2c and

m1(c) =
log (1− c)

2
, (20)

v1(c) = −2 log (1− c), (21)
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v1,2(c) = 2c. (22)

Formulae of m2 and v2 have been established in the proof of Theorem 1 and the
others are derived in Appendix A.

In Theorem 1, with σ2 = 1, we found that

∫
x dFcn,Hn

(x) = 1 +
1

p

m∑

i=1

αi,

and
m∑

i=1

λn,i
a.s.−→

m∑

i=1

(
αi +

c

αi

)
+m(1 + c).

For the last term of L1, by (11), we have

log λn,i −→ log(φ(αi + 1)) = log
(
(αi + 1)(1 + cα−1

i )
)
a.s.

Furthermore, by Wang et al. (2013), we have

∫
log(x) dFcn,Hn

(x) =
1

p

m∑

i=1

log(αi + 1) + h(cn) + o

(
1

p

)
,

where

h(cn) =

∫
log(x)dFcn,δ1(x) =

cn − 1

cn
log(1− cn)− 1. (23)

can be calculated using the density of the Marčenko-Pastur law (see appendix).
Summarizing, we have obtained that

L1 −m1(c)− ph(cn)− η(c, α)
L−→ N (0, v1(c)) ,

where h(cn) =
cn−1
cn

log(1− cn)− 1 and η(c, α) =
∑m

i=1 log(1 + cσ2α−1
i ). Similarly,

we have
L2 − (p−m) + ρ(c, α)

L−→ N (0, v2(c)) ,

where ρ(c, α) = c(m+
∑m

i=1 α
−1
i ).

Using (19) and Slutsky’s lemma,
(
L1

L2

)
L−→ N

((
m1(c) + ph(cn) + η(c, α)

p−m− ρ(c, α)

)
,

(
v1(c) v1,2(c)
v1,2(cn) v2(cn)

))
,
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with h(cn) = cn−1
cn

log(1 − cn) − 1, η(c, α) =
∑m

i=1 log(1 + cσ2α−1
i ) and ρ(c, α) =

c(m+
∑m

i=1 α
−1
i ).

CLT with general σ2. When σ2 = 1,

spec(Σ) = (α1 + 1, . . . , αm + 1, 1, . . . , 1),

whereas in the general case

spec(Σ) = (α1 + σ2, . . . , αm + σ2, σ2, . . . , σ2)

= σ2
(α1

σ2
+ 1, . . . ,

αm

σ2
+ 1, . . . , 1

)
.

Thus, if we consider λi/σ
2, we will find the same CLT by replacing the (αi)1≤i≤m

by αi/σ
2. Furthermore, we divide L2 by p−m to find

(
L1
L2

p−m

)
L−→ N

((
m1(c) + ph(cn) + η(c, α/σ2)

1− ρ(c,α/σ2)
p−m

)
,

(
2c

(p−m)2
2c

p−m
2c

p−m
−2 log(1− c)

))
,

with η(c, α/σ2) =
∑m

i=1 log(1 + cσ2α−1
i ), ρ(c, α/σ2) = c(m + σ2

∑m
i=1 α

−1
i ) and

h(cn) =
cn−1
cn

log(1− cn)− 1.

Asymptotic distribution of L∗. We have L∗ = g(L1, L2/(p−m)), with g(x, y) =
x− (p−m) log(y). We will apply the multivariate delta-method on (24) with the

function g. We have ▽g(x, y) =
(
1,−p−m

y

)
and

L∗ L−→ N (β1 − (p−m) log(β2),▽g(β1, β2) cov(L1, L2/(p−m))▽ g(β1, β2)
′),

with β1 = m1(c) + ph(cn) + η(c, α/σ2) and β2 = 1− ρ(c,α/σ2)
p−m

. After some standard
calculation, we finally find

L∗ L−→ N
(
m1(c) + ph(cn) + η

(
c,
α

σ2

)
− (p−m) log(β2),−2 log(1− c) +

2c

β2

(
1

β2
− 2

))
.
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4.1 Monte-Carlo experiments

We consider again the models 1 and 2 described in Section 3.1, and a new one
(model 4):

• Model 1: spec(Σ) = (25, 16, 9, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 4, c = 0.9;

• Model 2: spec(Σ) = (4, 3, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 2, c = 0.2;

• Model 4: spec(Σ) = (8, 7, 0, . . . , 0) + σ2(1, . . . , 1), σ2 = 1, varying c.

Table 4 gives the realized sizes (i.e. the empirical probability of rejecting the
null hypothesis) of the classical likelihood ratio test (LRT) and the new corrected
likelihood ratio test (CLRT) above. For the LRT, we use the correction proposed by
Bartlett (1950), that is replacing Tn = −nL∗ by T̃n = −(n−(2p+11)/6−2m/3)L∗.
The computations are done under 10000 independent replications and the nominal
test level is 0.05.

Table 4: Comparison of the realized size of the classical likelihood ratio test (LRT)
and the corrected likelihood ratio test (CLRT) in various settings.

Settings Realized size of CLRT Realized size of LRT

Model 1
p = 90 n = 100 0.0497 0.9995
p = 180 n = 200 0.0491 1
p = 720 n = 800 0.0496 1

Model 2
p = 20 n = 100 0.0324 0.0294
p = 80 n = 400 0.0507 0.0390
p = 200 n = 1000 0.0541 0.0552

Model 4

p = 5 n = 500 0.0108 0.0483
p = 10 n = 500 0.0190 0.0465
p = 50 n = 500 0.0424 0.0445
p = 100 n = 500 0.0459 0.0461
p = 200 n = 500 0.0491 0.2212
p = 250 n = 500 0.0492 0.7395
p = 300 n = 500 0.0509 0.9994

The sizes of the new CLRT are very close to the theoretical one, except when
the ratio c = p/n is very small (less than 0.1). On the contrary, the sizes produced
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by the classical LRT are much higher than the nominal level especially when c is
not too small, and the test will always rejet the null hypothesis when p becomes
large. In particular when p/n ≥ 1

2
, the LRT test tends to reject automatically the

null.

4.2 Application to S&P 500 stocks data

In this section, we will present a financial application of our goodness-of-fit test
to a factor model with m factors. The considered data is a set of 488 U.S. stocks
included in the S&P 500 index from September 2007 to September 2011, i.e. a
period of 1001 trading days (12 stocks have been removed because of missing
values). The final sample size is n = 1000 and the dimension of the observations
is p = 488.

We will use our goodness-of-fit test to give an estimator m̂ of the number of
factors, by calculating the p-value of the test for different values of the parameter
m: higher the p-value of the goodness-of-fit test, more likely the proposed number
m of factors. For m ranging from 0 to 100, the p-values are all very close to zero,
except for m = 71 and m = 72, for which the p-values are 0.0514 and 0.1041
respectively. This method thus lead to the estimates m̂ = 72 or m̂ = 73. We have
also run the estimators proposed by Nadler (2010) and Passemier and Yao (2012)
on this data set: the estimates are respectively m̂KN = 95 and m̂PY = 20.

Inference on the number of factors for daily returns has been frequently reported
in the literature. For example, Harding (2009) has analyzed a set of NYSE daily
returns (p = 300 returns) over a period of 10 years, and has proposed an estimator
of the number of factors. His estimates using a moving time frame from 1 year to
10 years range from 5 to 40. Assuming that the dynamics among NYSE returns
and S&P returns are approximately the same, this method would give, for our
data frame of 4 years and p = 488 stocks, an equivalent number of factors of
about m̂H = 45. In summary, the four methods lead to quite different estimates,
(m̂PY, m̂H, m̂, m̂KN) = (20, 45, 72, 95). These findings confirm a widely believed
fact that if the dynamic of stock returns is indeed captured by a factor model, the
number of these factors cannot be very small.

Meanwhile, it is reported in Bouchaud and Potters (2011); Li et al. (2013)
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that, for return time series, the noise variance σ2 cannot be constant over all stock
returns even after normalization. We suspect this fact as one of the main reasons
for the weakness of the results reported here. Further investigation on how to
generalize the above discussed estimator and the estimation theory of this paper
in a more complex noise structure would be highly valuable.
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A Technical proofs

Proof of (9)

The general theory of the m.l.e. for the factor model (1) in the classical setting has
been developed in Anderson and Amemiya (1988) with in particulr the following
result.

Proposition 2. Let Θ = (θij)1≤i,j≤p = Ψ − Λ(Λ′Ψ−1Λ)−1Λ′. If (θ2ij)1≤i,j≤p is

nonsingular, if Λ and Ψ are identified by the condition that Λ′ΨΛ is diagonal and

the diagonal elements are different and ordered, if Sn → ΛΛ′ + Ψ in probability

and if
√
n(Sn −Σ) has a limiting distribution, then

√
n(Λ̂−Λ) and

√
n(Ψ̂−Ψ)

have a limiting distribution. The covariance of
√
n(Ψ̂ii −Ψii) and

√
n(Ψ̂jj −Ψjj)

in the limiting distribution is 2Ψ2
iiΨ

2
jjξ

ij (1 ≤ i, j ≤ p), where (ξij) = (θ2ij)
−1.

To prove the CLT (9), by Proposition 2, we know that the inverse of the
Fisher information matrix is I−1(ψ11, . . . , ψpp) = (2ψ2

iiψ
2
jjξ

ij)ij. We have to change
the parametrization: in our case, we have ψ11 = · · · = ψpp. Let g : R → R

p,
a 7→ (a, . . . , a). The information matrix in this new parametrization becomes

I(σ2) = J ′I(g(σ2))J ,
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where J is the Jacobian matrix of g. As

I(g(σ2)) =
1

2σ8
(θ2ij)ij,

we have

I(σ2) =
1

2σ8

p∑

i,j=1

θ2ij,

and

Θ = (θij)ij = Ψ−Λ(Λ′Ψ−1Λ)−1Λ′

= σ2(Ip −Λ(Λ′Λ)−1Λ′).

By hypothesis, we have Λ′Λ = diag(d21, . . . , d
2
m). Consider the Singular Value

Decomposition of Λ, Λ = UDV, where U is a p× p matrix such that UU′ = Ip,
V is a m×m matrix such that V′V = Im, and D is a p×m diagonal matrix with
d1, . . . , dm as diagonal elements. As Λ′Λ is diagonal, V = Im, so Λ = UD. By
elementary calculus, one can find that

Λ(Λ′Λ)−1Λ′ = diag(1, . . . , 1︸ ︷︷ ︸
m

, 0, . . . , 0︸ ︷︷ ︸
p−m

),

so
Θ = σ2diag(0, . . . , 0︸ ︷︷ ︸

m

, 1, . . . , 1︸ ︷︷ ︸
p−m

).

Finally,

I(σ2) =
1

2σ8
(p−m)σ4 =

p−m

2σ4
,

and the asymptotic variance of σ̂2 is

s2 = I−1(σ2) =
2σ4

p−m
.
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Proof of (16)

By Proposition 1, for g(x) = x, by using the variable change x = σ2(1 + c −
2
√
c cos θ), 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4cσ4 − (x− σ2 − cσ2)2

dx, j = 1, . . . , k

=
σ2(1 + c)

2
− σ2

2π

∫ π

0

(1 + c− 2
√
c cos θ) dθ

= 0.

Proof of (17)

Let s(z) be the Stieltjes transform of (1− c)1[0,∞) + cFc,δ1 . One can show that

m(z) =
1

σ2
s
( z
σ2

)
.

Then, in Proposition 1, we have

v(fj, fl) = − 1

2π2

∮ ∮
fj(σ

2z1)fl(σ
2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2), j, l = 1, . . . , k. (24)

For g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(σ2z1)g(σ

2z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − σ4

2π2

∮ ∮
z1z2

(s(z1)− s(z2))2
ds(z1) ds(z2)

= 2cσ4,

where − 1
2π2

∮ ∮
z1z2

(s(z1)−s(z2))2
ds(z1) ds(z2) = 2c is calculated in Bai et al. (2009) (it

corresponds to v(z1, z2), Section 5, proof of (3.4)).
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Proof of (20)

By Proposition 1, for σ2 = 1 and g(x) = log(x), by using the variable change
x = 1 + c− 2

√
c cos θ, 0 ≤ θ ≤ π, we have

m(g) =
g(a(c)) + g(b(c))

4
− 1

2π

∫ b(c)

a(c)

x√
4c− (x− 1− c)2

dx, j = 1, . . . , k

=
log(1− c)

2
− 1

2π

∫ π

0

log(1 + c− 2
√
c cos θ) dθ

=
log(1− c)

2
− 1

4π

∫ 2π

0

log |1−√
ceiθ|2 dθ

=
log(1− c)

2
,

where
∫ 2π

0
log |1−√

ceiθ|2 dθ = 0 is calculated in Bai and Silverstein (2010).

Proof of (21)

By Proposition 1 and (24), for σ2 = 1 and g(x) = x, we have

v(g) = − 1

2π2

∮ ∮
g(z1)g(z2)

(s(z1)− s(z2))2
ds(z1) ds(z2)

= − 1

2π2

∮ ∮
log(z1) log(z2)

(s(z1)− s(z2))2
ds(z1)ds(z2)

= −2 log(1− cn),

where the last integral is calculated in Bai and Silverstein (2010).
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Proof of (23)

Fcn,δ1 is the Marčenko-Pastur distribution of index cn. By using the variable change
x = 1 + cn − 2

√
cn cos θ, 0 ≤ θ ≤ π, we have

∫
log(x)dFcn,δ1(x) =

∫ b(cn)

a(cn)

log x

2πxcn

√
(b(cn)− x)(x− a(cn)) dx

=
1

2πcn

∫ π

0

log(1 + cn − 2
√
cn cos θ)

1 + cn − 2
√
cn cos θ

4cn sin
2 θ dθ

=
1

2π

∫ 2π

0

2 sin2 θ

1 + cn − 2
√
cn cos θ

log |1−√
cne

iθ|2 dθ

=
cn − 1

cn
log(1− cn)− 1,

where the last integral is calculated in Bai and Silverstein (2010).

Proof of (22)

In the normal case with σ2 = 1, Zheng (2012) gives the following equivalent ex-
pression of (14):

v(fj, fl) = − lim
r→1+

κ

4π2

∮ ∮

|ξ1|=|ξ2|=1

fj(|1 + hξ1|2)fl(|1 + hξ2|2)
1

(ξ1 − rξ2)2
dξ1 dξ2,

where κ = 2 in the real case and h =
√
c in our case. We take fj(x) = log(x) and

fl(x) = x, so we need to calculate

v(log(x), x) = − lim
r→1+

1

2π2

∮ ∮

|ξ1|=|ξ2|=1

|1 +√
cξ2|2

log(|1 +√
cξ1|2)

(ξ1 − rξ2)2
dξ1 dξ2.

We follow the calculations done in Zheng (2012): when |ξ| = 1, |1 +
√
cξ|2 =

(1 +
√
cξ)(1 +

√
cξ−1), so log(|1 + √

cξ|2) = 1
2
(log(1 +

√
cξ)2 + log(1 +

√
cξ−1)2).
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Consequently,

∮

|ξ1|=1

log(|1 +√
cξ1|2)

(ξ1 − rξ2)2
dξ1 =

1

2

∮

|ξ1|=1

log(1 +
√
cξ1)

2

(ξ1 − rξ2)2
dξ1 +

1

2

∮

|ξ1|=1

log(1 +
√
cξ−1

1 )2

(ξ1 − rξ2)2
dξ1

=
1

2

∮

|ξ1|=1

log(1 +
√
cξ1)

2

(
1

(ξ1 − rξ2)2
+

1

(1− rξ1ξ2)2

)
dξ1

= 0 + iπ

(
1

(rξ2)2
2
√
c

1 +
√
c

rξ2

)

= 2iπ

√
c

rξ2(rξ2 +
√
c)
.

Thus,

v(log(x), x) =
1

iπ

∮

|ξ2|=1

|1 +√
cξ2|2

√
c

ξ2(ξ2 +
√
c)

dξ2

=
1

iπ

∮

|ξ|=1

(
1 + c+ c(ξ + ξ−1)

) √
c

ξ(ξ +
√
c)

dξ

=
1

iπ

∮

|ξ|=1

(√
c(1 + c)

ξ(ξ +
√
c)

+
c

ξ +
√
c
+

c

ξ2(ξ +
√
c)

)
dξ

= 2(1 + c− (1 + c) + c+ 1− 1)

= 2c.
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