
HAL Id: hal-00851763
https://hal.science/hal-00851763

Submitted on 19 Jul 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The discrete time hyperexponential model for software
reliability growth evaluation
Mohamed Kaâniche, Karama Kanoun

To cite this version:
Mohamed Kaâniche, Karama Kanoun. The discrete time hyperexponential model for software reliabil-
ity growth evaluation. Third International Symposium on Software Reliability Engineering (ISSRE-
1992), Oct 1992, Research Triangle Park, NC, United States. pp.64 - 75, �10.1109/ISSRE.1992.285857�.
�hal-00851763�

https://hal.science/hal-00851763
https://hal.archives-ouvertes.fr

The Discrete Time Hyperexponential Model
for Software Reliability Growth Evaluation

M. Kaâniche K. Kanoun

LAAS-CNRS
7, avenue du Colonel Roche

31077 Toulouse (France)

Abstract

This paper is devoted to the definition of a reliability
growth model—referred to as the discrete time hyperexpo-
nential model. This model is aimed at modeling software
reliability with respect to the number of executions
performed. It is well-suited to some kinds of systems such
as transaction processing systems, single mission systems,
etc… for which discrete data are collected; in addition, it
facilitates the modeling of the impact on dependability
measures of some software environment characteristics,
such as the input probability distribution.

1. Introduction
The rapid growth in size, complexity and cost of

computing systems and their applications, has led to a
large amount of research devoted to software reliability
modeling and evaluation. An important number of
software reliability growth models has been defined to
follow up the software behavior during its validation and
operation phases and estimate the software ability to
deliver a service that complies with the specification (see
for example [16], [17] [19], [30]). The most well known
proposed models are continuous time models based on the
characterization of the software failure process with
respect to the system execution time or calendar time.
Software reliability is assessed through the evaluation of
measures such as mean time to failure, failure rate, failure
intensity, etc….

However, only few models, termed discrete time
reliability models, allowing software reliability to be
assessed with respect to the number of executions or runs
performed rather than time have been reported in the
literature [3], [23], [31]. Nevertheless, this kind of models
deserves particular attention. In fact, discrete time
representation of the software failure process is well suited

for systems for which it is more significant to consider the
number of executions performed rather than time; for
instance transaction processing systems and single mission
systems. It is also appropriate for the follow up of the
software behavior during its validation phase and for the
assessment of its reliability when discrete data are
collected (number of successful executions between
failures, for example). These data, are recorded, for
instance, during statistical testing of the software with test
inputs selected from an input distribution representative of
the user profile.

In this paper, a reliability growth model referred to as
the discrete time hyperexponential model, is proposed for
the modeling and evaluation of software reliability with
respect to the number of executions performed. Even
though this model is based on similar assumptions to those
considered for the establishment of the continuous time
hyperexponential model presented in [13], [15] and applied
to real systems in [11], [12], its aims are quite different.
Particularly, it is better suited to take into account some
characteristics of the software execution profile, such as
the input probability distribution, in reliability evaluation.

This paper is composed of five Sections. Basic discrete
time reliability measures are first presented in Section 2. In
order to position our model with respect to existing
discrete time software reliability models, an overview of
these models is given in Section 3. In Section 4, the
discrete time hyperexponential model is defined, the main
related reliability measures are derived, then the model is
applied to field data. In Section 5, the hyperexponential
model is used to evaluate software reliability growth by
taking into account explicitly the software input
probability distribution characterizing the execution profile
in which the software is run.

2. Basic discrete time reliability measures
To our knowledge, only few results have been reported

about the discrete time reliability theory [10], [25]. We
present in this section the definitions of and relationships
between the discrete time reliability function and the
associated quantities.

Let N be the random variable representing the number
of executions until failure occurrence. N can be
characterized by the following quantities:

• probability mass function: f(n) = Pr{N=n},
• probability distribution function: F(n) = Pr {N≤n},

 n > 0 and F(0) = 0,
• reliability function: R(n) = Pr{N>n} = 1 - F(n), n > 0

and R(0) = 1.
• discrete time failure rate: p(n) = Pr{N=n | N≥n}.

The relationship between R(n), f(n) and p(n) is
summarised in Fig. 1: note that the specification of one of
these quantities allows the others to be derived.

 R(n) f(n) p(n)

R(n) * ∑
j=n+1

∞
 f(j) ∏

j=1

n
[1- p(j)]

f(n) R(n-1)-R(n) * p(n)∏
j=1

n-1
[1- p(j)]

p(n) R(n-1)-R(n)
R(n-1)

f(n)

∑
j=n

∞
 f(j)

 *

Figure 1: Relationships between discrete time reliability
measures

In addition to the previous measures, we can evaluate
the mean number of executions until failure, noted MTTF,
which is the expected value of the random variable N,
defined by:

MTTF = E[N] = ∑
n=1

∞

 n f(n) (1)

Given that: f(n) = R(n-1) - R(n), relation (1) can be
rewritten as follows:

MTTF = ∑
n=1

∞

 n R(n-1) - ∑
n=1

∞

 n R(n) (2)

Relation (2) yields:

MTTF = ∑
n=0

∞

 R(n) (3)

The measures defined above concern the occurrence of
one failure, the first failure for instance, since it is assumed
that the time of the beginning of observation is zero. For
failure i, the previous measures have to be conditioned on
the time of occurrence of failure i-1, let mi-1 be this time.
For example, the probability mass function becomes:
f(ni | mi-1).
3. Discrete time software reliability models:

A survey
Discrete time software reliability modeling has given

rise to a few models that can be classified into two
categories:

• stable reliability models which characterize the
software failure process when no fault removal is
performed; these models assume that the software
probability of failure at execution remains constant,

• reliability growth models which are prediction
models taking into account the stochastic decrease
of software probability of failure at execution
originating from progressive removal of design
faults.

3.1. Stable reliability models

Models assuming stable reliability behavior of the
software are aimed at evaluating estimators for software
reliability when the input data are sampled statistically
according to a probability distribution that is expected to
be representative of the operational software execution
profile. The most popular discrete time stable reliability
model was proposed by Nelson [20], [21]. For this model,
an execution or a run of the software corresponds to the
selection of a point from the input domain. If n executions
are performed during which nf failures are observed, then
an unbiased estimator for reliability after n runs is given

by: R̂ = 1-
nf
n . As no fault removal is supposed to be

performed during the software exposure period, and input
data are assumed to be selected independently and
randomly from the input domain, the software probability
of failure at execution is assumed to be constant and the
number of executions up to failure follows a geometric
distribution.

Even though the Nelson model is based on theoretical
foundations that are sound, it suffers from practical
drawbacks that are detailed in [24], for example: i) a large
number of executions is needed in order to obtain a high
confidence in the reliability estimate, and ii) the probability
input distribution is not taken into account explicitly in
reliability estimation. In order to overcome some of these

drawbacks, extensions to and generalizations of the Nelson
model have been proposed; see for example [1], [24],
[29]1.

The previous models require a large sample of failure
data to be collected in order to estimate software reliability.
When either zero failures or only a few failures are
observed during software testing, these models are no
longer suitable for reliability estimation. For these
situations, other approaches based on software statistical
testing have been proposed in order to quantify a lower
bound for software reliability for a given confidence level;
for instance, [2], [4], [22].

3.2. Reliability growth models

As far as we know, only a few models encompassed in
this category have been reported [3], [7], [23], [27], [31].
A brief description of these models is given in the sequel.

In [23], an input domain based stochastic reliability
growth model is defined. The software failure process is
characterized by the set of parameters pj which correspond
to the software discrete time failure rate after j
modifications being performed. Conditionally on pj the
number of executions until failure occurrence is supposed
to be geometrically distributed. In order to take account of
the reliability growth phenomenon as well as the
uncertainty about the consequence of software changes on
its behavior, pj is modeled by a random walk stochastic
process that satisfies the following requirements:

Δj = pj-1-pj ≤st
 Δj-1 and pj ≤st

 pj-1

Based on these assumptions, software reliability is
assessed through the evaluation of the mean time to failure
given that j modifications have occurred.

The approach considered in [3] is quite different since a
deterministic expression for the discrete time failure rate is
assumed. A relationship between the software discrete
time failure rate and the distribution of faults in software
paths executed is established when either a uniform or a
nonuniform path selection strategy is assumed.

For the previous mentioned models, the software failure
process is characterized by a piecewise stochastic discrete
time process such that the variation of the failure rate takes
place at software modification. The discrete time failure
rate is stochastically decreasing with the number of
executions performed and reaches asymptotically a zero
limiting value.

1 These models as well as the Nelson model are usually referred to as

input-domain-based models.

Parallel to continuous time reliability growth models
based on non homogeneous Poisson processes, analogous
discrete time reliability growth models have also been
developed [7], [31]. For these models, no explicit
relationship between the number of software modifications
and discrete time failure rate variation is assumed. In [31],
the software failure process is characterized by a discrete
counting process representing the cumulative number of
failures observed out of n executions such that the
associated mean value function has an exponential growth
curve. In [7]2, a logarithmic growth relationship between
the number of executions performed and the number of
failures observed is assumed.

Additionally to the previous models, one may also
mention the model presented in [27] that is devoted to the
prediction of the cumulative number of software failures
with respect to the number of test instances applied during
software testing. During a test instance, many software
executions may be performed and more than one fault can
be activated. For this model, a distinction is made between
manifestation and detection of faults at the application of a
test instance; a hypergeometric distribution is considered
for the estimation of the number of initial faults in the
software and attention is focussed on the evaluation of the
cumulative number of failures in order to follow up the
software behavior during testing.

An assumption shared by all reliability growth models
mentioned above is that the software discrete time failure
rate reaches asymptotically a zero limiting value. This
supposes that all design faults can be removed from the
software. However, for large software systems this
assumption may not be satisfied. For these systems, the
asymptotic software behavior is better represented by a
stable reliability behavior characterized by a constant
asymptotic discrete time failure rate, enabling software
reliability to be evaluated when either: a) modifications
are no longer performed, or when b) elimination of faults
does not significantly affect the software failure process.

The discrete time hyperexponential model proposed in
this paper enables this asymptotic stable reliability
behavior to be taken into account. Additionally, it allows
the evaluation of reliability growth of software
multicomponent systems from the reliability growth of
their components. The main features of this model are
introduced in the following sections. Due to space
limitations, only single component systems will be
considered; multicomponent systems are dealt with in [8],
[9].

2 This model was defined in order to estimate reliability measures of

single mission systems, not necessarily software systems.

4. The Hyperexponential model
The key objective of the discrete time hyperexponential

model is to represent the reliability growth phenomenon
and to evaluate measures allowing software reliability to
be assessed with respect to the number of executions
performed.

A software program can be seen as the mapping of its
input domain I into its output space O. An execution of the
system consists in selecting a sequence of input points not
necessarily contiguous from the input domain. Due to the
presence of internal design faults, the selection of some
inputs from I, those sampled from the failure domain, may
lead to erroneous outputs which differ from the specified
ones, leading to software failure. As the failure domain is
intercepted randomly during software execution, there is
thus a non zero probability to fail at each input selection.
The software execution process may then be seen as a
series of independent Bernouilli trials where a trial
corresponds to one software execution. Let:

• Zn be a binary random variable characterizing

execution n of the software:

⎩⎪
⎨
⎪⎧Zn = 1 if execution n fails

Zn = 0 otherwise

• P(n) be the probability of failure at execution n; i.e.,
the probability of occurrence of the event {Zn =1}.

Given the assumed stochastic independence between
the random variables Zn, by analogy with continuous time
non homogeneous Poisson process models, P(n) is
equivalent to the software failure intensity h(t) which is
the probability of failure in the interval [t, t+dt].

The discrete time hyperexponential model is aimed at
modeling a continuously decreasing probability of failure
at execution characterized by a constant limiting value. It is
defined by the probability of failure at execution given by:

P(n) =
θpsup(1-psup)

n-1
 + θ

—
pinf(1-pinf)

n-1

 θ(1-psup)
n-1

 + θ;
—

(1-pinf)
n-1 (4)

with 0≤θ≤1, θ
—

 =1-θ and pinf ≤ psup.

4.1. Model properties

As indicated in Fig. 2, the probability of failure at
execution P(n) given by relation (4) is non increasing with

the number of executions performed, when 0<θ<1, from
P(1) = θ psup + θ

—
 pinf to P(∞) = pinf. In fact, as the

monotonicity of P(n) is indicated by the sign of the
quantity ΔP(n+1) = P(n+1) - P(n), we have shown that [8]:

ΔP(n+1) = - Erreur !which is always negative for n ≥1.

The rate of decrease of P(n) can be adjusted via the
values of the parameters θ, psup, pinf. The curvature of
P(n) may change according to the value of parameter θ.

P(n)

n

p inf

p
sup
+! !p

inf

Figure 2: Typical probability of failure at execution for the

discrete time hyperexponential model

In fact, the curvature of P(n) is given by the sign of
ΔP(n+1) - ΔP(n). It can be seen that:

• if θ ≤
1
2 , the curvature of P(n) is always positive,

• if θ >
1
2 , the curvature of P(n) is first negative, then

positive for n ≥ n0:

 n0 = 1+
1

Ln
⎝⎜
⎛

⎠⎟
⎞1-pinf

1-psup

 Ln
⎝⎜
⎛
⎠⎟
⎞θ

 θ
—

Figure 3 displays some typical examples of curves of
probability of failure at execution represented by the
discrete time hyperexponential model:

 • C1 characterizes stable reliability behavior,
 • C2 characterizes reliability growth tending to an

asymptotic behavior with P(∞) =0,
 • C3, C4, C5 respectively characterize fast,

progressive and slow reliability growth with non
zero asymptotic probability of failure at execution.

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

1 100 200 300 400 500 600 700 800 900 1000

C2

C4

C1

C5

C3
Curve ! psup pinf

C1
0.75 0.0194 0.000C2
0.1 0.0820 0.007C3
0.5 0.0220 0.007C4
0.9 0.0154 0.007C5

1 0.0146 -

n

P(n)

Figure 3: Probability of failure at execution for the discrete
time hyperexponential model

Note that the discrete time hyperexponential model
admits as special cases:

• the stable reliability situation, with constant
probability of failure at execution:

 a) psup = pinf, or b) θ = 0 or θ = 1;

• a probability of failure at execution tending
asymptotically toward zero: pinf = 0.

Hence, software reliability behaviors represented by
existing software discrete time reliability models can be
taken into account by the hyperexponential model as
special cases.

Given that the probability of failure at execution
relative to the hyperexponential model is based on a two
stage discrete time Cox law; the proposed model can be
generalized by introducing more stages in relation (4). The
general expression for P(n) would be:

P(n) =
∑
i=1

 k
 θipi(1-pi)

n-1

 ∑
i=1

 k
 θi(1-pi)

n-1 with 0≤θi≤1 and ∑
i=1

 k
 θi = 1 (5)

Figure 4 displays some examples of curves of
probability of failure at execution relative to the
generalized discrete time hyperexponential model when
k=3. Comparison of Fig. 4 with Fig. 3, shows that the
introduction of additional parameters into the expression
of the probability of failure at execution enables better
fitting of the reliability of software systems for which the
probability of failure at execution varies slowly with
respect to the number of executions performed (curve C5):
two curvature changes of P(n) before reaching the
asymptotic behavior can be taken into account. Note that,
for the generalized discrete time hyperexponential model,
the number of curvature changes increases with k. Hence,
generalization of the model will enable better fitting to

real situations, at the expense of added complexity
estimation.

1 100 200 300 400 500 600 700 800 900 1000
0

0.002

0.004
0.006
0.008

0.01
0.012
0.014

0.016
0.018
0.02

C2

C4

C1

C5

C3

n

P(n)

Curve ! 1 ! 2 p1 2 3
C1 1.00 0.000 0.018 0.010 0.007
C2 0.45 0.300 0.034 0.010 0.000
C3 0.10 0.100 0.115 0.010 0.007
C4 0.97 0.001 0.018 0.007 0.007

p p

C5 0.10 0.897 0.038 0.016 0.007

Figure 4: Probability of failure at execution for the
generalized hyperexponential model (k=3)

4.2. Derivation of related reliability measures

4.2.1 Reliability function

Let:
• Ni be the random variable representing the number

of software executions performed between the
occurrence of failures (i-1) and i, and ni a
realization of Ni,

• Mi be the random variable representing the cumula-
tive number of software executions performed until
the occurrence of failure i, and mi a realization of
Mi. mi is the time of occurrence of failure i.

 (Mi =∑
j=1

 i
 N j).

The conditional reliability of Ni on the last failure time
Mi-1=mi-1 is defined by:

R(ni | mi-1) = Pr{Ni ≥ ni | Mi-1=mi-1}

 = ∏
j=mi-1+1

mi-1+ni

 [1- P(j)] (6)

It follows that:

R(ni | mi-1) =
 θ(1-psup)

mi-1+ni
 + θ

—
(1-pinf)

mi-1+ni

θ(1-psup)
mi-1

 + θ;
—

(1-pinf)
mi-1

 (7)

4.2.2. Probability mass function and failure rate

Using the definition of f(ni | mi-1) the probability mass
function associated with Ni and conditional on the last
failure time Mi-1=mi-1 given in Section 2, we have shown
in [8] that:

f(ni | mi-1) = P(mi-1+ni) R(ni -1 | mi-1) (8)

where P(mi-1+ni) is the software probability of failure
at execution mi-1+ni.

Using the relationships given in Section 2 and relation
(8), it follows that the software discrete time failure rate
after the occurrence of failure i-1, denoted p(ni | mi-1), is
given by:

p(ni | mi-1) = P(mi-1+ni) (9)

Hence, the discrete time failure rate cannot be distingui-
shed from the non conditional probability of failure at
execution; only the origin of time changes. Therefore we
obtain a result analogous to non homogeneous Poisson
processes (NHPP) for which the failure intensity and the
failure rate have the same expression [18].
4.2.3. Mean cumulative number of failures

In addition to the basic reliability measures derived
above, we can evaluate the cumulative number of failures
with respect to the number of executions performed. This
measure can be used as an appropriate index for the
management of the validation and the maintenance effort
needed to remove software design faults that are not
revealed yet.

Let Yn be the random variable representing the cumula-
tive number of software failures experienced after n
executions, and H(n) the s-expectation of Yn. Considering
the Bernouilli random variables Zn, we have Yn = Z1 +…+
Zn. It is shown that [6]:

H(n) = E[Yn] = ∑
i=1

 n
 E[Zi] = ∑

i=1

 n
 P(i) (10)

H(n) = Erreur ! (11)

Generally, we have pinf, psup << 1, which leads to the
simplified expression:

H(n) ≈ -Ln { }θ(1-psup)
n
 + θ

—
 (1-pinf)

n
 (12)

Proof:

When pinf and psup << 1,

 1-P(i) ≈ exp (-P(i)) + o(pinf , psup) for i = 1, 2…

So, ∏
i=1

 n
 (1-P(i)) ≈ ∏

i=1

 n
 exp (-P(i)) + o(pinf, psup)

 ∏
i=1

 n
 (1-P(i)) ≈ exp

⎝
⎜
⎛

⎠
⎟
⎞

- ∑
i=1

 n
 P(i) + o(pinf, psup)

 ≈ exp (-H(n))+ o(pinf, psup) (13)

Given relation (4), it can be shown that:

 ∏
i=1

 n
 (1-P(i)) = θ(1-psup)

n
 + θ

—
 (1-pinf)

n
 (14)

Substituting (14) into (13) yields to :

exp (-H(n)) ≈ θ(1-psup)
n
 + θ

—
 (1-pinf)

n
 (15)

Taking the logarithm of (15) leads then to relation (12).
4.2.4. Distribution of cumulative number of failures

In addition to the evaluation of the expected value of
Yn, it is useful, particularly for the estimation of model
parameters, to evaluate its associated probability distribu-
tion function. The probability distribution function of Yn
is difficult to obtain in an explicit form because of the non
stationarity of P(i). Nevertheless, based on the assumption
pinf and psup << 1, it is proved [26], that the probability
distribution function of Yn can be approximated by a
Poisson distribution characterized by the mean function

H(n) = ∑
i=1

 n
 P(i). Therefore:

Pr{Yn = i} =
 [H(n)]

i

 i! exp {- H(n)} (16)

Suppose that yk failures have been observed during
[0,k] executions, then it can be proved easily that the
conditional distribution of Yn given that Yk = yk for n > k
is the distribution of the number of failures during [k+1,n],
i.e.,

Pr{Yn = yn | Yk = yk}= Pr{Yn - Yk= yn -yk}

 =
 [H(n) - H(k)]

yn-yk

 (yn -yk)! exp {- [H(n) - H(k)]} (17)

4.3. Parameter estimation

Application of the discrete time hyperexponential
model to real-life software systems necessitates the
collection of failure data and the estimation of model
parameters based on recorded data. Model parameter
estimation can be performed either by the least square
method or by the maximum likelihood method. For these
two methods, it is difficult to evaluate analytically the
optimum values of the model parameters for a given data
set and parameter estimation is rather performed by using
classical numerical techniques.

In the following, the maximum likelihood method for
estimating the unknown parameters θ, psup and pinf is
developed. Two types of failure data are considered:
failure intervals (number of executions between failures)
or numbers of failures per interval.

4.3.1. Estimation based on failure intervals

Let us assume that r software failures have been
observed with m1, m2,…, mr the times of failures
occurrence. The likelihood function associated to (m1,
m2,…, mr) is the joint probability mass function f(m1,
m2,…, mr). Given that the probability of failure at
execution P(i) is supposed to be independent of failure
occurrences during the last i-1 executions, the likelihood
function associated to
(m1, m2,…, mr) is defined as:

L = f(m1, m2,……, mr) = ∏
i=1

 r
 f(ni | mi-1) (18)

with ni the number of executions performed between the
occurrence of failures i-1 and i. Using (6) and (8), we
obtain:

L =
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(m1) ∏
j=1

 m1-1

 [1-P(j)] *

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(m2) ∏
j=m1+1

 m2-1

 [1-P(j)]

 …
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(mr) ∏
j=mr-1+1

mr-1

 [1-P(j)]

= ∏
j=1

mr

 [1-P(j)] ∏
j=1

r
 P(mj)

1-P(mj) (19)

An estimate of θ, psup and pinf can be found by
maximizing numerically the log-likelihood, i.e.,
LL = Ln f(m1, m2,……, mr).

LL = ∑
j=1

r
 Ln{θpsup(1-psup)mj-1 + θ

—
 pinf(1-pinf)

mj-1 }

 -∑
j=1

r-1
 Ln{θ(1-psup)mj + θ

—
(1-pinf)

mj } (20)

4.3.2. Estimation based on numbers of failures per
interval

Suppose that the collected data are provided in the form
of {(s1,y1), (s2,y2) …(sk,yk)} with yi the cumulative number
of failures observed after si software executions. In order
to evaluate the likelihood function associated to the
collected data, the joint probability mass function relative
to the sample {(s1,y1), (s2,y2) …(sk,yk)} needs to be
calculated. Therefore it is necessary to calculate the
probability mass function associated to the random
variable Yn defined previously. Using the approximation
of the distribution of Yn by a Poisson law, we obtain:

L = f{(s1,y1), (s2,y2) …(sk,yk)}

 = exp(- H(sk)) ∏
i=1

 k

 { }H(si) -H(si-1)
yi-yi-1

 (yi-yi-1)! (21)

An estimate of the model parameters can be obtained
by maximizing the log-likelihood function given by:

LL =∑
i=1

k

 (yi-yi-1) Ln{ }H(si)-H(si-1) -Ln{ }(yi-yi-1)! - H(sk)

 (22)
4.4. Application to field data

In order to illustrate the hyperexponential model
application to field data, two failure data sets that are
already reported in the literature will be considered. They
will be referred to as data set A [31] and data set B [28]
respectively. The model will be applied in order to follow
up the evolution of cumulative number of failures.

4.4.1. Data set A

The failure data considered is sampled from the
observed curve of cumulative number of failures presented
in [31]. These data were obtained during testing of an
application program written in PL/I and in Assembler
language consisting of approximately 50,000 lines of

code. For the considered period, 773 executions were
performed during which 73 failures were observed. The
set of failure data obtained is presented in Fig. 5 where yi
is the cumulative number of failures observed after si
software executions.

 i si yi
 1 14 5
 2 28 8
 3 57 18
 4 71 20
 5 114 27
 6 143 29
 7 186 31
 8 243 39
 9 286 42
 10 300 47
 11 358 52
 12 393 53
 13 457 60
 14 571 63
 15 600 66
 16 743 69
 17 758 71
 18 773 73

Figure 5: Failure data set A.

Figure 6 shows the application of the discrete time
hyperexponential model to the considered data in order to
evaluate and predict the cumulative number of failures;
where:

• C0 is the observed cumulative number of failures,
• C1 the cumulative number of failures estimated by

the hyperexponential model; the model is applied in
a retrodictive way by considering the whole data set,

• C2 the cumulative number of failures estimated by
the model when applied in a predictive way: data
collected between i=1 to i=11 (i.e., up to si=358) are
used to estimate model parameters, then the model
is applied for 1-step ahead predictions from i=12 to
18 (i.e., from si = 358 to si= 773).

0

10

20

30

40

50

60

70

80

0 100 200 300 400 500 600 700 800

prediction

C2

Number of
executions

C
um

ul
at

iv
e

nu
m

be
r o

f f
ai

lu
re

s

inference

C1

retrodictive
application

C1:

predictive
application

C2:

C0

Figure 6: Model application to data set A

It can be seen that the model yields satisfactory estima-
tions in both cases. To our knowledge, no statistical
criteria for goodness-of-fit of discrete time reliability
growth models to data are available in the literature;
further investigations are needed to assess the validity of
the results3.

4.4.2. Data set B

The failure data reported in [28] and shown on Fig. 7
were recorded during combinational test of a real field
software: 418 executions were performed during which
137 failures were observed.

 i si yi i si yi
 1 33 30 14 341 117
 2 51 45 15 349 124
 3 59 47 16 354 127
 4 74 48 17 381 127
 5 105 55 18 387 127
 6 106 55 19 393 127
 7 163 77 20 397 127
 8 190 79 21 398 132
 9 225 84 22 403 134
 10 251 96 23 408 137
 11 287 110 24 416 137
 12 315 115 25 418 137
 13 337 117

Figure 7: Failure data set B

Application of the hyperexponential model to this data
in a similar way to the foregoing example leads to the
results displayed on Fig. 8. Given that the slope of the
observed cumulative number of failures curve is almost
constant, it can be concluded that the software was in
stable reliability and no significant reliability growth
happened during the considered period. As shown by Fig.
8, stable reliability behavior can also be taken into account
by the hyperexponential model as well as reliability
growth behavior.

20

40

60

80

100

120

140

0 50 100 150 200 250 300 350 400 450

prediction

C1

inference

C2

Number of
executions

Cu
m

ul
at

ive
 n

um
be

r o
f f

ai
lu

re
s retrodictive

application
C1:

predictive
application

C2:

C0

3 Note that the χ2 statistical test usually used in these situations is

better suited for comparing estimations derived from different models
rather than for assessing the absolute validity of a given model.

Figure 8: Model application to data set B

5. Modeling the impact of the input
probability distribution variation on
software reliability

In previous sections, the software input data are
supposed to be sampled according to an execution profile
that is representative to the operational use of the system
and software evaluation is performed without modeling
explicitly the impact of execution profile features on
software behavior. Nevertheless, many software systems
are expected to be used with respect to different execution
profiles. For example, consider a switching system that
serves both urban and rural communities: the urban
operational profile would contain a wider variety of types
of calls such as credit card calls, conference calls, and
international calls, in addition to residential calls [5]. Since
the types of calls are different for the different field sites, it
is expected that the software input domain will be covered
with different probability distributions.

Given that the software execution profile may be
subject to variations, then how to take into account
different execution profiles when evaluating software
reliability measures?

The execution profile of a software that is expected to
be used with respect to k operational modes {OM1,…,
OMk} can be defined by the input probability distribution
{π1, …,πk}, where πi is the probability for the software to
be used according to operational mode i.

We will assume that (Fig. 9):
• the reliability growth of the software when used

with respect to each operational mode OMi is
characterized by a discrete time hyperexponential
model Pi(mi) with parameters θi, pi,sup and pi,inf: mi
is the number of executions performed with respect
to OMi,

 • the software is observed during m0 executions, with
m0 = m01 +m02+…m0k and m0i is the number of
software executions with respect to operational
mode OMi.

OM

π

π

Software
solicitation

P(m)

mk

m
1

1

P(m)
k

1

k

1

1

k

OMi

OMk

m01

m0k

?Ÿ

P(m)

m +1
0

m +n
0

Figure 9: Reliability growth characterization considering

different operational modes

Let n be the number of executions performed since m0:
n = m-m0. We will investigate how to estimate and predict
P(m), the software probability of failure at execution m,
for m > m0. Note that: P(m) = P(n | m0).

Two situations will be considered: i) the input
probability distribution {π1,…,πk} remains invariant
during software execution, and, ii) {π1,…,πk} varies after
r executions.

5.1. Invariant input probability distribution

Consider first the case k=2. As after m0, no information
is available about the number of executions performed by
the system with respect to each operational mode, P(n | m0)
can be evaluated by taking the convolution of P1(n) and
P2(n) within the interval [m0+1, m]. We have:

P(m) = P(n | m0)

=∑
i=0

n-1
 ()n-1

i π
i
1 π

n-1-i
2 { }π1P1(m01+1+i) + π2P2(m02+n-i) (23)

It can be verified that:

⎩
⎨
⎧π2=0 yields P(n | m0)=P1(n | m0)

π1=0 yields P(n | m0)=P2(n | m0)

Relation (23), obtained for k = 2 can be generalized. It
can be shown that for k ≥2, we have:

P(m)=∏
l=1

 k-1

 ∑
il=0

 ul
 ⎝
⎛

⎠
⎞ul-1

il-1 ∏
j=1

 k
 πij

j∑
j=1

 k
 πjPj(m0j+ij+1) (24)

with:

uj = n -1 - ∑
s=1

 j-1
 is, j = 2, 3, …k, u1=n-1 and ik = uk (25)

Note that the expression obtained for P(m) is relatively
complex. Unfortunately, a simple form for P(m) does not

appear to be available, but a recursive scheme for the
computation of (24) is easily arranged.

Figure 11 gives some examples of application of
relation (23): two operational modes are considered and
the probabilities of failure at execution of the software
with respect to OM1 and OM2 are given by curves P1(m)
and P2(m) displayed in Fig. 10. Given the assumed values
for θi, pi,sup and pi,inf it can be seen that the software is
assumed to be less reliable when used with respect to
OM1 than to OM2.

Curves C1, C2 and C3 of Fig.11 plot the software
probability of failure at execution, P(m), with respect to
the number of executions m (m>m0 =50) for different
values of the input probability distribution defined by {π1,
π2}. Note that the same value m0 is considered for the
evaluation of C1, C2 and C3: m0=m01+m02=50,
nevertheless m01 and m02 depend on the probabilities π1,
and π2. When m0 is large enough, we have: m0i = πi m0, i
=1,2.

1 41 61 101 12121 81 141
0

0.02

0.04

0.06

0.08

0.10

0.12

m

P (m)

P (m)

1

2
!i pi,sup pi,inf

OM1 0.95 0.12 0.02
OM2 0.5 0.05 0.005

Figure 10: Probabilities of failure at execution with respect to

OM1 and OM2

51 91 111 151 17171 131 191
0

0.01

0.02

0.03

0.04

0.05

0.06

C1

C3

C2

P(m)

m

Curve !1 !2 m01 m02
C1 0.5 0.5 25 25
C2 0.2 0.8 10 40
C3 0.8 0.2 40 10

Figure 11: Estimation of P(m) in a specified execution profile
As illustrated by Fig. 11, it can be seen that different

reliabilities may be observed for the software depending on
the values of π1 and π2 characterizing the execution
profile according to which the software is used. Hence, a
slight variation of the input probability distribution may

lead to a significant change of the rate of decrease of P(m)
as well as of its limiting value characterizing the stable
reliability behavior of the software. Consider for instance
curve C3, as the software is more frequently used
according to operational mode OM1 than to OM2, then it
can be seen that P(m) is similar to P1(m) given by Fig. 10
for m > 50. Hence, as shown by Fig. 11, P(m) decreases
very quickly and reaches a stable reliability behavior
characterized by:

P(∞) = 0.8 P1(∞) + 0.2 P2(∞) ≈ P1(∞)

However, for curve C2 a different behavior can be
observed: P(m) decreases progressively and the stable
reliability behavior is reached much more later in time.

Note that the software probability of failure at
execution, P(m), corresponding to the limiting situations:
π1=0 and π2=0 is given respectively by P2(m) and P1(m)
displayed in Fig. 10.

5.2. Variant input probability distribution

Suppose now that input probability distribution
{π1, π2, …,πk} changes during the software execution.
Such situations may occur for example when the software
is released in an operational site in which the software is
run with respect to an execution profile different from that
used during software testing, or when different testing
strategies are used during system testing for software
validation.

 Note by {π1, π2, …,πk}A and {π1, π2, …,πk}B two
input probability distributions corresponding to two
execution profiles A and B. We will assume that execution
profile change takes place after r software executions
(Fig.12) and that execution profile variation does not
modify the software probabilities of failure at execution
with respect to operational modes OMi; i.e., Pi(mi) is
characterized by the same parameters θi, pi,sup and pi,inf
before and after execution profile variation.

m r m0

{ ! ,! , …, ! }1 2 k A { ! ,! , …, ! }1 2 k B

execution profile A execution profile B

number of
executions

0
Figure 12: Execution profile variation

Using the same method as before, the probability of
software failure at execution after execution profile
variation can be derived.

Consider first the case k=2. It can be shown that, for
m ≥ r, we obtain:

P(m)=∑
i=0

n-1

 ∑
j=0

i

 () r-m0
j ()m-r-1

i-j π
j
1A π

i-j
1B π

r-m0-j
2A π

m-r-i+j-1
2B

 * { }π1BP1(m01+i+1)+π2BP2(m02+n-i) (26)

For m < r , P(m) is given by relation (23).
As Erreur !) = Erreur != Erreur ! , it can be verified

that taking A = B yields (23).

Generalization of relation (26) for k≥2 leads to:

P(m)=π
jk
lA π

ik-jk
lB ∏

l=1

k-1

 ∑
il=0

ul
 ∑
jl=0

il
 ()r-m0-zl-1

;jl ()m-r-1-vl-1;il-jl

 * π
jl
lA π

il-jl
lB ∑

j=1

k

 πjBPj(m0j+ij+1) (27)

with:

⎩⎪
⎪
⎪
⎨
⎪
⎪
⎪⎧sl = ∑

n=1

l-1

 in

 zl = ∑
n=1

l-1

 jn

 ul = n-1-sl

 vl = sl -zl ;for l = 2

 …
 k;s1= 0

 z1= 0

 ik = uk and jk = r-m0-zk

In order to illustrate what precedes, a simple example is
given in Fig. 13 for the case k=2:

• C1 shows the evolution of the software probability
of failure at execution when the execution profile
does not vary,

• C2 and C3 show the impact of execution profile
variation on software probability of failure at
execution.

51 91 111 151 17171 131 191
0

0.01

0.02

0.03

0.04

0.05

0.06

P(m)

m

0.07

C1

C3

C2

r = 65
Curve π1A π2A π1B π2B θi pi,sup pi,inf

C1 0.5 0.5 0.5 0.5 OM
1

0.95 0.12 0.02

C2 0.5 0.5 0.2 0.8 OM
2

0.5 0.05 0.005

C3 0.5 0.5 0.8 0.2 m01
=

m02 =25 r = 65

Figure 13: Impact on P(m) of execution profile variation

For 51 ≤ m ≤ 65, C1, C2 and C3 cannot be dissociated

as the software input probability distribution is assumed to
be the same. The discrepancies observed between C1, C2
and C3 for m>65 are due to the change of the software
execution profile. It can be seen that local variations of
software reliability growth can be observed after execution
profile change (at execution m=65): local decrease of
P(m) for C2 and local increase for C3.

It is noteworthy that such discontinuities in the probabi-
lity of failure at execution are likely to occur whenever the
software execution profile is changed. When multiple
execution profile variations occur, relation (27) has to be
re-evaluated each time the software input probability
distribution is changed in order to update the estimation of
the software probability of failure at execution.

6. Conclusion
In this paper, a discrete time reliability growth model

has been defined in order to estimate the software
reliability growth behavior with respect to the number of
executions performed. The proposed model is based on
similar assumptions to those considered by continuous
time reliability growth models based on non homogeneous
Poisson processes. The software behavior is characterized
by its probability of failure at execution which is supposed
to be decreasing with the number of executions performed
in order to take into account software reliability growth
phenomenon resulting from the progressive removal of
design faults. In order to cope with observed behavior of
real life systems, it is assumed additionally that the

software reaches asymptotically a stable reliability
behavior. The model is based on simple assumptions as no
explicit relationships between fault removal process and
software behavior are assumed. Explicit expressions for
the main reliability measures are first derived and then
some features of the model are illustrated through the
application of the model to real life failure data.
Furthermore, we have also discussed and illustrated the
ability of the model to take into account explicitly the
input probability distribution characterizing the execution
profile in which the software is run in the evaluation of the
probability of failure at execution. The modeling approach
proposed is based on a simplifying assumption that is the
software probability of failure at execution curve with
respect to a given operational mode is not altered by the
variation of the software execution profile. This
assumption may not be always satisfied due, for instance,
to the variation of load applied to the software [14].
Further work will consist in extending the results obtained
in this paper to take into account these situations.

Due to space limitation, we restricted ourselves in this
paper to discrete time reliability growth modeling of single
component systems. Discrete time modeling of multi-
component systems by the hyperexponential model is
addressed in [8], [9].

Based on the features of the discrete time
hyperexponential model, it can be seen that this model has
similar properties to those of the continuous time
hyperexponential model presented in [15]. The
relationship between these models is discussed in [8] in
which it is shown that the continuous time
hyperexponential model can be deduced from the discrete
time one if the software execution rate is taken into
account in software reliability evaluation in addition to its
probability of failure at execution.

Acknowledgments
The definition of the discrete time hyperexponential

model presented in this paper was motivated by an
innovative suggestion by Jean-Claude Laprie; the authors
would like to express their thanks and appreciation.
Thanks are also due to Alain Costes for his constructive
comments on an earlier version of this paper.

This work has been partially supported by the CEC
under ESPRIT Basic Research Action no. 3092
"Predictably Dependable Computing Systems (PDCS)"

References
[1] J.R. Brown, M. Lipow, "Testing for software reliability",

Proc. Int. Conf. Reliable Software, pp.518-527.

[2] C.K. Cho, Quality programming: developing and testing
software with statistical quality control, John Wiley &
Sons, Inc., USA, 1987.

[3] T. Downs, "An approach to the modeling of software
testing with some applications", IEEE Trans. on Software
Eng., vol. SE-11, no 4, Apr. 1985, pp. 375-386.

[4] J.W. Duran, J.J. Wiorkowski, "Quantifying software
validity by sampling", IEEE Trans. on Reliability, vol. R-
29, no. 2, June. 1980, pp. 141-144.

[5] W.K. Ehrlich, J.P. Stampfel, J.R. Wu, "Application of
software reliability modeling to product quality and test
process", Proc. Int. Conf. on Software Eng.(ICSE), Nice,
May 1990, pp. 108-116.

[6] W. Feller, An introduction to probability theory and its
applications, New York: John Wiley & Sons, 3rd
Edition,1968.

[7] J.M. Finkelstein, "A logarithmic reliability growth model
for single-mission systems", IEEE Trans. on Reliability,
vol. R-32, no. 5, Dec. 1983, pp. 508-511.

[8] M. Kaâniche, "Continuous time and discrete time hyper-
exponential model for dependability growth modeling",
Doctoral Thesis, Toulouse Polytechnic Institute, LAAS
Rep. 92.002, Jan. 1992 (in French).

[9] M. Kaâniche, K. Kanoun, J.C. Laprie, "Discrete time
reliability growth modeling of single and multicomponent
software systems", LAAS Rep. 92.046, Feb. 1992.

[10] J.D Kalbfleisch, R.L. Prentice, The statistical analysis of
failure time data, John Wiley & Sons, 1980.

[11] K. Kanoun, T. Sabourin, "Software dependability of a
telephone switching system", Proc. 17th IEEE Int. Symp.
on Fault Tolerant Computing (FTCS-17), Pittsburgh, June
1987, pp. 236-241.

[12] K.Kanoun, M.R Bastos Martini, J.M. de Souza, "A method
for software reliability and prediction application to the
TROPICO-R switching system", IEEE Trans. on Software
Eng., vol. SE-17, no. 4, Apr. 1991, pp. 334-344.

[13] J.C. Laprie, "Dependability modeling and evaluation of
hardware-and-software systems",Proc. 2nd GI/NTG/GMR
Conf. on Fault Tolerant Computing, Bonn, Germany, Sept.
1984, pp. 202-215.

[14] J.C. Laprie, "Hardware-and-software dependability
evaluation", Proc. IFIP 11th World Computer Congress, San
Francisco, USA, Aug. 1989, pp. 109-114.

[15] J.C. Laprie, K. Kanoun, C. Beounes, M. Kaâniche, "The
KAT (Knowledge-Action-Transformation) approach to the
modeling and evaluation of reliability and availability
growth", IEEE Trans. on Software Eng., vol. SE-17, Apr.
1991, pp. 370-382.

[16] B. Littlewood, "Forecasting software reliability", in
Software reliability modelling and identification, Lecture
notes in Computer Science, Springer-Verlag, Feb. 1989, pp
140-209.

[17] D.R. Miller, "Exponential order statistic models of
software reliability growth", IEEE Trans. on Software
Eng., vol. SE-12, no. 1, Jan. 1986, pp. 12-24.

[18] J.D. Musa, K. Okumoto, "A logarithmic Poisson execution
time model for software reliability measurement", Proc.
COMPSAC 84, Chicago, 1984, pp. 230-238.

[19] J.D. Musa, A. Ianino, K. Okumoto, Software reliability:
Measurement, Prediction, Application, McGraw-Hill,
Singapore, 1987.

[20] E. Nelson, "A statistical basis for software reliability

assessment", TRW Software Series, SS-73-03, March,
1973.

[21] E. Nelson, "Estimating software reliability from test data",
Microelectronics and Reliability, 17, pp.67-74.

[22] D.L. Parnas, A.J. Van Schouwen, S. Po Kwan, "Evaluation
of safety critical software", Communications of the ACM,
Vol. 33, no. 6, June 1990, pp. 636-648.

[23] C.V. Ramamoorthy, F.B. Bastani, "Modeling of the
software reliability growth process", Proc. COMPSAC 80,
Chicago, Illinois, 1980, pp.161-169.

[24] C.V. Ramamoorthy, F.B. Bastani, "Software reliability—
Status and perspectives", IEEE Trans. on Software Eng.,
vol. SE-8, no. 4, July 1982, pp. 354-371.

[25] A.A. Salvia, R.C. Bollinger, "On discrete hazard func-
tions", IEEE Trans. on Reliability, vol. R-31, no. 5, Dec.
1982, pp. 458-459.

[26] R.J. Serfling, "Some elementary results on Poisson
approximation in a sequence of Bernouilli trials", SIAM
Review, vol. 20, no 3, July 1978, pp. 567-579.

[27] Y. Tohma, K. Tokunaga, S. Nagase, Y. Murata, "Structural
approach to the estimation of the number of residual
software faults based on the hypergeometric distribution",
IEEE Trans. on Software Eng., vol. SE-15, Mar. 1989,
pp. 345-355.

[28] Y. Tohma, H. Yamano, M. Ohba, R. Jacoby, "Parameter
estimation of the hyper-geometric distribution for real
test/debug data", Proc. Int. Symp. on Software Reliability
Engineering (ISSRE), Austin, Texas, May 1991, pp. 28-34.

[29] S. Weiss, E.J. Weyuker "An extended domain based model
for software reliability", IEEE Trans. on Software Eng.,
vol. SE-14, no. 10, Oct. 1988, pp. 1512-1524.

[30] M. Xie, Software reliability modeling, World Scientific,
Singapore, 1991.

[31] S. Yamada, S. Osaki, H. Narihisa, "Software reliability
growth modeling with number of test runs", Trans. IECE
Japan, vol. E-67, no. 2, Feb. 1984, pp. 79-83.

