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Abstract 

This paper is devoted to the definition of a reliability 
growth model—referred to as the discrete time hyperexpo-
nential model. This model is aimed at modeling software 
reliability with respect to the number of executions 
performed. It is well-suited to some kinds of systems such 
as transaction processing systems, single mission systems, 
etc… for which discrete data are collected; in addition, it 
facilitates the modeling of the impact on dependability 
measures of some software environment characteristics, 
such as the input probability distribution.  

1. Introduction 
The rapid growth in size, complexity and cost of 

computing systems and their applications, has led to a 
large amount of research devoted to software reliability 
modeling and evaluation. An important number of 
software reliability growth models has been defined to 
follow up the software behavior during its validation and 
operation phases and estimate the software ability to 
deliver a service that complies with the specification (see 
for example [16], [17] [19], [30]). The most well known 
proposed models are continuous time models based on the 
characterization of the software failure process with 
respect to the system execution time or calendar time. 
Software reliability is assessed through the evaluation of 
measures such as mean time to failure, failure rate, failure 
intensity, etc…. 

However, only few models, termed discrete time 
reliability models, allowing software reliability to be 
assessed with respect to the number of executions or runs 
performed rather than time have been reported in the 
literature [3], [23], [31]. Nevertheless, this kind of models 
deserves particular attention. In fact, discrete time 
representation of the software failure process is well suited 

for systems for which it is more significant to consider the 
number of executions performed rather than time; for 
instance transaction processing systems and single mission 
systems. It is also appropriate for the follow up of the 
software behavior during its validation phase and for the 
assessment of its reliability when discrete data are 
collected (number of successful executions between 
failures, for example). These data, are recorded, for 
instance, during statistical testing of the software with test 
inputs selected from an input distribution representative of 
the user profile. 

In this paper, a reliability growth model referred to as 
the discrete time hyperexponential model, is proposed for 
the modeling and evaluation of software reliability with 
respect to the number of executions performed. Even 
though this model is based on similar assumptions to those 
considered for the establishment of the continuous time 
hyperexponential model presented in [13], [15] and applied 
to real systems in [11], [12], its aims are quite different. 
Particularly, it is better suited to take into account some 
characteristics of the software execution profile, such as 
the input probability distribution, in reliability evaluation. 

This paper is composed of five Sections. Basic discrete 
time reliability measures are first presented in Section 2. In 
order to position our model with respect to existing 
discrete time software reliability models, an overview of 
these models is given in Section 3. In Section 4, the 
discrete time hyperexponential model is defined, the main 
related reliability measures are derived, then the model is 
applied to field data. In  Section 5, the hyperexponential 
model is used to evaluate software reliability growth by 
taking into account explicitly the software input 
probability distribution characterizing the execution profile 
in which the software is run. 



 

2. Basic discrete time reliability measures 
To our knowledge, only few results have been reported 

about the discrete time reliability theory [10], [25]. We 
present in this section the definitions of and relationships 
between the discrete time reliability function and the 
associated quantities.  

Let N be the random variable representing the number 
of executions until failure occurrence. N can be 
characterized by the following quantities: 

• probability mass function: f(n) = Pr{N=n}, 
• probability distribution function: F(n) = Pr {N≤n}, 

 n > 0 and F(0) = 0, 
• reliability function: R(n) = Pr{N>n} = 1 - F(n), n > 0 

and R(0) = 1. 
• discrete time failure rate: p(n) = Pr{N=n | N≥n}. 

The relationship between R(n), f(n) and p(n) is 
summarised in Fig. 1: note that the specification of one of 
these quantities allows the others to be derived. 

 
 R(n) f(n) p(n) 

R(n) * ∑
j=n+1

∞
 f(j)  ∏

j=1

n
[1- p(j)]  

f(n) R(n-1)-R(n) * p(n)∏
j=1

n-1
[1- p(j)]  

p(n) R(n-1)-R(n)
R(n-1)    

f(n)

∑
j=n

∞
 f(j)

  * 

Figure 1:  Relationships between discrete time reliability 
measures 

In addition to the previous measures, we can evaluate 
the mean number of executions until failure, noted MTTF, 
which is the expected value of the random variable N, 
defined by: 

MTTF = E[N] = ∑
n=1

∞

  n f(n ) (1) 

Given that: f(n) = R(n-1) - R(n), relation (1) can be 
rewritten as follows: 

MTTF  = ∑
n=1

∞

  n R(n-1) - ∑
n=1

∞

  n R(n) (2)           

Relation (2) yields: 

MTTF = ∑
n=0

∞

  R(n) (3) 

The measures defined above concern the occurrence of 
one failure, the first failure for instance, since it is assumed 
that the time of the beginning of observation is zero. For 
failure i, the previous measures have to be conditioned on 
the time of occurrence of failure i-1, let mi-1 be this time. 
For example, the probability mass function becomes:  
f(ni | mi-1). 
3. Discrete time software reliability models: 

A survey 
Discrete time software reliability modeling has given 

rise to a few models that can be classified into two 
categories: 

• stable reliability models which characterize the 
software failure process when no fault removal is 
performed; these models assume that the software 
probability of failure at execution remains constant, 

• reliability growth models which are prediction 
models taking into account the stochastic decrease 
of software probability of failure at execution 
originating from progressive removal of design 
faults.  

3.1. Stable reliability models 

Models assuming stable reliability behavior of the 
software are aimed at evaluating estimators for software 
reliability when the input data are sampled statistically 
according to a probability distribution that is expected to 
be representative of the operational software execution 
profile. The most popular discrete time stable reliability 
model was proposed by Nelson [20], [21]. For this model, 
an execution or a run of the software corresponds to the 
selection of a point from the input domain. If n executions 
are performed during which nf failures are observed, then 
an unbiased estimator for reliability after n runs is given 

by: R̂  = 1- 
nf
n  . As no fault removal is supposed to be 

performed during the software exposure period, and input 
data are assumed to be selected independently and 
randomly from the input domain, the software probability 
of failure at execution is assumed to be constant and the 
number of executions up to failure follows a geometric 
distribution.  

Even though the Nelson model is based on theoretical 
foundations that are sound, it suffers from practical 
drawbacks that are detailed in [24], for example: i) a large 
number of executions is needed in order to obtain a high 
confidence in the reliability estimate, and ii) the probability 
input distribution is not taken into account explicitly in 
reliability estimation. In order to overcome some of these 



 

drawbacks, extensions to and generalizations of the Nelson 
model have been proposed; see for example [1], [24], 
[29]1.  

The previous models require a large sample of failure 
data to be collected in order to estimate software reliability. 
When either zero failures or only a few failures are 
observed during software testing, these models are no 
longer suitable for reliability estimation. For these 
situations, other approaches based on software statistical 
testing have been proposed in order to quantify a lower 
bound for software reliability for a given confidence level; 
for instance, [2], [4], [22]. 

3.2. Reliability growth models 

As far as we know, only a few models encompassed in 
this category have been reported [3], [7], [23], [27], [31]. 
A brief description of these models is given in the sequel. 

In [23], an input domain based stochastic reliability 
growth model is defined. The software failure process is 
characterized by the set of parameters pj which correspond 
to the software discrete time failure rate after j 
modifications being performed. Conditionally on pj the 
number of executions until failure occurrence is supposed 
to be geometrically distributed. In order to take account of 
the reliability growth phenomenon as well as the 
uncertainty about the consequence of software changes on 
its behavior, pj is modeled by a random walk stochastic 
process that satisfies the following requirements: 

Δj = pj-1-pj ≤st
   Δj-1 and  pj ≤st

  pj-1 

Based on these assumptions, software reliability is 
assessed through the evaluation of the mean time to failure 
given that j modifications have occurred. 

The approach considered in [3] is quite different since a 
deterministic expression for the discrete time failure rate is 
assumed. A relationship between the software discrete 
time failure rate and the distribution of faults in software 
paths executed is established when either a uniform or a 
nonuniform path selection strategy is assumed.  

For the previous mentioned models, the software failure 
process is characterized by a piecewise stochastic discrete 
time process such that the variation of the failure rate takes 
place at software modification. The discrete time failure 
rate is stochastically decreasing with the number of 
executions performed and reaches asymptotically a zero 
limiting value.  

                                                             
1 These models as well as the Nelson model are usually referred to as 

input-domain-based models.  

Parallel to continuous time reliability growth models 
based on non homogeneous Poisson processes, analogous 
discrete time reliability growth models have also been 
developed [7], [31]. For these models, no explicit 
relationship between the number of software modifications 
and discrete time failure rate variation is assumed. In [31], 
the software failure process is characterized by a discrete 
counting process representing the cumulative number of 
failures observed out of n executions such that the 
associated mean value function has an exponential growth 
curve. In [7]2, a logarithmic growth relationship between 
the number of executions performed and the number of 
failures observed is assumed. 

Additionally to the previous models, one may also 
mention the model presented in [27] that is devoted to the 
prediction of the cumulative number of software failures 
with respect to the number of test instances applied during 
software testing. During a test instance, many software 
executions may be performed and more than one fault can 
be activated. For this model, a distinction is made between 
manifestation and detection of faults at the application of a 
test instance; a hypergeometric distribution is considered 
for the estimation of the number of initial faults in the 
software and attention is focussed on the evaluation of the 
cumulative number of failures in order to follow up the 
software behavior during testing.  

An assumption shared by all reliability growth models 
mentioned above is that the software discrete time failure 
rate reaches asymptotically a zero limiting value. This 
supposes that all design faults can be removed from the 
software. However, for large software systems this 
assumption may not be satisfied. For these systems, the 
asymptotic software behavior is better represented by a 
stable reliability behavior characterized by a constant 
asymptotic discrete time failure rate, enabling software 
reliability to be evaluated when either: a) modifications 
are no longer performed, or when b) elimination of faults 
does not significantly affect the software failure process. 

The discrete time hyperexponential model proposed in 
this paper enables this asymptotic stable reliability 
behavior to be taken into account. Additionally, it allows 
the evaluation of reliability growth of software 
multicomponent systems from the reliability growth of 
their components. The main features of this model are 
introduced in the following sections. Due to space 
limitations, only single component systems will be 
considered; multicomponent systems are dealt with in [8], 
[9]. 

                                                             
2  This model was defined in order to estimate reliability measures of 

single mission systems, not necessarily software systems. 



 

4. The Hyperexponential model  
The key objective of the discrete time hyperexponential 

model is to represent the reliability growth phenomenon 
and to evaluate measures allowing software reliability to 
be assessed with respect to the number of executions 
performed.  

A software program can be seen as the mapping of its 
input domain I into its output space O. An execution of the 
system consists in selecting a sequence of input points not 
necessarily contiguous from the input domain. Due to the 
presence of internal design faults, the selection of some 
inputs from I, those sampled from the failure domain, may 
lead to erroneous outputs which differ from the specified 
ones, leading to software failure. As the failure domain is 
intercepted randomly during software execution, there is 
thus a non zero probability to fail at each input selection. 
The software execution process may then be seen as a 
series of independent Bernouilli trials where a trial 
corresponds to one software execution. Let: 

• Zn be a binary random variable characterizing 

execution n of the software: 

 
⎩⎪
⎨
⎪⎧Zn = 1 if execution n fails

Zn = 0 otherwise    

• P(n) be the probability of failure at execution n; i.e., 
the probability of occurrence of the event {Zn =1}. 

Given the assumed stochastic independence between 
the random variables Zn, by analogy with continuous time 
non homogeneous Poisson process models, P(n) is 
equivalent to the software failure intensity h(t) which is 
the probability of failure in the interval [t, t+dt]. 

The discrete time hyperexponential model is aimed at 
modeling a continuously decreasing probability of failure 
at execution characterized by a constant limiting value. It is 
defined by the probability of failure at execution given by: 

P(n) = 
θpsup(1-psup)

n-1
 +  θ

—
pinf(1-pinf)

n-1
 

 θ(1-psup)
n-1

 +  θ;
—

(1-pinf)
n-1     (4) 

with 0≤θ≤1, θ
—

  =1-θ  and  pinf  ≤ psup.  

4.1. Model properties 

As indicated in Fig. 2, the probability of failure at 
execution P(n) given by relation (4) is non increasing with 

the number of executions performed, when 0<θ<1, from 
P(1) = θ psup +  θ

—
  pinf  to P(∞) = pinf. In fact, as the 

monotonicity of P(n) is indicated by the sign of the 
quantity ΔP(n+1) = P(n+1) - P(n), we have shown that [8]:  

ΔP(n+1) = - Erreur !which is always negative for n ≥1. 

The rate of decrease of P(n) can be adjusted via the 
values of the parameters θ, psup, pinf. The curvature of 
P(n) may change according to the value of parameter θ.  

P(n)

n

p inf

p
sup
+! !p

inf

 
Figure 2: Typical probability of failure at execution for the 

discrete time hyperexponential model 

In fact, the curvature of P(n) is given by the sign of 
ΔP(n+1) - ΔP(n). It can be seen that: 

• if θ ≤ 
1
2  , the curvature of P(n) is always positive, 

• if θ > 
1
2  , the curvature of P(n) is first negative, then 

positive for n ≥ n0: 

  n0 = 1+ 
1

Ln 
⎝⎜
⎛

⎠⎟
⎞1-pinf

1-psup

  Ln 
⎝⎜
⎛
⎠⎟
⎞θ

 θ
—   

Figure 3 displays some typical examples of curves of 
probability of failure at execution represented by the 
discrete time hyperexponential model:  

 • C1 characterizes stable reliability behavior,  
 • C2 characterizes reliability growth tending to an 

asymptotic behavior with P(∞) =0,  
 • C3, C4, C5 respectively characterize fast, 

progressive and slow reliability growth with non 
zero asymptotic probability of failure at execution. 
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Figure 3: Probability of failure at execution for the discrete 
time hyperexponential model 

Note that the discrete time hyperexponential model 
admits as special cases: 

• the stable reliability situation, with constant 
probability of failure at execution:  

 a) psup = pinf, or b) θ = 0 or  θ = 1; 

• a probability of failure at execution tending 
asymptotically toward zero: pinf = 0. 

Hence, software reliability behaviors represented by 
existing software discrete time reliability models can be 
taken into account by the hyperexponential model as 
special cases. 

Given that the probability of failure at execution 
relative to the hyperexponential model is based on a two 
stage discrete time Cox law; the proposed model can be 
generalized by introducing more stages in relation (4). The 
general expression for P(n) would be: 

P(n) = 
∑
i=1

 k
 θipi(1-pi)

n-1

 ∑
i=1

 k
 θi(1-pi)

n-1   with 0≤θi≤1 and ∑
i=1

 k
  θi = 1 (5) 

Figure 4 displays some examples of curves of 
probability of failure at execution relative to the 
generalized discrete time hyperexponential model when 
k=3. Comparison of Fig. 4 with Fig. 3, shows that the 
introduction of additional parameters into the expression 
of the probability of failure at execution enables better 
fitting of the reliability of software systems for which the 
probability of failure at execution varies slowly with 
respect to the number of executions performed (curve C5): 
two curvature changes of P(n) before reaching the 
asymptotic behavior can be taken into account. Note that, 
for the generalized discrete time hyperexponential model, 
the number of curvature changes increases with k. Hence,  
generalization of the model will enable better fitting to 

real situations, at the expense of added complexity 
estimation. 
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Figure 4: Probability of failure at execution for the 
generalized hyperexponential model (k=3) 

4.2. Derivation of related reliability measures 

4.2.1 Reliability function 

Let:   
• Ni be the random variable representing the number 

of software executions performed between the 
occurrence of failures (i-1) and i, and ni a 
realization of Ni,  

• Mi be the random variable representing the cumula-
tive number of software executions performed until 
the occurrence of failure i, and mi a realization of 
Mi. mi is the time of occurrence of failure i.  

 (Mi =∑
j=1

 i
 N j). 

The conditional reliability of Ni on the last failure time 
Mi-1=mi-1 is defined by: 

R(ni | mi-1) = Pr{Ni ≥ ni | Mi-1=mi-1} 

                 = ∏
j=mi-1+1

mi-1+ni

  [1- P(j)] (6)  

It follows that: 

R(ni | mi-1) = 
 θ(1-psup)

mi-1+ni
 +  θ

—
(1-pinf)

mi-1+ni

θ(1-psup)
mi-1

 +  θ;
—

(1-pinf)
mi-1

   (7) 



 

4.2.2. Probability mass function and failure rate 

Using the definition of f(ni | mi-1) the probability mass 
function associated with Ni and conditional on the last 
failure time Mi-1=mi-1 given in Section 2, we have shown 
in [8] that: 

f(ni | mi-1) = P(mi-1+ni)  R(ni -1 | mi-1)  (8) 

where P(mi-1+ni) is the software probability of failure 
at execution mi-1+ni. 

Using the relationships given in Section 2 and relation 
(8), it follows that the software discrete time failure rate 
after the occurrence of failure i-1, denoted p(ni | mi-1), is 
given by: 

p(ni | mi-1) = P(mi-1+ni) (9) 

Hence, the discrete time failure rate cannot be distingui-
shed from the non conditional probability of failure at 
execution; only the origin of time changes. Therefore we 
obtain a result analogous to non homogeneous Poisson 
processes (NHPP) for which the failure intensity and the 
failure rate have the same expression [18].  
4.2.3. Mean cumulative number of failures 

In addition to the basic reliability measures derived 
above, we can evaluate the cumulative number of failures 
with respect to the number of executions performed. This 
measure can be used as an appropriate index for the 
management of the validation and the maintenance effort 
needed to remove software design faults that are not 
revealed yet. 

Let Yn be the random variable representing the cumula-
tive number of software failures experienced after n 
executions, and H(n) the s-expectation of Yn. Considering 
the Bernouilli random variables Zn, we have Yn = Z1 +…+ 
Zn. It is shown that [6]: 

H(n)  = E[Yn]  = ∑
i=1

 n
  E[Zi] =  ∑

i=1

 n
  P(i)   (10) 

H(n) = Erreur ! (11)  

Generally, we have pinf, psup << 1, which leads to the 
simplified expression: 

H(n) ≈ -Ln { }θ(1-psup)
n
 +  θ

—
 (1-pinf)

n
  (12) 

Proof: 

When pinf and psup << 1, 

 1-P(i) ≈ exp (-P(i)) + o(pinf , psup) for i = 1, 2… 

So, ∏
i=1

 n
 (1-P(i))  ≈  ∏

i=1

 n
   exp (-P(i)) + o(pinf, psup) 

      ∏
i=1

 n
 (1-P(i))   ≈ exp 

⎝
⎜
⎛

⎠
⎟
⎞

- ∑
i=1

 n
 P(i)   + o(pinf, psup) 

                       ≈ exp (-H(n))+ o(pinf, psup) (13)  

Given relation (4), it can be shown that: 

 ∏
i=1

 n
 (1-P(i))   = θ(1-psup)

n
  +  θ

—
 (1-pinf)

n
    (14) 

Substituting (14) into (13) yields to : 

exp (-H(n)) ≈ θ(1-psup)
n
  +  θ

—
 (1-pinf)

n
    (15) 

Taking the logarithm of (15) leads then to relation (12). 
4.2.4. Distribution of cumulative number of failures 

In addition to the evaluation of the expected value of 
Yn, it is useful, particularly for the estimation of model 
parameters, to evaluate its associated probability distribu-
tion function. The probability distribution function of Yn 
is difficult to obtain in an explicit form because of the non 
stationarity of P(i). Nevertheless, based on the assumption 
pinf and psup << 1, it is proved [26], that the probability 
distribution function of Yn can be approximated by a 
Poisson distribution characterized by the mean function 

H(n) = ∑
i=1

 n
  P(i). Therefore: 

Pr{Yn = i} = 
 [H(n)]

i
 

 i!    exp {- H(n)} (16) 

Suppose that yk failures have been observed during 
[0,k] executions, then it can be proved easily that the 
conditional distribution of Yn given that Yk = yk for n > k 
is the distribution of the number of failures during [k+1,n], 
i.e.,   

Pr{Yn = yn | Yk = yk}= Pr{Yn - Yk= yn -yk}  



 

     =  
 [H(n) - H(k)]

yn-yk
 

 (yn -yk)!    exp {- [H(n) - H(k)]} (17) 

4.3. Parameter estimation 

Application of the discrete time hyperexponential 
model to real-life software systems necessitates the 
collection of failure data and the estimation of model 
parameters based on recorded data. Model parameter 
estimation can be performed either by the least square 
method or by the maximum likelihood method. For these 
two methods, it is difficult to evaluate analytically the 
optimum values of the model parameters for a given data 
set and parameter estimation is rather performed by using 
classical numerical techniques. 

In the following, the maximum likelihood method for 
estimating the unknown parameters θ, psup and pinf is 
developed. Two types of failure data are considered: 
failure intervals (number of executions between failures) 
or numbers of failures per interval.  

4.3.1. Estimation based on failure intervals 

Let us assume that r software failures have been 
observed with m1, m2,…, mr the times of failures 
occurrence. The likelihood function associated to (m1, 
m2,…, mr) is the joint probability mass function f(m1, 
m2,…, mr). Given that the probability of failure at 
execution P(i) is supposed to be independent of failure 
occurrences during the last i-1 executions, the likelihood 
function associated to  
(m1, m2,…, mr) is defined as: 

L = f(m1, m2,……, mr) =  ∏
i=1

 r
   f(ni | mi-1) (18) 

with ni the number of executions performed between the 
occurrence of failures i-1 and i. Using (6) and (8), we 
obtain: 

L = 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(m1) ∏
j=1

 m1-1

 [1-P(j)]  * 

⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(m2) ∏
j=m1+1

 m2-1

 [1-P(j)]                                                                                              

 *…* 
⎩⎪
⎨
⎪⎧

⎭⎪
⎬
⎪⎫

P(mr) ∏
j=mr-1+1

mr-1

 [1-P(j)]    

=  ∏
j=1

mr

  [1-P(j)]  ∏
j=1

r
   P(mj)

1-P(mj)   (19)  

An estimate of θ, psup and pinf can be found by 
maximizing numerically the log-likelihood, i.e.,  
LL = Ln f(m1, m2,……, mr). 

LL = ∑
j=1

r
  Ln{θpsup(1-psup)mj-1 + θ

—
 pinf(1-pinf)

mj-1 } 

       -∑
j=1

r-1
  Ln{θ(1-psup)mj + θ

—
(1-pinf)

mj } (20) 

4.3.2. Estimation based on numbers of failures per 
interval  

Suppose that the collected data are provided in the form 
of {(s1,y1), (s2,y2) …(sk,yk)} with yi the cumulative number 
of failures observed after si software executions. In order 
to evaluate the likelihood function associated to the 
collected data, the joint probability mass function relative 
to the sample {(s1,y1), (s2,y2) …(sk,yk)} needs to be 
calculated. Therefore it is necessary to calculate the 
probability mass function associated to the random 
variable Yn defined previously. Using the approximation 
of the distribution of Yn by a Poisson law, we obtain: 

L = f{(s1,y1), (s2,y2) …(sk,yk)}  

   = exp(- H(sk)) ∏
i=1

 k

 { }H(si) -H(si-1)
yi-yi-1

 (yi-yi-1)!       (21)  

An estimate of the model parameters can be obtained 
by maximizing the log-likelihood function given by: 

LL =∑
i=1

k

 (yi-yi-1) Ln{ }H(si)-H(si-1)  -Ln{ }(yi-yi-1)!  - H(sk)  

 (22) 
4.4. Application to field data  

In order to illustrate the hyperexponential model 
application to field data, two failure data sets that are 
already reported in the literature will be considered. They 
will be referred to as data set A [31] and data set B [28] 
respectively. The model will be applied in order to follow 
up the evolution of cumulative number of failures. 

4.4.1. Data set A 

The failure data considered is sampled from the 
observed curve of cumulative number of failures presented 
in [31]. These data were obtained during testing of an 
application program written in PL/I and in Assembler 
language consisting of approximately 50,000 lines of 



 

code. For the considered period, 773 executions were 
performed during which 73 failures were observed. The 
set of failure data obtained is presented in Fig. 5 where yi 
is the cumulative number of failures observed after si 
software executions. 

 
 i  si  yi 
 1  14  5 
 2  28  8 
 3   57   18 
 4   71   20 
 5  114  27 
 6  143  29 
 7  186  31 
 8   243   39 
 9   286   42 
 10   300   47 
 11   358   52 
 12   393   53 
 13  457  60 
 14  571  63 
 15  600  66 
 16  743  69 
 17  758  71 
 18  773  73 

Figure 5: Failure data set A.  

Figure 6 shows the application of the discrete time 
hyperexponential model to the considered data in order to 
evaluate and predict the cumulative number of failures; 
where: 

• C0  is the observed cumulative number of failures,  
• C1 the cumulative number of failures estimated by 

the hyperexponential model; the model is applied in 
a retrodictive way by considering the whole data set, 

• C2 the cumulative number of failures estimated by 
the model when applied in a predictive way: data 
collected between i=1 to i=11 (i.e., up to si=358) are 
used to estimate model parameters, then the model 
is applied for 1-step ahead predictions from i=12 to 
18 (i.e., from si = 358 to si= 773). 
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Figure 6: Model application to data set A 

It can be seen that the model yields satisfactory estima-
tions in both cases. To our knowledge, no statistical 
criteria for goodness-of-fit of discrete time reliability 
growth models to data are available in the literature; 
further investigations are needed to assess the validity of 
the results3. 

4.4.2. Data set B 

The failure data reported in [28] and shown on Fig. 7 
were recorded during combinational test of a real field 
software: 418 executions were performed during which 
137 failures were observed.  

 
 i  si  yi  i  si  yi 
 1  33  30  14  341 117 
 2  51  45  15  349 124 
 3  59  47  16  354 127 
 4  74  48  17  381 127 
 5 105  55  18  387 127 
 6 106  55  19  393 127 
 7 163  77  20  397 127 
 8 190  79  21  398 132 
 9 225  84  22  403 134 
 10 251  96  23  408 137 
 11 287 110  24  416 137 
 12 315 115  25  418 137 
 13 337 117    

Figure 7: Failure data set B 

Application of the hyperexponential model to this data 
in a similar way to the foregoing example leads to the 
results displayed on Fig. 8. Given that the slope of the 
observed cumulative number of failures curve is almost 
constant, it can be concluded that the software was in 
stable reliability and no significant reliability growth 
happened during the considered period. As shown by Fig. 
8, stable reliability behavior can also be taken into account 
by the hyperexponential model as well as reliability 
growth behavior.  
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3  Note that the χ2 statistical test usually used in these situations is 

better suited for comparing estimations derived from different models 
rather than for assessing the absolute validity of a given model. 



 

Figure 8: Model application to data set B 

5. Modeling the impact of the input 
probability distribution variation on 
software reliability 

In previous sections, the software input data are 
supposed to be sampled according to an execution profile 
that is representative to the operational use of the system 
and software evaluation is performed without modeling 
explicitly the impact of execution profile features on 
software behavior. Nevertheless, many software systems 
are expected to be used with respect to different execution 
profiles. For example, consider a switching system that 
serves both urban and rural communities: the urban 
operational profile would contain a wider variety of types 
of calls such as credit card calls, conference calls, and 
international calls, in addition to residential calls [5]. Since 
the types of calls are different for the different field sites, it 
is expected that the software input domain will be covered 
with different probability distributions.  

Given that the software execution profile may be 
subject to variations, then how to take into account 
different execution profiles when evaluating software 
reliability measures? 

The execution profile of a software that is expected to 
be used with respect to k operational modes {OM1,…, 
OMk} can be defined by the input probability distribution  
{π1, …,πk}, where πi is the probability for the software to 
be used according to operational mode i. 

We will assume that (Fig. 9): 
• the reliability growth of the software when used 

with respect to each operational mode OMi is 
characterized by a discrete time hyperexponential 
model Pi(mi) with parameters θi, pi,sup and pi,inf: mi 
is the number of executions performed with respect 
to OMi, 

 • the software is observed during m0 executions, with 
m0 = m01 +m02+…m0k and m0i is the number of 
software executions with respect to operational 
mode OMi. 
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Figure 9: Reliability growth characterization considering 

different operational modes  

Let n be the number of executions performed since m0:  
n = m-m0. We will investigate how to estimate and predict 
P(m), the software probability of failure at execution m, 
for m > m0. Note that: P(m) = P(n | m0). 

Two situations will be considered: i) the input 
probability distribution {π1,…,πk} remains invariant 
during software execution, and, ii) {π1,…,πk} varies after 
r executions. 

5.1. Invariant input probability distribution 

Consider first the case k=2. As after m0, no information 
is available about the number of executions performed by 
the system with respect to each operational mode, P(n | m0) 
can be evaluated by taking the convolution of P1(n) and 
P2(n) within the interval [m0+1, m]. We have: 

P(m) = P(n | m0)  

=∑
i=0

n-1
 ( )n-1

i   π
i
1 π

n-1-i
2 { }π1P1(m01+1+i) + π2P2(m02+n-i)  (23) 

It can be verified that: 

⎩
⎨
⎧π2=0 yields P(n | m0)=P1(n | m0)

π1=0 yields P(n | m0)=P2(n | m0)
   

Relation (23), obtained for k = 2 can be generalized. It 
can be shown that for k ≥2, we have: 

P(m)=∏
l=1

 k-1

 ∑
il=0

 ul
 ⎝
⎛

⎠
⎞ul-1

il-1  ∏
j=1

 k
  πij

j∑
j=1

 k
  πjPj(m0j+ij+1) (24) 

with: 

uj = n -1 - ∑
s=1

 j-1
  is, j = 2, 3, …k, u1=n-1 and ik = uk (25) 

Note that the expression obtained for P(m) is relatively 
complex. Unfortunately, a simple form for P(m) does not 



 

appear to be available, but a recursive scheme for the 
computation of (24) is easily arranged. 

Figure 11 gives some examples of application of 
relation (23): two operational modes are considered and 
the probabilities of failure at execution of the software 
with respect to OM1 and OM2 are given by curves P1(m) 
and P2(m) displayed in Fig. 10. Given the assumed values 
for θi, pi,sup and pi,inf it can be seen that the software is 
assumed to be less reliable when used with respect to 
OM1 than to OM2.  

Curves C1, C2 and C3 of Fig.11 plot the software 
probability of failure at execution, P(m), with respect to 
the number of executions m (m>m0 =50) for different 
values of the input probability distribution defined by {π1, 
π2}. Note that the same value m0 is considered for the 
evaluation of C1, C2 and C3: m0=m01+m02=50, 
nevertheless m01 and m02 depend on the probabilities π1, 
and π2. When m0 is large enough, we have: m0i = πi m0, i 
=1,2. 
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Figure 10: Probabilities of failure at execution with respect to 

OM1 and OM2 
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Figure 11: Estimation of P(m) in a specified execution profile 
As illustrated by Fig. 11, it can be seen that different 

reliabilities may be observed for the software depending on 
the values of π1 and π2 characterizing the execution 
profile according to which the software is used. Hence, a 
slight variation of the input probability distribution may 

lead to a significant change of the rate of decrease of P(m) 
as well as of its limiting value characterizing the stable 
reliability behavior of the software. Consider for instance 
curve C3, as the software is more frequently used 
according to operational mode OM1 than to OM2, then it 
can be seen that P(m) is similar to P1(m) given by Fig. 10 
for m > 50. Hence, as shown by Fig. 11, P(m) decreases 
very quickly and reaches a stable reliability behavior 
characterized by: 

P(∞) = 0.8 P1(∞) + 0.2 P2(∞) ≈  P1(∞) 

However, for curve C2 a different behavior can be 
observed: P(m) decreases progressively and the stable 
reliability behavior is reached much more later in time.   

Note that the software probability of failure at 
execution, P(m), corresponding to the limiting situations: 
π1=0 and π2=0 is given respectively by P2(m) and P1(m) 
displayed in Fig. 10. 

5.2. Variant input probability distribution 

Suppose now that input probability distribution  
{π1, π2, …,πk} changes during the software execution. 
Such situations may occur for example when the software 
is released in an operational site in which the software is 
run with respect to an execution profile different from that 
used during software testing, or when different testing 
strategies are used during system testing for software 
validation. 

 Note by {π1, π2, …,πk}A and {π1, π2, …,πk}B two 
input probability distributions corresponding to two 
execution profiles A and B. We will assume that execution 
profile change takes place after r software executions 
(Fig.12) and that execution profile variation does not 
modify the software probabilities of failure at execution 
with respect to operational modes OMi; i.e., Pi(mi) is 
characterized by the same parameters θi, pi,sup and pi,inf 
before and after execution profile variation.   

m r m0

{ ! ,! , …, ! }1 2 k A { ! ,! , …, ! }1 2 k B

execution profile A execution profile B

number of 
executions

0  
Figure 12: Execution profile variation   

Using the same method as before, the probability of 
software failure at execution after execution profile 
variation can be derived.  

Consider first the case k=2. It can be shown that, for  
m ≥ r, we obtain: 



 

P(m)=∑
i=0

n-1

 ∑
j=0

i

 ( ) r-m0
j ( )m-r-1

i-j  π
j
1A π

i-j
1B π

r-m0-j
2A  π

m-r-i+j-1
2B   

             *  { }π1BP1(m01+i+1)+π2BP2(m02+n-i)   (26) 

For m < r ,  P(m) is given by relation (23). 
As Erreur !) = Erreur != Erreur ! , it can be verified 

that taking A = B yields (23). 

Generalization of relation (26) for k≥2 leads to:   

P(m)=π
jk
lA π

ik-jk
lB ∏

l=1

k-1

 ∑
il=0

ul
 ∑
jl=0

il
 ( )r-m0-zl-1

;jl ( )m-r-1-vl-1;il-jl    

     * π
jl
lA π

il-jl
lB ∑

j=1

k

  πjBPj(m0j+ij+1) (27) 

with:  

⎩⎪
⎪
⎪
⎨
⎪
⎪
⎪⎧sl = ∑

n=1

l-1

 in

  zl = ∑
n=1

l-1

 jn

 ul  = n-1-sl

  vl = sl -zl ;for l = 2

 …
 k;s1= 0

 z1= 0

 ik = uk and jk = r-m0-zk

  

In order to illustrate what precedes, a simple example is 
given in Fig. 13 for the case k=2:   

• C1 shows the evolution of the software probability 
of failure at execution when the execution profile 
does not vary, 

• C2 and C3 show the impact of execution profile 
variation on software probability of failure at 
execution. 
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Figure 13: Impact on P(m) of execution profile variation 
 
For 51 ≤ m ≤ 65, C1, C2 and C3 cannot be dissociated 

as the software input probability distribution is assumed to 
be the same. The discrepancies observed between C1, C2 
and C3 for m>65 are due to the change of the software 
execution profile. It can be seen that local variations of 
software reliability growth can be observed after execution 
profile change (at execution m=65): local decrease of 
P(m) for C2 and local increase for C3.  

It is noteworthy that such discontinuities in the probabi-
lity of failure at execution are likely to occur whenever the 
software execution profile is changed. When multiple 
execution profile variations occur, relation (27) has to be 
re-evaluated each time the software input probability 
distribution is changed in order to update the estimation of 
the software probability of failure at execution. 

6. Conclusion 
In this paper, a discrete time reliability growth model 

has been defined in order to estimate the software 
reliability growth behavior with respect to the number of 
executions performed. The proposed model is based on 
similar assumptions to those considered by continuous 
time reliability growth models based on non homogeneous 
Poisson processes. The software behavior is characterized 
by its probability of failure at execution which is supposed 
to be decreasing with the number of executions performed 
in order to take into account software reliability growth 
phenomenon resulting from the progressive removal of 
design faults. In order to cope with observed behavior of 
real life systems, it is assumed additionally that the 



 

software reaches asymptotically a stable reliability 
behavior. The model is based on simple assumptions as no 
explicit relationships between fault removal process and 
software behavior are assumed. Explicit expressions for 
the main reliability measures are first derived and then 
some features of the model are illustrated through the 
application of the model to real life failure data. 
Furthermore, we have also discussed and illustrated the 
ability of the model to take into account explicitly the 
input probability distribution characterizing the execution 
profile in which the software is run in the evaluation of the 
probability of failure at execution. The modeling approach 
proposed is based on a simplifying assumption that is the 
software probability of failure at execution curve with 
respect to a given operational mode is not altered by the 
variation of the software execution profile. This 
assumption may not be always satisfied due, for instance, 
to the variation of load applied to the software [14]. 
Further work will consist in extending the results obtained 
in this paper to take into account these situations.  

Due to space limitation, we restricted ourselves in this 
paper to discrete time reliability growth modeling of single 
component systems. Discrete time modeling of multi-
component systems by the hyperexponential model is 
addressed in [8], [9]. 

Based on the features of the discrete time 
hyperexponential model, it can be seen that this model has 
similar properties to those of the continuous time 
hyperexponential model presented in [15]. The 
relationship between these models is discussed in [8] in 
which it is shown that the continuous time 
hyperexponential model can be deduced from the discrete 
time one if the software execution rate is taken into 
account in software reliability evaluation in addition to its 
probability of failure at execution. 
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