
HAL Id: hal-00851761
https://hal.science/hal-00851761v1

Submitted on 6 Oct 2015

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access Control for Collaborative Systems: A Web
Services Based Approach

Anas Abou El Kalam, Yves Deswarte, Amine Baïna, Mohamed Kaâniche

To cite this version:
Anas Abou El Kalam, Yves Deswarte, Amine Baïna, Mohamed Kaâniche. Access Control for Collab-
orative Systems: A Web Services Based Approach. IEEE International Conference on Web Services,
ICWS 2007, Jul 2007, Salt Lake City, UT, United States. pp.1064-1071. �hal-00851761�

https://hal.science/hal-00851761v1
https://hal.archives-ouvertes.fr

Access Control for Collaborative Systems: A Web Services Based Approach

Anas Abou El Kalam Yves Deswarte Amine Baïna Mohamed Kaâniche
ENSI de Bourges-LIFO LAAS-CNRS, Université de Toulouse

anas.abouelkalam@ensi-bourges.fr firstname.familyname@laas.fr

Abstract

Nowadays, systems are more and more open,

distributed and collaborative. In this context, access
control is an important issue that should be studied,
specified and well enforced. This work proposes a new
access control model for collaborative systems:
“PolyOrBAC”. On the one hand, we extend OrBAC
(Organization-Based Access Control Model) to specify
local as well as collaboration access control rules; on
the other hand, we enforce these security policies by
applying web services mechanisms (XML, SOAP,
UDDI and WSDL). We thus present a representative
scenario of secure collaborative applications.
Furthermore, we propose a XACML-based
implementation of PolyOrBAC and we discuss the most
important approaches that emphasize access control in
collaborative environments.

1. Introduction

Collaboration can be defined as a structure of
interactions designed to facilitate the accomplishment
of a specific goal (e.g., product) through people
working together (and responsible for their actions).
While many applications (industry, government)
require efficient processing, the exchange and sharing
of large amounts of data and services, as well as the
openness of collaborative systems generate one of the
most important problems in computer science: how to
improve security without compromising the other
functionalities of the system? Economic and strategic
stakes − in particular those related to security − have
become more and more important.

In this context, a well-founded security study should
first begin by identifying who has access to what, when
and in which conditions? This is what we commonly
call an “access control policy”. The latter is globally
defined in the common criteria as the set of laws, rules
and practices that regulate how an organization
manages, protects, and distributes sensitive
information [1].

Nevertheless, the access control policy can be badly
designed and intentionally or accidentally violated. An
access control model is used to rigorously specify and
reason on the access control policy. It is thus intended
to abstract the policy and to handle its complexity; to
verify its consistency; and to detect and resolve
possible conflicts, in particular when new users or sub-
systems join the collaborative system. However, an
access control model does not specify how the security
policy is implemented. To achieve this aim, we use
technical security mechanisms such as credentials,
cryptographic transformations (e.g., signature,
encryption), access control lists (ACL), firewall rules.

Our major aim in this paper is to define a global
framework (model and mechanisms) for secure
collaborative systems while respecting their
functioning flexibilities. More precisely, we suggest
using OrBAC as well as Web Services (WS)
mechanisms to specify and enforce collaboration
between organizations.

Concerning the model, as OrBAC (Organization-
Based Access Control) expresses security rules only
through abstract entities (organizations, roles, views,
activities and contexts), it can specify a large range of
security policies while respecting the local functioning
of each organization. Moreover, the OrBAC formal
system (based on first-order logic) is useful for
specifying and reasoning about permissions,
prohibitions and obligations [2].

However, OrBAC is not intended to manage
“secure” interactions between the collaborating
subsystems. To achieve this aim, web services
technology provides several mechanisms and standards
that could be interesting in our work.

The remainder of this paper is organized as follows:
Section 2 presents the necessary background to
understand our work. Then, in Section 3 a new access
control framework −called PolyOrBAC− for
specifying and enforcing security in collaborative
systems is presented. Afterwards, Section 4 discusses
some important existing strategies used to secure
collaborative systems. Finally, in Section 5, we draw
out conclusions and perspectives.

2. Background

2.1. Traditional access control models

Classical access control policies and models

(discretionary “DAC” and mandatory access control
“MAC” [3]) are not really adapted to collaborative
systems. For instance, HRU represents the
relationships between the subjects, the objects and the
actions by a matrix M [4]. M(s, o) represents the
“action” that a subject s is allowed to carry out on an
object o. It is thus necessary to enumerate all the triples
(s, o, a) that correspond to permissions defined by the
security policy. Moreover, when new subjects, objects
or actions are added to or removed from the system, it
is necessary to update the policy. Role Based-Access
Control (RBAC) is more flexible. Roles are assigned to
users, permissions are assigned to roles and users
acquire permissions by playing roles [5, 6].
Hierarchical RBAC [7] adds a requirement for
supporting the role hierarchies, while constrained
RBAC [8] enforces the separation of duties. RBAC is
unquestionably suitable for a large range of
organizations. Indeed, if users are added to the system,
only the instances of the relationship between the users
and the roles are updated.

The OrBAC (Organization-based Access Control)
model is an extension of RBAC that details
permissions while remaining implementation
independent. The main idea is to express the security
policy with abstract entities only, and thus to
completely separate the representation of the security
policy from its implementation. Indeed, OrBAC is
based on roles, views, activities (introduced in RBAC,
VBAC [21], TBAC [9, 10]) to structure subjects,
objects and actions.

In the next section, we first summarize OrBAC
(Organization-based access control) and we discuss the
limits of this model. Then, we present the most
relevant Web Services mechanisms for our study.
Finally, in Section 3, to overcome the OrBAC limits
and to cover the particularities of collaborative
systems, we couple an extension of OrBAC with web
services mechanisms. The result is called PolyOrBAC.

2.2. OrBAC (Organization-based access

control)

In OrBAC, an organization is a structured group of

active entities, in which subjects play specific roles. An

activity is a group of one or more actions, a view is a
group of one or more objects, and a context is a
specific situation that conditions the validity of a rule.

Actually, the Role entity is used to structure the link
between the subjects and the organizations (Figure 1).
The relationship Empower (org, r, s) means that org
employs subject s in role r. In the same way, the
objects that satisfy a common property are specified
through views (Figure 2), and activities are used to
abstract actions (Figure 3).

Figure 1: Abstracting subjects.

Figure 2: Abstracting objects.

Figure 3: Abstracting actions.

Security rules have the following form: Permission

(org; r; v; a; c), Obligation (org; r; v; a; c), and
Prohibition (org; r; v; a; c). In the context “c”,
organization “org” grants role “r” the permission (or
the obligation or the prohibition) to perform activity
“a” on view “v”.

As rules are expressed only through abstract entities,
OrBAC is able to specify the security policies of
several collaborating and heterogeneous organizations.

In fact, the same role e.g., “operator” can be played
by several users belonging to different organizations;
the same view e.g., “TechnicalFile” can designate TF-
Table or TF1.xml (according to the organization); and
the same activity “read” could correspond in a

particular organization to a “SELECT” action (if the
organization has a database system) while in another
organization it may specify an OpenXMLfile() action.

Two security levels can be distinguished in OrBAC :
-Abstract level: the security administrator defines

security rules through abstract entities (roles, activities,
views) without worrying about how each organization
implements these entities.

-Concrete level: when a user requests an access,
concrete authorizations are granted (or not) to him
according to the concerned rules, the organization, the
played role, the instantiated view / activity, and the
current parameters.

Figure 4: The OrBAC model.

The derivation of permissions (i.e., instantiation of
security rules) can be formally expressed as follows:
∀org ∈ Org, ∀s ∈ S, ∀α ∈ A, ∀o ∈ O, ∀r∈ R, ∀a∈
A, ∀v∈ V, ∀c∈ C,
Permission (org, r, v, a, c) ∧
Empower (org, s, r) ∧
Consider (org, α, a) ∧
Use (org, o, v) ∧
Hold (org, s, α, o, c)
→ Is permitted(s, α, o)

This rule means:
If a security rule specifies that “in org, role r
can carry out the activity a on the view v
when the context c is True”,
if “in org, r is assigned to subject s”,
if “in org, action α is a part of activity a”,
if “in org object o is part of view v” and,
if “the context c is True for the triple (org, s, α, o)”.
Then subject s is allowed to carry out the action α on
object o.

In our context, OrBAC present several benefits:
- Rules expressiveness: OrBAC defines positive

authorizations (permissions), negative
authorizations (interdictions), obligations, and
constraints.

- Abstraction of the security policy: OrBAC has a
structured and abstracted expression of the policy
(Subjects are abstracted in Roles, Objects in
Views, and Actions in Activities); it also separates
the specification from the implementation of the
security policy. Complexity can thus be well
managed.

- Scalability: OrBAC has no limitation in size or
capacity. It can define an extensible security
policy. It is then easily applicable to large-scale
environment.

- Loose coupling: each sub-system can manage its
own security policy.

- Physical components management: network
segment/physical equipment can be assimilated to
an organization (network, firewall, gateways,
routers, IDS, OS, DBMS, etc).

- Evolvable: a security policy in OrBAC is flexible
and evolvable. It easily handles changes in
organizations.

- User-friendly: the specification, management and
update OrBAC security policy is a little bit
intuitive.

- Standardized: OrBAC has a growing scientific
community. Many research tracks are being
conducted.

However, OrBAC is not really adapted to
collaborative systems. First, OrBAC is not able to
manage collaboration-related aspects. In fact, as
OrBAC security rules have the Permission(org, r, v, a,
c) form, it is not possible to represent rules that involve
several independent organizations, or even,
autonomous sub-organizations of a particular
collaborative system. Moreover, it is impossible (for
the same reason) to associate permissions to users
belonging to other partner-organizations (or to sub-
organizations). As a result, if we can assume that
OrBAC provides a framework for expressing the
security policies of several organizations, it is
unfortunately only adapted to centralized structures
and does not cover the distribution, collaboration and
interoperability needs. Secondly, the translation of the
security policy to access control mechanisms is not
treated in OrBAC. It is thus necessary to describe
suitable architecture, scenario and implementation
(e.g., credential’s generation) of the collaborative
system’s security.

To cover these limitations, we suggest calling on
some mechanisms of the WS technology. The next
sub-section presents the most relevant ones for our
study.

2.3. Web Services-based mechanisms

Web Services (WS) is increasingly considered as a

set of technologies that provide platform-independent
protocols and standards used for exchanging
heterogeneous interoperable data services. Software
applications written in various programming languages
and running on various platforms can use WS to
exchange data over computer networks in a manner
similar to inter-process communication on a single
computer. WS also provide common infrastructure and
services (e.g., middleware) for data access, integration,
provisioning, cataloging and security. These
functionalities are made possible through the use of
open standards, such as:

- XML (Extensible Mark-up Language) creates
“common” information formats and shares both
the format and the data on the Internet/intranets
[10].

- SOAP (Simple Object Access Protocol) acts as
a data transport mechanism to send data
between applications in one or several operating
systems. SOAP specifies how to encode an
HTTP header and an XML file so that a
program in one computer can call a program in
another computer and exchange information
[11].

- WSDL (Web Services Description Language) is
an XML-based language used to describe the
services that a business offers and to provide a
way for individuals and other businesses to
access those services [12].

- UDDI (Universal Description, Discovery, and
Integration) is an XML-based registry/directory
for businesses worldwide, which enables
businesses to list themselves and their services
on the Internet and discover each other [13].

Figure 5: Functioning of web services.

Basically, when a user wants to use a specific WS

(Figure 5), he contacts the UDDI to look for the

WSDL file of the WS, then sends a request to the site
that hosts this service, and finally receives the WSDL
file containing the description of the service as well as
the URL of the hosting site of the WS.

At low levels, data services are represented by the
data storage element (DSE) and data themselves. The
DSE is responsible for saving and retrieving files
to/from local storage (e.g., disk, database). DSE is
accessible via the WS interface, which exposes all the
DSE functionalities (i.e., services virtualization).

Web services (WS) have several benefits that could
be interesting in our context:
- Interoperability: WS support interoperability

between software components from different
platforms.

- Resources sharing: WS are well adapted to web
applications where organizations share their
resources.

- Standardized mechanisms: WS use open protocols
and standards (e.g., HTTP, XML). They can be
used easily with today's Web Interfaces.

- Easiness: a small amount of code is necessary to
develop a WS. Moreover, the execution of a WS
does not necessarily require huge resources.

- Compatibility with OrBAC: it is easy to couple
web services with OrBAC.

3. PolyOrBAC

In this section, we suggest adapting OrBAC as well
as WS mechanisms to specify and enforce secure
collaboration between organizations. The global
framework is called PolyOrBAC. The main idea is:
- Extending OrBAC to be able to express local

access control policies (for each organization) as
well as (collaboration) rules implying several
organizations. In this way, the same rule, for
example Permission(organization, role, activity,
view, context), could concern several internal as
well as external accesses.

- Using existing WS standards to enforce the
collaboration at service and resource levels.

3.1. Scenario of execution

Let us develop a simplified (but representative)

scenario adapted to collaborative systems. We
distinguish two global phases.

3.1.1. First phase publication and negotiation of

collaboration rules as well as the corresponding access
control rules.

First, each organization determines which resources
it will offer to external partners. Web services are then
developed on application servers, and referenced on
the Web Interface (in UDDI) to be accessible to
external users. At this stage, we find in B security rules
such as:
Permission(B, Accountant, Account, Consulting,
Urgency) and instances (of relations) such as:
- Empower(Bob, Accountant, Accountant),
- Consider(B, OpenXMLFile(), Consulting), and
- Use(B, WS1, Account).

Second, when an organization publishes its WS at
the UDDI registry, the other organizations can contact
it to express their profit sharing. In the example below,
organization B offers WS1, and organization A is
interested in using WS1.

Third, organizations A and B negotiate and come to
an agreement concerning the use of WS1.

Fourth, A and B establish a contract and jointly
define security rules concerning the access to WS1,
These security rules are registered – according to an
OrBAC format – in a database containing the Security
policy1.

The steps of this phase are given in Figure 6.

OrgB

(Supplier)

OrgA

(Consumer)

Broker
(UDDI)
Broker
(UDDI)

1. Publication
2. inquiry

3. Negotiation

4. Contract / Rules establishment

PAP

5. Security rule

Figure 6: Mutual negotiation of access rules for distant

services.

For example, if the agreement between A and B is

“users from A have the permission to consult B’s
accounts, B should add the Empower(B, PartnerA,
Accountant) association to its base2. In this notation,
PartnerA means any user from A.

We assume that the security policy database already
contains the rule Permission(B, Accountant, Account,
Consulting, Urgency).

The derivation of the permission (i.e., instantiation
of security rules) mentioned above can be formally

1 In the OASIS/XACML (eXtensible Access Control Markup

Language), this base is called a PAP, for Policy Access Point.
2 We assume that this base already contains the rules mentioned

before.

expressed as follows (Figure 7):
Permission(B, Accountant, Account, Consulting, Urgency) ∧
Empower(B, Bob, Accountant). ∧
Consider(B, OpenXMLFile(), Consulting) ∧
Use(B, WS1, Account) ∧
Hold (B, PartnerA, OpenXMLFile(),WS1, Urgency)
→ Is permitted(PartnerA, OpenXMLFile(), WS1)

Figure 7: Derivation of permissions in PolyOrBAC.

3.1.2. Second phase access to remote/collaboration

services.
At runtime, if a user wants to carry out an activity,

the security-related services check requestor/request
authentication, verify its credentials, make an
authorization decision based on the security policy, and
finally, deny or authorize the access (in some cases,
this access is accompanied with some obligations or
recommendations). In this vision, it is important to
separate authentication from authorization, and access
decision from permissions enforcement.

In our study, we use an AAA (Authentication,
Authorization and Accounting) architecture: the
authorization decision is requested by a requestor
(user) or a resource service, if the security policy
allows this access, an authorization ticket is delivered
to the requestor; the latter presents the ticket with the
authorization context to the resource or service. More
precisely, if a user from “A” (let us note it Alice) wants
to carry out an activity, A is first authenticated. Then,
protection mechanisms of organization A check if the
OrBAC security policy of A allows this activity. We
suppose that this activity contains local as well as
external accesses. Local accesses should be controlled
according to A’s security policy, while remote accesses
should respect the agreements established between
organization “A” and the other organizations
(containing the requested services).

If, for example, Alice’s Activity invokes (among
others) B’s web service WS1, the access to WS1
should be controlled by B’s Policy Enforcement Point
“PEP”, according to: (1) The OrBAC security policy of
B, and (2) the agreement established between A and B
about WS1.

It is important to note that the same (abstract) rule,
e.g., Permission(B, Accountant, Account, Consulting),
can correspond to local as well as collaboration
accesses. In fact, the decision corresponding to local
access can be done according to:
Permission(B, Accountant, Account, Consulting, Urgency) ∧
Empower(B, Bob, Accountant) ∧
Consider(B, SELECT, Consulting) ∧

Use(B, Table1, Account) ∧
Hold (B, Bob, SELECT, Table1, Urgency)
→ Is permitted(Bob, SELECT, Table1)
While the decision corresponding to remote access

can be done according to:
Permission(B, Accountant, Account, Consulting, Urgency) ∧
Empower(B, PartnerA, Accountant) ∧
Consider(B, OpenXMLFile(), Consulting) ∧
Use(B, WS1, Account) ∧

Hold (B, PartnerA, OpenXMLFile(),WS1, Urgency)
→ Is permitted(PartnerA, OpenXMLFile(), WS1)

Let us also remind that the decision of “Which user

from A is associated to PartnerA, and so, authorized to
access to WS1” is done according to the A’s security
policy. In other words, A defines internally instances
such as (Alice, PartnerA), (Jean, PartnerA).
In this way, when Alice is authenticated and authorized
(by A’s policy) to play PartnerA, an XML-based
authorization ticket “T1” is generated (based on the
positive decision) and granted to Alice.

T1 contains the following elements:
- the virtual user played by Alice: “PartnerA”,
- Alice’s organization: “A”,
- the agreement’s (between A and B) ID,
- the requested service: “WS1”,
- the invocated method, e.g., “OpenXMLFile()”,

and
- a timestamp to prevent reply attacks.

Note that T1 is delivered to any user (from A)
allowed to access to WS1 (e.g., Jean). When Alice
presents its request as well as T1 (as a proof) to B, B
extracts the T1’s parameters, and processes the request.
By consulting its security rules, B associates the role
Accountant to the virtual user “PartnerA” (representing
Alice in B) according to Empower(B, PartnerA,
Accountant). The access decision is then done
according to the rule presented in Figure 7.

3.2. WS mechanisms in PolyOrBAC

In our implementation, as we use a WS-based

architecture, messages exchanged (e.g., services)
between A and B are XML files that obey SOAP
protocols. Moreover, PolyOrBAC could be integrated
perfectly into XACML architecture (Figure 8) [15, 16].

In this architecture, an access request arrives at the
Policy Enforcement Point (PEP), the PEP creates an
XACML request and sends it to the Policy Decision
Point (PDP), which evaluates the request and sends
back a response. The response can be either access
permitted or denied, with the appropriate obligations.

The PDP comes to a decision after evaluating the
relevant policies. To get the policies, the PDP uses the
PAP to extract the security rules (e.g.,
Permission(Organization, Role, View, Activity,
Context)). The PDP may also invoke the Policy
Information Point (PIP) service to retrieve the attribute
values related to the organization, the subject, the web
service (resource), or the environment (the context).
This consists in evaluating the associations Empower
(org, s, r), Consider (org, α, a), Use (org, o, v) and
Hold (org, s, α, o, c). The authorization decision
arrived at by the PDP is sent to the PEP. The PEP:

- fulfils the obligations and/or informs the subject
about the recommendations, and,

- based on the authorization decision sent by
PDP, either permits or denies access.

Figure 8: The XACML Architecture.

Figure 9: PolyOrBAC-architecture based on XACML.

Figure 9 describes the components of a PolyOrBAC

implementation based on XACML (the target contains
instances of (Organization, Role, View, Activity).

Policy set

Obligations and/or

recommendations
PolyOrBAC PolicyTarget

Organization

Effect , e.g.,

Is permitted (s, _, o)

PolyOrBAC Rule

e.g., Permission (org,

r, v, a, c)

Conditions , e.g.,

Empower (org, s, r) !

Consider (org, _, a) !

Use (org, o, v) !

Hold (org, s, _, o, c)

Role View Activity

PEP

Policy Enforcement Point

PDP

Policy Decision Point
PIP

Policy Information Point

PAP

Policy Access Point

SubjectOrganization

Web service Environment

Obligations and
recommendations

service

1. Access Request

7. Response

3. Policy

8. Obligation or

recommendations

2. Request

6. Attributes

4. Attributes query

5. Organization

attributes

5. WS

attributes

5. Subject

attributes

5. Context

attributes

3.3. Discussion

PolyOrBAC offers several benefits:

- Peer to peer approach: we use a decentralized
architecture where organizations mutually
negotiate their common rules; each organization is
responsible for its user’s authentication and is
liable for their use of other organizations’ services;
it also controls the access to its own resources and
services.

- Independence: even if all PolyOrBAC rules are
specified according to OrBAC, organizations are
loosely coupled, e.g., each organization keeps its
specific security policy, security objectives,
services, applications, operating system, etc.

- Information non-disclosure: the WS technology
allows communications between organizations
without intimate knowledge of each other's IT
systems; moreover, even if remote accesses are
possible, it is not necessary to know the
hierarchical composition of the other
organizations.

- Extensible structure: the OrBAC extensibility and
the WS standards facilitate the management and
the integration of new organizations (with their
users, data, services, policy, etc.).

In the next section, we address (and compare with
PolyOrBAC) the most important access control models
and mechanisms used for secure collaborative systems.

4. Related work

4.1. RBAC based approaches

Intermezzo [17] is one of the first works that

address security issues in collaborative systems. It
proposes a Role-based language that can be applied to
collaborative settings. In the same logic, RBTM (Role-
Based Trust Management) [14] has modeled
collaboration systems by using role delegations and
role mapping across multiple collaborating
organizations. Typically, each organization can
delegate local roles to users belonging to other
organizations.

However, neither the role mapping nor the
delegation process is intuitive in heterogeneous and
dynamic systems. Moreover, Intermezzo’s work as
well as RBTM, only abstract subject (by roles), while
PolyOrBAC expresses the whole security policy with
abstract entities only.

4.2. O2O: Virtual Private Organizations
Approach

The main concept of O2O (for Organization to

Organization) is Virtual Private Organizations (VPO)
[18]. Actually, if an organization Alice.org wants to
interoperate with Bob.org, each organization defines its
VPO, respectively called A2B (for Alice2Bob) and
B2A. The VPO A2B contains a security policy that
manages how subjects from Alice.org may have access
to Bob.org; and similarly, B2A control accesses of
subjects from Bob.org to Alice.org.

The O2O approach has some limitations. First, O2O
allows a given subject to keep the same role when
accessing remote organizations (the RSSO principle),
while in several real applications, privileges associated
to the same role name can differ from an organization
to another. Second, as a new VPO is created for every
temporal collaboration between two organizations, the
management of the VPO becomes heavy. Moreover,
this VPO is destroyed after the collaboration, and it
will be necessary to recreate it if the same
collaboration is carried out later. Third, as the VPO
A2B and its security policy is defined and
administrated by B, A should know some internal
information about B such as the structure of B, its
roles, hierarchy, etc. Therefore, this approach does not
preserve the organization’s privacy.

4.3. Coalition Based Access Control

CBAC [22] contains three levels of abstraction:

user-object, role and coalition levels. First, a user
requests access to remote object (user-object level) and
the user’s local role is identified (role level). Then,
credentials associated with this role are extracted (role
level) and a request containing the credentials is sent to
the entity handling the requested object (coalition
level). Afterwards, credentials necessary to access this
object are extracted from those associated to the roles.
These credentials are then compared with required
credentials (role level). Finally, access to remote
objects is permitted or denied (user-object level).

The CBAC approach has some limitations. The first
problem mentioned for the O2O approach is also valid
for CBAC. Second, we need to assign identifiers to
different organizations composing the coalition, and an
identifier to the coalition. This implies that there is a
third part organization, responsible for assigning these
identifiers. While in our approach, we prefer a
decentralized architecture. And finally, the separation

between the security policy’s specification and its
implementation is not clear.

Unfortunately, due to space limitation, it is
impossible to discuss all the existing works. But
globally, we can conclude that PolyOrBAC improves
some important points, in particular, PolyOrBAC:
- Completely separates the representation of the

security policy from its implementation;
- Provides a global and homogeneous view of the

security policy;
- Improves the management of the security policy

and reduces considerably its complexity;
- Provides a global framework (security policy and

security mechanisms) while several existing works
deal only with the policy;

- Takes advantage of the WS technology in
implementing the concepts of PolyOrBAC (which
provides interoperability and privacy).

5. Conclusions and perspectives

PolyOrBAC is an extension of OrBAC that enables
a better access control for collaborative systems in
distributed and heterogeneous contexts. In these
systems, users belonging to an organization need to
dynamically access resources controlled by other
organizations. In PolyOrBAC, security rules are
specified only through abstract entities. Moreover, the
same OrBAC security policy can be used for local as
well as remote (collaboration) accesses. In this way,
PolyOrBAC improves the management of the security
policy and reduces considerably its complexity.
Besides, PolyOrBAC uses web services mechanisms
(XML, SOAP, WSDL, UDDI) to implement the
security policy. In addition, we have shown how
PolyOrBAC can be incorporated in a XACML
architecture. The use of WS standards in PolyOrBAC
improves the interoperability and the (secure)
resources sharing, which are crucial points in
collaborative systems. Now, we are looking for
extending the formal system associated to OrBAC, in
particular for detecting and resolving conflicts that
could arise between the security policies associated to
several collaborating systems. We also consider
defining an administration model associated to
PolyOrBAC. Finally, we should study the negotiation
process of collaboration policies as well as the
exchange of credentials. Approaches like those used by
TrustBuilder [19] or Trust-X [20] could be interesting
in our context.

Acknowledgment

This work is partially supported by the French
SATIN ACI and by the European project CRUTIAL.

6. References

[1] Common Criteria for Information Technology
Security Evaluation, v3, Part 1: Introduction and
general model, 79 p., ISO/IEC 15408-1, July 2005.

[2] A. Abou El Kalam, P. Balbiani, S. Benferhat, F.
Cuppens, Y. Deswarte, C. Saurel, “OrBAC”, IEEE 4th
Int. Workshop on Policies for Distributed Systems,
IEEE Computer Society Press, Italy, 4-6 June 2003.

[3] D.E. Bell, L.J. LaPadula, Secure Computer
Systems, MTR 2997, MITRE corp., USA, 1976.

[4] M.A. Harrison, W.L. Ruzzo and J.D. Ullman,
“Protection in Operating Systems”, Communication of
the ACM, 19(8), august 1976, pp. 461-471.

[5] R. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E.
Youman. “Role-based access control models”. IEEE
Computer, 29(2), 1996, pp38–47.

[6] D. Ferraiolo, R. Sandhu, S. Gavrila, D.Kuhn, R.
Chandramouli “A Proposed Standard for Role-Based
Access Control”, ACM Transactions on Information
and System Security, v 4, n° 3, 2001.

[7] R.S. Sandhu, “Role Hierarchies and Constraints for
Lattice-Bases Access Controls”, in 4th ESORICS,
Springer-Verlag, Rome, Italy, September 25-27, 1996.

[8] G. Ahn and R. Sandhu, “Role-Based Authorization
Constraints Specification”, ACM Transactions on
Information and System Security, vol. 3, n° 4, 2000.

[9] J. Vitek, C. Jensen, “A View-Based Access Control
Model for CORBA”, Secure Internet Programming,
LNCS 1603, Springer, 1999.

[10] W3C, “Extensible Markup Language (XML)”,
W3C Recommendation, February 2004.

[11] W3C, “SOAP, Version 1.2” W3C
Recommendation, June 2003.

[12] W3C, “WSDL, Version 2.0”, W3C Candidate
Recommendation, March 2006.

[13] OASIS, “UDDI Specifications TC, Universal
Description”, v3.0.2, February 2005.

[14] N. Li, J.C. Mitchell, W.H. Winsborough, Design
of A Role-based Trust-management Framework, IEEE
Symposium on Security and Privacy, IEEE Computer
Society Press, May 2002. pp. 114-130.

[15] A. Matheus. "How to Declare Access Control
Policies for XML Structured Information Objects using
OASIS" HICSS, v. 7, no. 7, pp. 168a, 2005.

[16] OASIS, XACML Specification V1.1, OASIS:
www.oasis-open.org/committees/xacml/repository/cs-
xacml-specification-1.1.pdf, 24 July 2003.

[17] W. K. Edwards, “Policies and Roles in
Collaborative Applications”. ACM Conference on
Computer Supported Cooperative Work (CSCW),
November 16-20, 1996, Boston, MA, USA 1996.

[18] F. Cuppens, N. Cuppens-Boulahia et C. Coma.
“O2O: Virtual Private Organizations to Manage
Security Policy Interoperability”, 2nd Int. Conference
on Information Systems Security, Calcuta, India, 2006.

[19] T. Yu, M. Winslett, K. Seamons, “Supporting
Structured Credentials and Sensitive Policies through
Interoperable Strategies for Automated Trust
Negotiations”. ACM Transactions and Information
System Security, 6(1), February 2003.

[20] E. Bertino, E. Ferrari, A. Squicciarini, “X-TNL:
An XML Based Language for Trust Negotiations”, 4th
IEEE International Workshop on Policies for
Distributed Systems and Networks, 2003, pp. 81–84.

[21] T. Fink, M. Koch, C. Oancea. “Specification and
Enforcement of Access Control in Heterogeneous
Distributed Applications”. International Conference on
Web Services (ICWS-Europe), 2003, pp. 88-100.

[22] V. Atluri, J. Warner, “Automatic Enforcement of
Access Control Policies Among Dynamic Coalitions”,
Distributed Computing and Internet Technology, 1st
Int. Conference (ICDCIT), 2004, pp. 369-378.

