
HAL Id: hal-00851762
https://hal.science/hal-00851762v1

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

PolyOrBAC: a security framework for critical
infrastructures

Anas Abou El Kalam, Yves Deswarte, Amine Baïna, Mohamed Kaâniche

To cite this version:
Anas Abou El Kalam, Yves Deswarte, Amine Baïna, Mohamed Kaâniche. PolyOrBAC: a security
framework for critical infrastructures. International journal of critical infrastructure protection, 2009,
2 (4), pp.154-169. �10.1016/j.ijcip.2009.08.005�. �hal-00851762�

https://hal.science/hal-00851762v1
https://hal.archives-ouvertes.fr


PolyOrBAC: A Security Framework for Critical

Infrastructures

A. Abou El Kalam1, Y. Deswarte2,3, A. Bäına2,3, M. Kaâniche2,3

(1) Université de Toulouse ; IRIT ; INPT-ENSEEIHT ; 2 rue Camichel, F-31071
Toulouse, France

(2) CNRS ; LAAS ; 7 avenue du Colonel Roche, F-31077 Toulouse, France
(3) Université de Toulouse ; UPS, INSA, INP, ISAE ; LAAS ; F-31077 Toulouse, France

Abstract

Due to physical and logical vulnerabilities, a critical infrastructure (CI) can
encounter failures of various degrees of severity, and since there are many in-
terdependencies between CIs, simple failures can have dramatic consequences
on the users. In this paper, we mainly focus on malicious threats that might
affect the information and communciation system that controls the Critical
Infrastructure, i.e., the Critical Information Infrastructure (CII). To address
the security challenges that are specific of CIIs, we propose a collaborative
access control framework called PolyOrBAC. This approach offers each orga-
nization taking part in the CII the capacity of collaborating with the other
ones, while maintaining a control on its resources and on its internal secu-
rity policy. The interactions between organizations participating in the CII
are implemented through web services (WS), and for each WS a contract is
signed between the service-provider organization and the service-user organi-
zation. The contract describes the WS functions and parameters, the liability
of each party and the security rules controlling the interactions. At runtime,
the compliance of all interactions with these security rules is checked. Every
deviation from the signed contracts triggers an alarm, the concerned parties
are notified and audits can be used as evidence for sanctioning the party
responsible for the deviation. Our approach is illustrated by a practical
scenario, based on real emergency actions in an electric power grid infras-
tructure, and a simulation test bed has been implemented to animate this
scenario and experiment its security issues.

Key words: Critical Infrastructure, Security, Access Control Policies and
Models, Collaboration, Interoperability.

Preprint submitted to IJCIP August 28, 2009



1. Introduction

Critical Infrastructures (CI) are physical and logical facilities of essential
importance for public welfare. Their failure or disruption could potentially
have a dramatic impact on economic and social welfare of a nation, a so-
ciety, or an economy. Significant examples of CIs include those dedicated
to electricity generation, transport and distribution (i.e., the electric power
grid), telecommunications, supply services (energy, food, fuel, water, gas),
transportation systems (roads, railways, airports), financial services (banks,
stock exchange, insurances), etc.

Due to interdependencies between various infrastructures, cascading fail-
ures1 and escalating failures2 are not unlikely [1], [2]. A simple failure can
propagate at a large scale as in the example of the North America blackout
occurred on 14 august 2003 [3]. One of the immediate causes of this large
blackout, which caused 6 billion dollars of losses according to the US Depart-
ment of Energy, was a failure of the monitoring software, which prevented
confining an electrical line incident before its propagation across the electri-
cal power grid. Such failure scenarios might occur as a result of accidental
faults as well as of malicious threats (intrusions, worm propagation, denial
of service attacks, etc.).

A CI is controlled by an Information and Communication system, called
Critical Information Infrastructure (CII). This CII uses potentially vulner-
able information technologies, which can be targetted and compromised by
malicious attackers. This is why ensuring the security of CIIs has become an
important topic of many research studies.

To deal with the changing needs of the market, the CII must be flex-
ible and extensible (co-operation with new organizations, possibly on new
geographical areas). Consequently, the CII must be open and distributed to
allow the organizations participating in it to collaborate and provide globally
resources and services to users belonging to the various organizations. With
the opening and the deregulation of markets, some of these organizations can

1A cascading failure occurs when a failure in one infrastructure causes the failure of

one or more components in a second infrastructure.
2An escalating failure is a failure in one infrastructure that is exacerbated by an inde-

pendent failure in another infrastructure, generally in the form of increasing the severity

or the time for recovery or restoration of the first failure.

2



be in competition, while collaborating. It is the case in Europe in particular,
where regional, national or multinational companies are in competition but
must cooperate to produce, transport and distribute electric power. This in-
duces an essential need for access control policies and enforcing mechanisms,
to manage different accesses from an organization to the other.

The work presented here only focuses on security challenges related to
access control, collaboration, and interoperability between the organizations
and the systems composing the CII [4], [5], [6]. The novelty of this paper
is to present a global and homogeneous approach, called PolyOrBAC, to
ensure security in the CII. In particular, we (1) define the local policies of
the organizations participating to the CII, (2) extend OrBAC with notions
such as virtual users and service images to control interactions between or-
ganizations through e-contracts, (3) show how e-contracts can be expressed
by security rules and checked at run time to detect dynamic violations and
abuses, and finally (4) present our implementation and illustrate our global
approach through concrete examples.

This paper is thus gathering in a consistent way several works published
previously [4], [5], [6] [7], and extends them with more information on how
the PolyOrBAC framework can be applied to CIIs and on how it can be
implemented. Especially sections 4, 5 and annexes are new.

The remainder of this paper is organized as follows: Section 2 identifies
the global security requirements of CIIs and confront these requirements to
traditional access control models. Then a sketch of our proposal is presented
in Section 3. In particular, we progressively demonstrate how PolyOrBAC in-
tegrates WS, OrBAC and e-contracts to meet the CII’s security requirements.
Section 4 shows how PolyOrBAC can be applied to the electrical power grid
CII. Section 5 presents details of our test bed and Section 5 draws up the
conclusions and proposes possible extensions of this work.

2. CII Security requirements and related works

2.1. CII Security requirements

Globally, a CI can be seen as a set of interconnected organizations in-
volving different actors and stakeholders (e.g., power generation companies,
substations, energy authorities, maintenance service providers, transmission
and distribution system operators, etc.) using heterogeneneous logical and
physical information and communication systems and networks, exhibiting
different levels of security threats and protection mechanisms.

3



In order to provide a satisfactory level of protection for the global in-
terconnected critical infrastructure, the following security constraints and
requirements need to be carefully addressed.

1. Secure cooperation between different organizations, possibly mutually
suspicious, with different features, functioning rules and policies. In
this context, we should secure not only intra-organizational accesses
but also interactions between different independent organizations.

2. Audit and assessment : especially for inter-organizational workflows,
the audit should determine if the protections which are defined in the
policy are being correctly enforced in practice; it also keeps logs on
interactions between partners, to verify if they comply with the pre-
viously signed contracts, and provide evidence in case of dispute or
dynamic abuses.

3. Autonomy and loose coupling : each organization controls its own se-
curity policy, users, resources, applications, etc., while respecting the
global functioning and security rules of the whole system.

4. Enforcement of permission, explicit prohibition as well as obligation
rules: explicit prohibitions can be particularly useful, as we have decen-
tralized policies where each administrator does not know details about
the other parts of the infrastructure. Moreover, explicit prohibitions
can also specify exceptions, or limit the propagation of permissions in
case of role hierarchies. Similarly, obligations can be useful to impose
some actions that should be carried out by users or that should be
automatically performed by the system itself.

2.2. Related works

To satisfy the CII security requirements cited above, two global ap-
proaches are possible, centralized or Peer-to-Peer. In the following, we discuss
some examples of significant contributions in each of these categories.

2.2.1. Centralized approaches

Several works on Workfow Management Systems follow the centralized
approach. For example, Bertino et al. describe different configurations and
constraints associated to the workflow execution [8]. Alturi et al. use colored
and timed petri nets to define a conceptual and a logical workflow autho-
rization model and to enforce the authorization flow based on the inter-
dependencies between activities [9]. However, these works do not show how

4



to enforce inter-organization workflows while respecting the global and local
constraints, especially when organizations collaborate to achieve a common
objective. Moreover, these works suppose the existence of a central entity
responsible for specifying and managing the workflow security policy without
showing how such a policy will be used. Hence, applied to our context, these
solutions imply the definition of a global security policy for the CII, to which
all participating organizations must adapt their own security policies to con-
form with this global policy. Finally, these solutions do not show how the
security policy can be dynamically monitored during the workflow execution
while this requirement is important in our context. In fact, we believe that
this centralized approach is generally unacceptable for large companies that
may involve several independent CIIs, which could potentially define con-
flicting security policies. Lin, Rao and Bertino [10], proposed a novel policy-
based access control model for collaborative access control, the main idea is
based on the notion of policy decomposition. This architecture is developed
based on the XACML framework [29] which allows the proposed solution
to be easily integrated into existing systems. It also presents algorithms for
decomposing a global policy that is enforced by a set of collaborating par-
ties without compromising the autonomy or confidentiality requirements of
the collaborating parties and to efficiently evaluate requests from different
parties. While very interesting, this work cannot be directly applied in our
context as it imposes a global access control policy over a collaborative envi-
ronment; this constraint involves information-disclosure while in CII we have
mutually suspicous organizations that should keep secret some details of their
policies. Jajodia, and Samarati [11] presented a unified framework that can
enforce multiple access control policies within a single system. The frame-
work is based on a language through which users can specify security policies
to be enforced on specific accesses. The language allows the specification
of both positive and negative authorizations and incorporates notions of au-
thorization derivation, conflict resolution, and decision strategies. Different
strategies may be applied to different users, groups, objects, or roles, based
on the needs of the security policy. The major advantage of this approach
is that it can be used to specify different access control policies that can be
enforced by the same security server. However it does not take into consider-
ation collaboration and autonomy issues, which are important in the context
of CIIs. In term of languages, significant contributions are related to Pon-
der [32] and XACML. For example, Lorch, Proctor et al. present XACML,
a standard access control language, as one component of a distributed and

5



inter-operable authorization framework [12]. This work illustrates how au-
thorization can be deployed in distributed, decentralized systems, and helps
connecting the general components of an authorization system. XACML is
useful for specifying complex policies in a wide variety of distributed appli-
cations, environments and systems. However, it has some limitations, the
language flexibility and expressiveness comes at the cost of complexity and
verbosity. In practice, using this laguage is painful as it leads to complex pol-
icy files. Tools are underway, but as long as they are not wideky available, it
will be hard for average users to work with any XACML-based system. And
even with good tools in place, there is an inherent semantic complexity that
accumulates over the syntactic complications.

2.2.2. Peer-to-Peer approaches

Peer-to-peer solutions have been proposed in some previous works. These
approaches do not assume the existence of a global CII organization. In 2008,
Sturm and Dittrich [13] presented a fine grained access control mechanism
for peer-to-peer collaborations. This mechanism is based on the local access
control components of the participants. The peers export their access control
policies in XACML. Two mechanisms are proposed to combine these poli-
cies. The first approach establishes mappings between the export policies.
The second approach installs a distributed access control directory. While
mappings are created between two peers, a directory contains all rights of
all users of all peers. In a similar work, Shehab and Bertino [14] presented a
distributed secure interoperability framework for mediator-free collaboration
environments in which domains collaborate in making localized access con-
trol decisions. This work introduced the idea of secure access paths which
enables domains to make localized access control decisions without having
a global view of the collaboration. It also presented a path authentication
technique for proving path authenticity. Basically, it presented proactive
and on-demand path discovery algorithms that enable domains to securely
discover paths in the collaboration environment. Pearlman and Welch [15]
presented the Community Authorization Service (CAS) intended to solve
three critical authorization problems that arise in distributed virtual orga-
nizations: scalability, flexibility and expressibility, and the need for policy
hierarchies. Their work addressed these problems by introducing a trusted
third party administrated by the virtual organization that performs fine-
grain control of community policy while leaving ultimate control of resource
access with the resource owners. This work is interesting in the fact that it

6



presents an authorization framework for distributed and collaborative envi-
ronments. However, it uses a third party with a global knowledge of policies
of other organizations. This is a limitation that our work tries to overcome.
In the same way, MultiOrBAC [16] and O2O [17] stipulate that the various
organizations accept to cooperate so that roles in one organization are given
privileges in another organization. For that, each participating organization
must trust the others, at least for the definition of their roles and for the
assignment of the corresponding roles to trustworthy users. This approach is
also intrusive with respect to the confidentiality of each organization’s inter-
nal structure, user identity, and security policy. This is equally unacceptable
for CIIs where participating organizations are in competition, and thus are
mutually suspicious. Clearly, each organization wants to keep its autonomy
on the choice of its internal security policy, and would not accept to open its
information and communication system to unknown external users working
for its competitors. Ideally, an organization should know nothing about the
other organizations’ users or assets, but only the information needed to co-
operate fairly. Enabling a secure collaboration between organizations while
preserving each organization’s autonomy and self-determination is the chal-
lenge addressed by our approach, the PolyOrBAC framework, presented in
the next section.

3. The PolyOrBAC security framework

Based on an access and flow control model extended from OrBAC [18]
and on web services mechanisms, PolyOrBAC defines, deploys and audits a
security policy both in intra and inter-organizational workflows. It mainly
gives answers to questions such as: how to define intra-organizational ac-
cesses? how to specify inter-organizational access policies? how to specify
and deploy e-contracts that can be agreed between organizations collaborat-
ing within a CII? how can we enforce access control and be able to audit and
detect possible runtime violations and abuses? The following subsections de-
scribe our proposal. First, we show how specifying local security policies with
OrBAC (inside each organization). Then, we introduce new notions (virtual
users and WSs images) to manage inter-organizational accesses. Finally,, we
use e-contract to express and runtime check WSs interactions.

7



3.1. Specifying local security policies with OrBAC

In the context of CIIs, each organization specifies its own security policy,
which defines who has access to what, when, and in which conditions. In this
subsection, we show that OrBAC is the most suitable access control model
for achieving this task. Note that for this paper to be self-contained and to
situate this work regarding the state of the art, we recall the main notions
of OrBAC and some other related access control models.

Actually, the OrBAC (Organization-based Access Control) model is an ex-
tension of the traditional RBAC (Role-Based Access Control) model [19], [20].
In RBAC, roles are assigned to users, permissions are assigned to roles and
users acquire permissions by playing roles. By abstracting users into roles,
RBAC facilitates the security policy management. Indeed, if users are added
to or are withdrawn from the system, only instances of the relationship be-
tween users and roles need to be updated.

OrBAC goes further by abstracting objects into views and actions into
activities. In this way, security rules are specified by abstract entities only.
Consequently, the representation of the security policy is completely sepa-
rated from the implementation.

More precisely, in OrBAC, an activity is a group of one or more actions;
a view is a group of one or more objects; and a context is a specific situation
that conditions the validity of a rule. Actually, two security levels can be
distinguished in OrBAC:

• Abstract level : the administrator defines security rules through ab-
stract entities (roles, activities, views) without worrying about how
each organization implements these entities.

• Concrete level : when a user requests to perform an action on an
object, permissions are granted to him according to the concerned rules,
the organization, the role currently played by the user, the requested
action (that instantiates an activity defined in the rule) on the object
(that instantiates a view defined in the rule), and the current context.
The derivation of permissions (i.e., runtime evaluation of security rules)
can be formally expressed as follows:

8



∀ org ∈ Organizations, ∀s ∈ Subjects, ∀ α ∈ Actions, ∀ o ∈ Objects,
∀ r ∈ Roles, ∀a ∈ Activities, ∀ v ∈ Views, ∀ c ∈ Contexts
Permission (org, r, v, a, c) ∧

Empower (org, s, r) ∧

Consider (org, α, a) ∧
Use (org, o, v) ∧

Hold (org, s, a, o, c)
→ Is permitted(s, α, o)

This rule means: if in a certain organization, a security rule specifies that
role r can carry out the activity a on the view v when the context c is true,
and if r is assigned to subject s, if action α is a part of a, and if object o is
part of v, and if c is true, then s is allowed to perform α (e.g., WRITE) on
o (e.g., f1.txt). Prohibitions, and obligations can be defined in the same
way.
As rules are expressed only through abstract entities, OrBAC is able to
specify the security policies of several collaborating and heterogeneous sub-
organizations (e.g., departments) of a “global organization”. In fact, the
same role, e.g., operator can be played by several users belonging to dif-
ferent sub-organizations; the same view e.g., “TechnicalFile”, can desig-
nate a table TF-Table in one sub-organization or a XML object TF1.xml
in another one; and the same activity read can correspond in a particular
sub-organization to a SELECT action while in another sub-organization it
may specify an OpenXMLfile() action.
In our context, OrBAC presents several benefits and satisfies several security
requirements of organizations participating in a CII: rules expressiveness,
abstraction of the security policy, scalability, heterogeneity and evolvability.
OrBAC is thus more suitable than RBAC (and its variants); in particular, for
specifying local security policies of the CII’s organizations. These security
policies can subsequently be locally enforced by (local) security mechanisms
such as Access Control Lists (ACL), firewall rules, security credentials (e.g.,
XML capabilities), OASIS WS security mechanisms, etc.

3.2. Managing interactions between organizations

While OrBAC is suitable for specifying local security policies, it has an
important limitation in our context. Actually, OrBAC is centralized and
does not handle collaborations between non-hierarchical organizations, i.e.,

9



secure handling of accesses to external resources. In fact, OrBAC is not ap-
propriate for specifying rules that involve several autonomous organizations.
Moreover, it is not possible to associate permissions to users belonging to
other organizations. As a result, OrBAC is unfortunately only adapted to
centralized infrastructures and does not cover the distribution and collabora-
tion needs of current CIIs. To fulfill this requirement, we have proposed the
MultiOrBAC model in [16]. Basically, MultiOrBAC abstract rules specify
that roles in a certain organization are permitted (or prohibited or obliged)
to carry out activities on views belonging to other organizations. Therefore,
contrarily to OrBAC, a MultiOrBAC rule may involve two different organi-
zations that do not belong to the same hierarchy: the organization where the
role is played, and the organization which the view and the activity belong
to.

However, in the context of CIIs, MultiOrBAC presents several weak-
nesses. In fact, MultiOrBAC offers the possibility to define local rules /
accesses for external roles (i.e., belonging to another organization), without
having any information about who plays these roles and how the (user, role)
association is managed in the remote organization. This causes a serious
problem of responsibility and liability: who is responsible in case of remote
abuse of privileges? How can the organization to which belongs the object
have total confidence in the organization to which belongs the user?

The MultiOrBAC logic is thus not adapted to CIIs where in-competition
organizations can naturally be mutually suspicious. Moreover, in MultiOr-
BAC the access control decision and enforcement are done by each organiza-
tion, which means that the global security policy is in fact defined by the set
of the organizations’ security policies. In that case, it is difficult to enforce
and maintain the consistency of the global security policy, in particular if
each organization’s security policy evolves independently.

In our PolyOrBAC framework, collaboration and interactions between
organizations are made through the use of the WS technology, which pro-
vides platform-independent protocols and standards for exchanging hetero-
geneous interoperable data services. Software applications written in various
programming languages and running on various platforms can use WS to
exchange data over computer networks in a manner similar to inter-process
communication on a single computer. WS also provide a common infrastruc-
ture and services for data access, integration, provisioning, cataloging and
security. These functionalities are made possible through the use of open
standards, such as: XML for exchanging heterogeneous data in a common

10



information format [21]; SOAP, a data transport mechanism to send data
between applications in one or several operating systems [22]; WSDL, used
to describe the services that a business offers and to provide a way for in-
dividuals and other businesses to access those services [23] and UDDI, an
XML-based registry which enables businesses to list themselves and their
services on the Internet and discover each other [24].

Note that some recent works already tried to combine web services mech-
anisms and security policies based on RBAC. Beznosov and Deng presented
a framework for implementing Role-Based Access Control using CORBA
security service [25]. Vuong, Smith and Deng proposed an XML-Based ap-
proach to specify enterprise RBAC policies [26]. In 2004, Feng, Guoyuan
and Xuzhou suggested SRBAC, a Service-oriented Role-Based Access Con-
trol model and security architecture model for Web Services [27]; and Leune,
Van and Heuvel presented RBAC4WS, a methodology for designing and de-
veloping a Role-Based Access Control model for Web Services [28]. Focusing
on service invocation, this methodology adopts a symmetric perspective con-
sidering both the supplier and the customer. Besides, some other works
tried to couple XACML with RBAC. For example, in 2004, OASIS adopted
an XACML profile for Role Based Access Control, while in 2005, Crampton
proposed an RBAC policy using an XACML formulation [29].

In the proposed PolyOrBAC framework, we integrate WS and OrBAC.
To achieve this task, we introduce two new notions, the virtual users and the
WS images:

• for the organization offering a WS (i.e., that allows external accesses
to its local resources through WS interfaces), the other organization is
seen as a virtual user which plays a role authorized to use the WS;

• for the organization requesting the WS, the WS is seen as an external
object, locally represented by its image.

To illustrate these notions, we explain the two main phases of PolyOr-
BAC: (1) publication and negotiation of collaboration rules as well as the
corresponding access control rules and (2) runtime access to remote services.
In the first phase, each organization determines which resources it will offer
to external partners. Web services are then developed on application servers,
and referenced on the Web Interface to be accessible to external users.
When an organization publishes its WS at the UDDI registry, the other or-
ganizations can contact it to express their wish to use the WS. Let us take

11



a simple example where organization B offers WS1, and organization A is
interested in using WS1. A and B should negotiate and come to an agree-
ment concerning the use of WS1. Then, A and B establish a contract3 and
jointly define security rules concerning the access to WS1. These rules are
registered (according to an OrBAC format) in databases located at both A
and B. For instance, if the agreement between A and B is “users from A have
the permission to consult B’s measurements in the emergency context”, B
should, in its OrBAC security policy:

• have (or create) a rule that grants the permission to a certain (local)
role (e.g., Operator) to consult its measurements: Permission(B,
Operator, Measurements, Consult, Emergency);

• create a virtual user noted PartnerA that represents A for its use
of WS1;

• add the Empower(B, PartnerA, Operator) association to its rule base.
This rule grants PartnerA the right to play the Operator role.

In parallel, A creates locally a WS1 image which (locally in A) represents
WS1 (i.e., the WS proposed by B), and adds a rule in its OrBAC base to
define which of A’s roles can invoke WS1 image to use WS1.

Considering the second phase of PolyOrBAC dedicated to the control of
runtime access to remote services, we use an AAA (Authentication, Autho-
rization and Accounting) architecture, which separates authentication from
authorization; we distinguish access control decision from access control en-
forcement; and we keep access logs in each organization. Basically, if a user
from A (let us note it Alice) wants to carry out an activity, she is first au-
thenticated by A. Then, protection mechanisms of A check if the OrBAC
security policy (of A) allows this activity. We suppose that this activity con-
tains local as well as external accesses (e.g., invocation of B’s WS1). Local
accesses should be controlled according to A’s policy, while the WS1 invoca-
tion is both controlled by A’s policy (Alice must play a role that is permitted
to invoke WS1 image), and by B’s policy (the invocation is transmitted to
virtual user PartnerA, which must play a role authorized to execute the web

3The contract aspects will be discussed in the next subsection.

12



service), according to the contract established between A and B. If both
policies grant the invocation, WS1 is executed (under the access control en-
forcement mechanisms implemented by A and by B).

3.3. Expressing and checking WS interactions with e-contracts

In the last subsection, we have shown that PolyOrBAC offers several use-
ful concepts and mechanisms for access control in CIIs: it permits a better
specification and control of local security policies through OrBAC; each or-
ganization authenticates its users and manages its resources autonomously;
and interactions are handled by WS. Consequently, the service-requesting
organization is liable for its users, and thus is responsible for the actions car-
ried out by their users. Inversely, the service-providing organization is liable
for its services. However, some aspects need to be addressed:

• Enforcement and real time checking of contracts established between
different organizations; in fact, the system must be able to check the
satisfaction as well as the correct enforcement of the signed contracts.

• Audit logging and assessment of the different actions: in fact, in large
scale systems, experience has shown that even if the security policy is
consistent (thanks to an off-line verification), violations and abuses (es-
pecially, remote abuse of priveleges) can occur dynamically at runtime.
Hence, we need a mechanism that can detect this kind of dysfunctional
behavior and to notify the concerned parties.

• Handling of mutual suspicion between organizations; no information is
disclosed about local security policies; the organization providing the
web service does not know which user of the other organization requests
the web service, and the organisation requesting the web service does
not know which role performs which activity in the service providing
organization. It is also necessary to detect any abuse of the contract
by a malicious organization.

To deal with these issues, we state that for each WS use, an e-contract
should be negociated between the partner organizations (WS provider and
WS client). This contract must specify precisely the web service functions
and parameters (including the expected quality of service, the liability of
each party, payment, penalties in case of abuse, etc.), and also the security
rules related to the invocation and the execution of the web service. These

13



Figure 1: Modeling Permissions. Figure 2: Modeling prohibitions.

security rules must be checked and enforced at runtime to prevent, or at least
detect any abuse. The security rules can be expressed with a syntax close to
OrBAC (see Section 3.3).

The question that arises now is how to specify e-contracts. Actually, the
most relevant security requirements for contracts are workflows, actions, per-
missions, prohibitions, obligations, time constraints, disputes and sanctions.

To express these requirements, we propose using timed automata [30].
First, permissions (actions that are authorized by the contract clauses) are
simply specified through transitions in the timed automata. For instance, in
Fig. 1, the system can (i.e., has the permission to) execute the action a at
any time and then, behaves like the automaton A.

Second, we distinguish two kinds of prohibitions in e-contracts:

• Implicit prohibitions: the idea is to only specify permissions in the
automata; the states, actions and transitions not represented in the
automata are by essence prohibited because the runtime model checker
will not recognize them.

• Explicit prohibitions : explicit prohibitions can be particularily useful
in the management of decentralized policies / contracts where each
administrator does not have details about the other organizations par-
ticipating in the CII. Moreover, explicit prohibitions can also specify
exceptions or limit the propagation of permissions in case of hierar-
chies. In our model, we specify explicit prohibitions by adding a “fail-
ure state” where the system will be automatically led if a malicious
action is detected. In Fig. 2, as the a action is forbidden, its execu-

14



tion automatically leads to the failure state described by an “unhappy
face”, which automatically triggers an exception carried out locally.

Let us now deal with obligations. Recently, several works have focussed
on the modeling of this access modality [31] [32] [33] [34]. In XACML [35],
obligations are a set of operations that must be fulfilled in conjunction with
an authorization decision (permit or deny). Bettini et al. distinguish be-
tween provisions and obligations [31]. Provisions are conditions that need
to be satisfied or actions that must be performed before a decision is ren-
dered, while obligations are actions that must be fulfilled by either the users
or the system after the decision. Hilty et al. define the OSL, an Obliga-
tion Specification Language, that allows formulating a wide range of usage
control requirements [34]. They differentiate between usage and obligational
formulae. Usage is concerned with operations (e.g., processing, rendering,
execution, management, or distribution) on data that must be protected;
while obligational formulae are conditions on the usage of data, e.g., “delete
document D within 30 days”. An obligational formula becomes an obligation
once a data consumer is obliged to satisfy it, i.e., once the data consumer
has received the data and committed to the condition.

In our vision, obligations are actions that “must” be carried out; other-
wise the concerned entity will be subject to sanctions. Besides that, as every
obligation is also a permission4, obligations will be specified by particular
transitions (in the same way as permissions). However, as obligations are
stronger than permissions, we should add another symbols to capture this
semantics and to distinguish between what is mandatory and what is per-
mitted but not mandatory. Actually, to model obligations, we use transition
time-outs and invariants.

In this respect, an obligation is considered as a simple transition, and if
a maximum delay is assigned to the obligation, a time-out (noted by d in
Fig. 3) is set for the delay. When the obligation is fulfilled, this event resets
the time-out and the system behaves like A1. On the contrary, if the time-
out expires, an exception is raised and the system behaves like A2 (which
can be considered as an exception).

Basically, when an explicit prohibition occurs when an obligation is not
fulfilled, a conflicting situation (e.g., one of the parties does not comply

4A mandatory action should be permitted; in other words, we cannot render mandatory

something that is not permitted.

15



Figure 3: Modeling obligations. Figure 4: Modeling dispute situations.

with the contract clauses) arises, and the automaton automatically makes a
transition to a dispute situation (i.e., to the unhappy state) or triggers an
exception processing (A2 in Fig. 3). Actually, modeling disputes will allow
to not only identify anomalies and violations, but go further by identifying
activities (succession of actions, interactions) that led to these situations, and
finally can automatically lead to the cancelation of the contract. Moreover,
as disputes have different severities and as they are not all subject to the same
sanctions, we use variables (i.e., labels on the unhappy state) to distinguish
the different kinds of disputes as well as the corresponding sanctions (Fig. 4).

Note that once the expected behaviors of the contracting parties are mod-
eled by timed automata, we can verify some security properties and enforce
them at run-time by checking [6] the execution of the system at runtime
according to the scenarios specified by the model. In particular, we can (1)
verify statically if the system can reach a dispute state, (2) maintain an audit
log and perform model-checking during runtime, and (3) notify the concerned
parties in case of contract violation.

This is important in our context where the collaborating organizations are
in mutual suspicion. In fact, as there is no “total confidence” between them,
the security policy of the service-providing organization discards any request
that does not correspond to a signed contract. This is a first level of security.
The second level is enforced by runtime model checking. Hence, even if a
user succeeds in bypassing his organizations security policy and interacts in
a wrong way (accidental or malicious) with another organization (e.g., by

16



using an authorized Web service in a way which is in contradiction with the
signed contract rules), the forbidden interactions are detected and audited
(i.e., logged) at runtime. In the same way, if the providing organization does
not satisfy its obligations, our e-contract model checking will detect and audit
the corresponding misbehavior.

All these issues will be detailed on an example in the next section, where
we present a case study that illustrates how to progressively apply our Poly-
OrBAC framework.

4. Application to an electrical power grid

4.1. The CRUTIAL architecture

In order to easily understand how to apply PolyOrBAC in the context
of CIIs, we first describe the general architecture (Fig. 5) proposed by the
european project CRUTIAL [36] to ensure the protection of interconnected
critical information infrastructures, in particular those used in the context of
electrical power grids, against malicious as well as accidental threats.

Control 

Network

Control 

Network

PLC

Corporate Network

CIS

CIS

Data Historian

CIS

Historian Network

Site A

PLC

CIS

Site B

Site C

CIS

WAN

Telco

Internet

Utility Network

LAN

LAN

Figure 5: General Architecture of a CII.

17



The CII architecture can be seen as a WAN of LANs inter-connected by
dedicated switches, called CIS (Crutial Information Switch). Each LAN, is
composed of logical/physical systems, has its own applications and access
control policy, and proposes its services to other systems. Each LAN belongs
to a facility (e.g., power plant, substation, control center, etc.), and the WAN
interconnects all the facilities belonging to the Critical Infrastructure. The
CII is managed and accessed by different actors and stakeholders (power
generation, transmission and distribution companies, regulation authorities,
communication and computing system providers, brokers, subcontractors,
etc.). More than one LAN can be connected by the same CIS if they are part
of the same organization and located in the same area. In this case, each
LAN is dedicated to a component (e.g., substation), in order to manage a
different access control policy for each component.

Considering the CRUTIAL architecture described above as an example,
since all organizations of the CII are interconnected by CIS, and in order to
provide a controlled cooperation adapted to the CII, each CIS must contain
mechanisms to enforce the local security policy of its organization with re-
spect to external accesses. These policies and mechanisms must allow the
authorized accesses to the resources and prevent the unauthorized accesses
(accidental or malicious ones). In the next subsection we describe one of
the scenarios we considered in the CRUTIAL project. Then, we specify its
WS and we identify the virtual users. Finally, we present the e-contracts
enforcement and runtime checking.

4.2. Electrical Power Grid Architecture and Scenarios

In an electric power grid, one or more electricity generation companies
(each in charge of one or several power plants) is connected to one or more
transmission grids. Each transmission grid (managed by transmission system
operators “TSO”) is composed of transmission substations (monitored by one
national “NCC” per country and several regional control centers “RCC”),
and is connected to one or more distribution grids. Finally each distribu-
tion grid (managed by distribution system operators “DSO”) is composed
of distribution substations (monitored by area control centers “ACC”), and
distributes electricity to subscribers (industrial, commercial and residential
users) over distribution lines [37].

To illustrate the application of PolyOrBAC on the electrical Power grid
CII, we study a practical scenario. This scenario considers the possible cas-
cading effects due to ICT threats to the communication channel among

18



TSO/DSO Control Centers and their substations in emergency conditions
(e.g., line overloads). It is assumed that in emergency conditions, the TSO is
authorized by the DSOs to activate defense plan actions for performing load
shedding activities on the Distribution Grid.

By studying this scenario, we distinguish four important classes of orga-
nizations: Transmission System Control Centres (TS CC) that are managed
by TSOs, Transmission System Substations (TS SS), Sistribution System
Control Centres (DS CC) that are managed by DSOs, and Distribution Sys-
tem Substations (DS SS). Figure 6 details the most important commands
and signals exchanged between these organizations in normal and emergency
situations.

In normal operation, all DS SSs send various signals and measurements
(power, voltage, frequency) to the TS CC via their DS CC (1) and (3). On
the other hand, all TS SSs send various signals and measurements to their
TS CC (2). The TS CC monitors the Electric Power System and, if a critical
situation is detected, elaborates some potentially emergency conditions that
could be remedied with opportune load shedding commands applied to par-
ticular areas of the distribution grid. In order to actuate the defense action,
the TSO asks a DSO to prepare for a possible load shedding up to a certain
power (4). The DSO selects which distribution substations (DS SSs) can
shed the needed load with the less severe disturbance for the users and arms
these substations for a possible upcoming load shedding (5). When a DS SS
receives an arming order from a DSO, it arms the corresponding electrical
component (Monitoring Control and Defence Terminal Unit or MCDTU) and
sends an acknowledgement to the DSO (6). Once the DS CC has received all
the acknowledgements from the DS SS, it sends an acknowledgement to the
TS CC. In parallel, the TS CC sends an order to the TS SS controlling the
distribution area to prepare itself for a possible load shedding in a near future
(7). In case of detection of a real emergency situation, the TS SS sends a
load shedding command to all DS SSs participating to the emergency plan,
and only the previously armed DS SSs will perform load shedding over their
MCDTUs (8). During all the duration of the critical situation, to reduce user
disturbance, the DSO can choose to disarm some DS SSs and arm others.
When the critical situation is solved (i.e., no more load shedding is expected
at short term), the DSO reintegrates the disconnected DS SS.

19



Figure 6: Exchanged commands and signals.

4.3. Electrical Scenario interpretation with PolyOrBAC

4.3.1. Specification of WS and virtual users

In our scenario, we distinguish 4 organizations (TS CC, DS CC, TS SS,
DS SS), and three web services (Table 1).

Table 1: Instanciated Web Services

Service Provider Client

WS1-arming-request DS CC TS CC
WS2-arming-order DS SS DS CC
WS3-prepare-for-LS TS SS TS CC
WS4-Load-Shedding DS SS TS SS

Figure 7 summarizes the different web services, virtual users (representing
remote organizations that can request web services), ws-images (local images
of remote web services that can be invoked), and resources involved in the
execution of this scenario.

20



Figure 7: PolyOrBAC approach applied to the electrical scenario.

We assume that the TSO requests the DS CC to arm its DS SS MCDTUs.
When the TSO activates WS1-Image, the execution of WS1-arming-request is
automatically activated. This access (TSO to WS1-image) is checked accord-
ing to TS CC policy and is granted according to the OrBAC rule described
in table 2, that manages the Access Control for the Arming Request Web
service at the level of the organization that invokes the service (i.e., TS CC).

Table 2: Arming Request OrBAC rules at TS CC

Rules

Permission(TS CC, TSO, DS CC arming request, send, critical situation) ∧

Empower(TS CC, Martin, TSO) ∧

Consider(TS CC, invoke WS1, send) ∧

Use(TS CC, WS1-Image, DS CC arming request) ∧

Hold(TS CC, Martin, invoke WS1, WS1-image, critical situation) ∧

⇒ is-permitted(Martin, invoke WS1, WS1-image)

21



On the DS CC side, WS1-arming-request asks DSO to arm some DS
SS, i.e., to access object WS2-Image. These accesses (virtual-user1 to DSO
display, DSO to WS2-Image) are checked according to DS CC policy and
is granted according to the OrBAC rule described in table 3, managing the
Access Control for both Arming Request and Arming Order Web services at
the level of the organization that provides the arming request service (i.e.,
DS CC).

Table 3: Arming Request/Order OrBAC rules at DS CC

Rules

Permission(DS CC, DSO, DS CC arming order, Send, critical situation) ∧

Empower(DS CC, virtual-user1, DSO) ∧

Consider(DS CC, invoke WS2, Send) ∧

Use(DS CC, WS2-Image, DS CC arming order) ∧

Hold(DS CC, virtual-user1, invoke WS2, WS2-Image, critical situation) ∧

⇒ is-permitted(virtual-user1, invoke WS2, WS2-Image)

When DSO accesses object WS-Image2, WS2-arming-order is automati-
cally activated, then virtual-user2 activates Object-arm-MCDTU in DS SS,
and finally the physical arming command is executed over the physical com-
ponent MCDTU. This access (virtual-user2 to Object-arm-MCDTU) is checked
according to DS SS policy and is granted according to the OrBAC rule
decribed in table 4, managing Access Control for Arming Order web ser-
vice in DS SS. WS3-prepare-for-Load-Shedding, WS4-Load-shedding, WS2-
Disarming and WS1-Restart are negotiated and activated in the same way.
For simplicity, the two last WSs are not included in table 1.

Table 4: Arming Order OrBAC rules at DS SS

Rules

Permission(DS SS, DSO for SS, Access, DS SS Distrib. Circuits, emergency) ∧

Empower(DS SS, virtual-user2(Subject), DSO for SS) ∧

Consider(DS SS, activate(action), Access) ∧

Use(DS SS, object-arm-MCDTU(object), DS SS Distrib. Circuits) ∧

Hold(DS SS, virtual-user2, activate, object-arm-MCDTU, emergency) ∧

⇒ ispermitted(virtual-user2, activate, object-arm-MCDTU)

22



4.3.2. E-contracts enforcement and runtime checking

For each negotiated WS, we specify two automata representing the estab-
lished contract on the WS client and WS provider sides respectively. In this
subsection, we explain how the WS1-arming-request automaton is specified
for each side, and how the WS1 client and provider automata are checked at
runtime by the corresponding CIS. The automata of the other WS are given
in the Annex.

According to the WS1 contract, and as illustrated in Fig. 8, at the TS
CC side (the WS1 client) the WS1 automaton waits for an arming request
invocation (coming from the TSO). When this invocation is intercepted, the
corresponding transition (WS1-arming-request) is activated in the automa-
ton, a timer t is initialized, and the WS1 automaton of TS CC arrives to a
state where it waits for a “WS1-arming-request-ack”. This acknowledgement
should be sent by the DS CC. If the timeout expires without receiving the
acknowledgment from the DS CC, a “WS1-arming-request-error” message
triggers the exception corresponding to this situation. This exception will be
handled by the specific automaton “TS CC-error-handling. Conversely, in
normal situations, when the TS CC receives the “WS1-arming-request-ack”,
its automaton moves to the state where it is ready for an emergency action.

In this state, when the critical situation disappears, the TSO can decide
to disarm the distribution substations that were armed. Then, the TS CC
sends the “WS1-disarming-request” to the DS CC, and waits for the “WS1-
disarming-request-ack” from the DS CC. If the timeout (set to 10 time units
in Fig. 8) expires without receiving the “WS1-disarming-request-ack”, a
“WS1-disarming-request-error” will be sent and then will be handled by the
specific automaton “TS CC-error-handling”.

Let us now analyse how the DS CC WS1 automaton (the WS1 provider
side) reacts to invocations coming from the client side (Fig. 9). Actually,
this automaton is waiting for the “WS1-arming-request” from the TS CC;
when it receives it, a timer is initialized. Then the DS CC is in a state where
it can arm some specific DS SSs. Note that these substations are chosen by
the DSO (using the WS2-arming-order).

If the arming operation is not processed after the expected timeout, a
“WS1-arming-request-error” is sent, and then, is handled by the “DS CC-
error-handling” automaton. If the DS CC is ready for emergency actions, it
sends “WS1-arming-request-ack” and moves to the DS CC armed state. If
the WS1 automaton of the DS CC side receives a “WS1-disarming-request”

23



Figure 8: WS1-arming-request automaton in TS CC.

from the TS CC, the disarming operation is carried out and an acknowledg-
ment (the “WS1-disarming-request-ack”) is sent to the TS CC. In abnormal
situations, if the arming is not processed after the timeout expiration, a
“WS1-disarming-request-error” is sent and handled by the “DS CC-error-
handling” automaton. Note that disarming activity occurs when there is
(2) no emergency situation and (2) no load shedding activity is carried out.
Conversely, restarting activity occurs when (1) a load shedding is already
carried out and (2) emergency situations disapeared.

5. Implementation

In order to illustrate the feasibility of the scenarios investigated in the pre-
vious sections with PolyOrBAC, we have developed a prototype implement-

24



Figure 9: WS1-arming-request automaton in DS CC.

ing and simulating the web services as well as the e-contracts enforcement.
We use a decentralized architecture where each organization is responsible for
its users authentication and locally controls the access to its own resources
and services, according to the WS security architecture (i.e., with PDPs,
PEPs, PAP and PIPs [38]). Basically, after receiving an access request (i.e.,
a web service invocation) from a contracting organization, the provider’s Pol-
icy Enforcement Point (PEP), located in its CIS, sends the request to the
Policy Decision Point (PDP), which evaluates the request and sends back
a response. The response can be either access permitted or denied, with
the appropriate obligations. The PDP comes to a decision after evaluating
the relevant policies. To get the policies, the PDP uses the PAP (Policy
Access Point) to extract the security rules (e.g., Permission(Organization,
Role, View, Activity, Context)). The PDP may also invoke the Policy In-

25



formation Point (PIP) service to retrieve the attribute values related to the
organization, the subject, the web service (resource), or the environment (the
context). This consists in evaluating the associations Empower (org, s, r),
Consider (org, a, activ), Use (org, o, v) and Hold (org, s, a, o, c). The
authorization decision is sent by the PDP to the PEP. The PEP fulfils the
obligations and, based on the authorization decision sent by the PDP, either
permits or denies access.

Actually, for simplicity reasons, we made the choice to simulate the whole
network using OpenVZ, an open software providing virtualization with high
performances (compared to other solutions such as VMware and Xen).

To implement and deploy our architecture, we used the J2EE specifica-
tion, in particular its Java RMI (Remote Method Invocation), Servlet and
Axis technologies. Indeed, to manage and deploy web services, we installed
an Apache Tomcat server and an Apache Axis Web Service Framework on the
machines proposing web services (e.g., DS CC, TS SS and DS SS). Apache
Tomcat provides a classical web server as well as an implementation of Servlet
and JSP containers. Apache axis is an XML based Web Service Framework,
i.e., it allows: (1) deploying web services (using a “Web Service Deployment
Descriptor” (WSDD) xml file), (2) generating “Web Service Deployment
Language” (WSDL) xml files. Moreover, as web service invocations must
be intercepted by the PEP, we decided to deploy a web service on the CIS
to dispatch every incoming and exiting calls; the RMI technology handles
remote communications.

Besides that, OrBAC rules and relationships are expressed in XML files
while Web services are implemented by classes.

Furthermore, JSP is used to implement Web Interfaces and Servlets are
used to manage WS calls as well as interactions with CISs.

To verify that interactions are carried out according to the signed con-
tracts, we implemented a dedicated runtime model checker with UPPAAL, [39]
[40]. UPPAAL automatically converts our automata to XML files that we
used in our Java program. UPPAAL also allows proving that the exchange
protocol can be run according to the contract clauses.

Note that UPPAAL can also be used to verify properties expressed in
a subset of timed Computational Tree Logic (CTL) [41]. In our case, we
can verify if all the possible executions of the system will never lead to a
conflicting situation, which is actually equivalent to verifying the reachabil-
ity property (note that we can also verify the safety and liveness proper-
ties of UPPAAL formulae). These properties are often used in designing a

26



model to perform sanity checks. A reachability property will validate the
basic behavior of the model. For example, the following property “E <>

organization.Dispute” (expressed in CTL) stands for: “it exists at least
one execution where the organization reaches the dispute state”. Inversely,
the property: “A[] not organization.Dispute” means that ”none of the
possible executions will lead the organization to a dispute state”.

6. Conclusions

This paper presents PolyOrBAC, a security framework which meets the
requirements of access control and collaboration of CIIs. Actually, several
works have investigated security in workflow and collaborative systems. How-
ever, up to our knowledge, none of these works have defined an homogeneous
peer-to-peer approach going from the specification to the deployment and
runtime checking. Moreover, none of them have applied it to secure CII.
Dealing with these issues, our PolyOrBAC framework manages collabora-
tion and resources sharing between all organizations of a CII thanks to the
web services technology, while controlling that the interactions between these
organizations are in conformity with their needs and their internal security
policies specified thanks to OrBAC. Moreover, PolyOrBAC supports the en-
forcement, the real-time checking as well as the auditing of the exchanges
that are established between the different organizations participating in a
CII. To check the feasibility of our approach, we also applied PolyOrBAC to
a real electric power grid scenario and we presented details of our implemen-
tation. The functional aspects are implemented by the Java language, while
verification aspects are delegated to a UPPAAL engine.

Our approach can be extended by taking into account availability and
integrity requirements. Availability can be handled by means of obliga-
tion rules, making mandatory to provide enough resources to achieve the
requested activities, even in case of events such as component failures or at-
tacks. For integrity, our approach can be extended to monitor information
flows, and prevent flows from lower criticality tasks to higher criticality tasks,
except when such flows are validated by means of adequate fault-tolerance
mechanisms [42].

Besides that, some recent works have shown how delegation and sepa-
ration of duties can be expressed in OrBAC, especially using the “context”
entity [43]. Other works introduced the recommendation modality and have
shown its importance in the CII field [44]. Our work can naturally be ex-

27



tended to use this expressiveness in order to take into account this kind of
notions.

Finally,note that our work can not only be applied to CIIs but also
to other collaborative systems, especially thoses with mutual suspious con-
straints.

Acknowledgments

This work is partially supported by the European FP6-IST research project
CRUTIAL (CRitical UTility InfrastructurAL Resilience), the European Net-
works of Excellence ReSIST and NewCom+, the LAAS project PolSec and
the Airbus ADCN+ project. We would like to thank Giovanna Dondossola
and Fabrizio Garrone for their contribution to the definition of the case study
considered in this paper.

The authors thank the anonymous reviewers for their constructive re-
marks that helped in improving this paper.

References

[1] S.M. Rinaldi, J.P. Peerenboom, T. K. Kelly, “Identifying, understand-
ing, and analyzing critical infrastructure interdependencies”, IEEE Con-
trol Systems, Control of Complex Networks, vol. 21, no 6, pp. 11–64,
2001.

[2] J. C. Laprie, K. Kanoun and M. Kaâniche, “Modelling Interdependen-
cies Between the Electricity and Information Infrastructures”, SAFE-
COMP, Nuremburg, Germany, Springer, LNCS 4680/2008, pp. 57-67,
2007.

[3] A. Massoud, “North America’s Electricity Infrastructure: Are We Ready
for More Perfect Storms?”, IEEE Security and Privacy 1(5), pp. 19–25,
2003.

[4] A. Abou El Kalam, Y. Deswarte, A. Baina and M. Kaâniche, “Access
Control for Collaborative Systems: A Web Services Based Approach”,
IEEE Intl Conf. on Web Services (ICWS), Salt Lake City (Utah, USA),
pp. 11–64, 9-13 July 2007.

28



[5] A. Baina, A. Abou El Kalam, Y. Deswarte, “A Collaborative Access
Control Framework for Critical Infrastructures”, Proc. of the Critical
Infrastructure Protection II, Springer, M. Papa and S. Shenoi Editors,
pp. 189-201, 2008.

[6] A. Abou El Kalam, Y. Deswarte, “Critical Infrastructures Security Mod-
eling, Enforcement and Runtime Checking”, 3rd International Workshop
on Critical Information Infrastructures Security (CRITIS), October 13-
15, 2008, Frascati, Italy, to appear in Lecture Notes in Computer Sci-
ence, Springer, 2009.

[7] A. Abou El Kalam, Y. Deswarte, “Poly-OrBAC: An Access Control
Model fior Inter-Organizational Web Services”, Handbook of Research
on Semantic Technologies and Web Services, IGI-Global, ISBN: 978-1-
60566-650-1, 2009.

[8] V. Alturi E. Bertino, E. Ferrari, “The specification and enforcement
of authorization constraints in workflow management systems”. ACM

Transactions on Information and System Security, 1999.

[9] V. Atluri N.R. Adam and W-K. Huang, “Modeling and analysis of work-
flows using petri nets”, Journal of Intelligent Information Systems, Spe-
cial Issue on Workflow and Process Management, 1998.

[10] D. Lin, P. Rao, E. Bertino, N. Li, J. Lobo, “Policy decomposition for
collaborative access control”, 13th ACM symposium on Access control
models and technologies. Estes Park, CO, USA, ACM Digital Library,
2008, pp. 103-112.

[11] E. Bertino, S. Jajodia, P. Samarati, “Flexible support for multiple access
control policies”, ACM Transaction on Database Systems, 26(2), 214-
260.

[12] M. Lorch,S. Proctor, R. Lepro, M. Field, S. Shah, “First experiences
using XACML for access control in distributed systems”, ACM workshop
on XML security, Fairfax, Virginia, 2003.

[13] C. Sturm, K.R. Dittrich, P. Ziegler, “An access control mechanism for
P2P collaborations”. international workshop on Data management in
peer to peer systems, Nantes, France: ACM, pp. 51-58.

29



[14] M. Shehab, E. Bertino, A. Ghafoor, “Secure collaboration in mediator-
free environments”, 12th ACM conference on Computer and communi-
cations security. Alexandria, VA, USA, ACM digital Library, pp. 58-67,
2005.

[15] L. Pearlman, V. Welch, I. Foster, C. Kesselman, “A Community Autho-
rization Service for Group Collaboration”, Third International Work-
shop on Policies for Distributed Systems and Networks, IEEE computer
society, pp. 50-59, 2002.

[16] A. Abou El Kalam, Y. Deswarte, “Multi-OrBAC: a new access control
model for distributed, heterogeneous and collaborative systems”, IEEE
Symp. on Systems and Information Security, Sao Paulo, Brazil, 2006.

[17] F. Cuppens, N. Cuppens-Boulahia, C. Coma, “O2O: Virtual Private
Organizations to Manage Security Policy Interoperability”, Second In-
ternational Conference on Information Systems Security (ICISS 2006),
India, December 17-21, 2006.

[18] A. Abou El Kalam, R. El Baida, P. Balbiani and S. Benferhat, F. Cup-
pens, Y. Deswarte, A. Miege, C. Saurel and G. Trouessin, “Organization
Based Access Control”, Proc. of IEEE 4th Intl Workshop on Policies for
Distributed Systems and Networks (POLICY), Lake Come, Italy, (Utah,
USA), pp. 120–134, June 2003.

[19] R. S. Sandhu, E. J. Coyne, H. L. Feinstein and C. E. Youman, “Role-
Based Access Control Models”, IEEE Computer 29(2), pp. 38–47,
February 1996.

[20] D. Ferraiolo, R. S. Sandhu, S. Gavrila, D. Kuhn, and R. Chandramouli,
“A Proposed Standard for Role-Based Access Control”, ACM Transac-
tions on Information and System Security, v 4, n 3, 2001.

[21] W3C, XML, W3C Recommendation, February 2004.

[22] W3C, SOAP, W3C Recommendation, June 2003.

[23] W3C, WSDL, W3C Candidate Recommendation, March 2006.

[24] OASIS, UDDI, UDDI Specifications TC, February 2005.

30



[25] K. Beznosov, Y. Deng, “A Framework for Implementing Role-Based
Access Control Using CORBA Security Service”, 4th ACM Workshop
on Role-Based Access Control, October 28-29, 1999, Fairfax, VA, USA,
pp 19-30.

[26] N. Vuong, G. Smith, Y. Deng, “Managing Security Policies in a Dis-
tributed Environment Using eXtensible Markup Language”, ACM Sym-
posium on Applied Computing, Las Vegas, Nevada, United States, pp
405-411, 2001.

[27] X. Feng, L. Guoyuan, X. Xuzhou, “Role-based Access Control Sys-
tem for Web Services”’, 4th International Conference on Computer and
Information Technology(CIT’04),Wuhan, China,14-16 September 2004,
pp. 357-362 .

[28] K. Leune, W. Van, H. Heuvel, “A Methodology for Developing Role-
Based Access Control to Web-Services”, Infolab Technical Report Series,
no. 11, December 2002.

[29] OASIS, “XACML profile for Role Based Access Control”’, Committee
Draft 01, 13 February 2004.

[30] R. Alur, D. L. Dill, “A theory of Timed Automata”, Theoretical Com-
puter Science, 126(2): 183-235, 1994.

[31] C. Bettini, S. Jajodia, X. S. Wang et D. Wijesekera, “Obligation Moni-
toring in Policy Management”, International Workshop on Policies for
Distributed Systems and Networks (Policy), Monterey, California, 5-7
June 2002, IEEE Computer Society Press, pp. 2-12.

[32] N. Demeanor, N. Delay, E. Lupus, M. Sloan. “The Ponder Policy Speci-
fication Language”, International Workshop on Policies for Distributed
Systems and Networks, Bristol, UK, IEE Computer Society Press, pp.18-
38, 2001.

[33] Q. Ni, E. Bertino, J. Lobo, “An Obligation model bridging access control
policies and privacy policies”, 13th ACM SACMAT, Estes Park, CO,
USA, June 11-13, 2008.

[34] M. Hilty, A. Pretschner, D. Basin, C. Schaefer and T. Walter, “A Policy
Language for Distributed Usage Control”, 12th European Symposium

31



On Research In Computer Security (ESORICS), Dresden, Germany,
September 24 26, 2007.

[35] OASIS, eXtensible Access Control Markup Language TC v2.0, Norma-
tive XACML 2.0 documents.

[36] Verissimo, N.F. Neves, M. Correia, Y. Deswarte, A. Abou El Kalam,
A. Bondavalli, A. Daidone, “The CRUTIAL Architecture for Critical
Information Infrastructures”, in Architecting Dependable Systems V,
Springer, LNCS 5135, 2008, pp. 1-27.

[37] F. Garrone, C. Brasca, D. Cerotti, D. Codetta Raiteri, A. Daidone, G.
Deconinck, S. Donatelli, G. Dondossola, F. Grandoni, M. Kaaniche and
T. Rigole, “Analysis of new control applications”, CRUTIAL project,
Deliverable D2, January 2007.

[38] Organization for the Advancement of Structured Information Standards
(2006). OASIS Web Services Security TC, Web Services Security v1.1
(WS-Security), February 2006.

[39] UPPAAL, tool available at http://www.uppaal.com

[40] K.G. Larsen, P. Pettersson, W. Yi, “UPPAAL in a nutshell”, Journal
of Software Tools for Technology Transfer, 1(1-2): 134-152, 1997.

[41] B. Berard, M. Bidiot, A. Finkel, F. Larousinie, A. Petit, L. Petrucci, Ph.
Schnoebelen, P. McKenzie, Systems and Software Verification, Model
Checking Techniques and Tools, Springer, 2001, ISBN 3-540-41523-8.

[42] E. Totel, J.P. Blanquart, Y. Deswarte and D. Powell, “Supporting mul-
tiple levels of criticality”, 28th IEEE Fault Tolerant Computing Sympo-
sium (FTCS-28), Munich (Germany), pp. 70–79, June 1998.

[43] M. Ben Ghorbel, F. Cuppens, N. Cuppens-Boulahia and A. Bouhoula,
“Managing Delegation in Access Control Models”. 15th International
Conference on Advanced Computing and Communication (ADCOM’07),
Guwahati, India, December 18-21, 2007.

[44] A. Abou El Kalam, P. Balbiani, “A Policy Language for Modelling Rec-
ommendations”, IFIP TC-11 International Information Security Con-
ference, (IFIP SEC 2009), Cyprus, May 18-20, 2009, Springer.

32



Annex

A. WS2-arming-order automata

At the DS CC side, to carry out DS SS arming, the “WS2-arming-order”
is sent to all the DS SS that need to be armed.

Figure 10: WS2-arming-order automaton in DS CC.

A timer is then initialized and the WS2 automaton of DS CC (is in a
state where it) waits for arming acknowledgments (“WS2-arming-order-ack”)
coming from each armed DS SS. If the timeout expired without receiving
the acknowledgments, a “WS2-arming-order-error” is sent and is handled by
the ”DS CC-error-handling” automaton. Conversely, in normal situations,
when the DS CC receives the “WS2-arming-order-ack”, it become ready for

33



emergency actions, and a ”WS1-arming-request-ack” is finally sent back to
the TS CC.

Under certain situations, the DSO may decide to disarm some armed
substations. In that case, it sends a “WS2-disarming-request” to each DS SS
to disarm. Then, the DSCC WS2 automaton waits for the “WS2-disarming-
request-ack” from the DS SS. If the timeout expired without receiving the ac-
knowledgment (“WS2-disarming-request-ack”), a “WS2-disarming-request-
error” is sent and is handled by the corresponding automaton (“DS CC-
error-handling”).

Figure 11: WS2-arming-order automaton in DS SS.

At the DS SS side (Figure 11), the WS2 automaton waits for the “WS2-
arming-order”. When the DS SS arming is carried out, an acknowledgment

34



(“WS2-arming-order-ack”) is sent to the DS CC; the DS SS is now armed.
Afterwards, if the DSSS receives a “WS2-disarming-order”, it performs the
disarming operation and sends back the “WS2-disarming-order-ack” to the
DS CC.

B. WS3-prepare-for-Load-Shedding automata

As indicated in Figure 12, in emergency situations, when the TSO decides
to launch the load shedding activity, he actually sends a prepare-for-LS in-
vocation to the TS CC; the latter invokes “WS3-prepare-for-Load-Shedding”
of the TS SS.

Figure 12: WS3-loadshedding automaton in TS SS.

Afterwards, if the TSO decides to cancel the loadshedding preparation,
he sends a LS-cancellation to the TS CC, which then sends the “WS3-

35



Load-Shedding-cancellation” to the TS SS and waits for the acknowledg-
ment (“WS3-Load-Shedding-cancellation-ack”). At the TS SS side, the WS3
automaton receives the “WS3-prepare-for-LS” synchronization (Fig. 13).

Figure 13: WS3-loadshedding automaton in TS CC.

The load shedding can now be carried out, and the “WS3-ready-for-Load-
Shedding-ack” is sent back to the TS CC. If the TSO decides that the pre-
emergency situation has disapeared, the TSO can request the TS SS to can-
cel the load shedding preparation by sending “WS3-prepare-LS-cancellation”
and the corresponding acknowledgment (“WS3-Load-Shedding-cancellation-
ack”) is sent back to TS CC.

36



C. WS4-load-shedding automata

At the TS SS side, the WS4 automaton (Fig. 14) specifies that when some
specific conditions are fulfilled (e.g., when an emergency situation is detected
by the TS SS), the TS SS can decide to launch the “WS4-loadshedding” on
the armed DS SS.

Figure 14: WS4-load-shedding automaton in TS SS.

From the WS4 point of view, TS SS stays in the same unique state (which
is not true from the point of view of WS3).

At the DS SS side (Fig. 15) , the loadshedding operation is then auto-
matic, and the DS SS stays in the same state (from WS3 point of view).

Figure 15: WS4-loadshedding automaton in DS SS.

37


