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ABSTRACT 

This paper describes the different steps in software failure data processing in order to 

monitor the software development and to quantify the operational reliability. Processing 

consists in (a) filtering the raw data in order to keep only those corresponding to software 

failures without duplicate, (b) partitioning of data into sub-sets according for instance to 

failure severity or fault location, (c) performing descriptive analyses, (d) analyzing the trend 

and (e) when possible and needed, applying reliability growth models. These steps are part of 

an overall method experienced at LAAS on several real-life software systems. The goals of 

the paper are twofold: first, present the method and, second, show its benefits through its 

application to data collected on a switching system. 
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1- INTRODUCTION 

This paper addresses software reliability analysis and evaluation from failure data 

collected on the software. It reflects our experience in the field based on processing failure 

data collected on several real-life software systems [Kanoun 1987], [Kaâniche 1990], 

[Kanoun 1991a], [Kanoun 1991b]. Even though each reliability evaluation can be considered 

as a particular case [Troy 1986] due to the diversity of: (a) the nature of the software and the 

corresponding failure data, (b) the development and validation methods adopted, (c) the 

failure data collection organization, (d) the aims of the analysis, etc., our experience allowed 

us to adopt an overall method for software reliability analysis from development to 

operational life. This method, relying on qualitative as well as quantitative analyses, is 

intended to better satisfy the supplier and customer's real needs in the field of software 

reliability.  

The supplier is interested in (a) monitoring the different development activities, (b) 

respecting the delivery delay, (c) predicting when a specified level of reliability would be 

reached (or, at least, checking how well the software satisfies the customer's requirements). 

On the other hand, the customer is interested in getting a reliable software, delivered at 

scheduled time and cost effective. The method we have elaborated helps reaching these aims. 

As discussed in several publications, data collection raises several problems in itself, 

such as the goals and the method of data collection, the type of data to be collected, etc.,  (see 

e.g., [Basili 1984], [Comer 1989]). Even though we agree that it is very important to plan data 

collection from the beginning and to use well defined methods, this topic will not be dealt 

with in this paper due to space limitations. We will concentrate on the processing of failure 

data issued from development and/or operational life. We will address the supplier as well as 

the customer points of view. Emphasis will be put on real-time processing of the data in a 

controlled environment in order to allow efficient and real-time feedback. We will introduce 

the successive operations that have to be performed (in the framework  of the overall method) 

on the collected failure data in order to (a) get valid failure data, (b) manage the evolution of 

the development and (c) evaluate the reliability of the software. Some of the benefits brought 

by this method are illustrated through its application to data collected on a real software 

system. 

The paper is composed of seven sections. Section 2 gives a general overview of the 

overall method we developed and recalls related work allowing to situate the present work 

versus the already existing material including our previous publications on the subject. 

Section 3 details the qualitative analyses that can be performed on the collected data whereas 

Sections 4 and 5 deal with the statistical processing of software data, i.e., trend analysis and 

model application. Section 6 is concerned with processing of real software failure data in 

order to highlight the advantages of the proposed method and the improvement of reliability 

evaluation results. Finally, Section 7 concludes. 

The terminology we shall be using is that defined in [Laprie 1992a]. 
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2- GENERAL OVERVIEW 

The aims of this section are to (a) state the objectives of a reliability study, (b) give a 

quick overview of the overall method (details of the various steps are given in Sections 3 to 

5) and (c) briefly describe the related work. 

2-1- Objectives of a reliability study 

The objectives of a reliability study are numerous and directly related to the considered 

point of view (the supplier or the customer) and the life-cycle phase concerned. They are 

generally expressed in terms of measures.  

When the software is under development, interesting measures are: 

(M1) the evolution of the trend (reliability growth/ decrease) in response to the test and 

debugging effort in order to monitor these activities, 

(M2) the expected number of failures for the following periods of time so as to plan the 

test effort and thus the testing time and the numerical importance of the test team. 

When the software is in operation, two types of measures are useful: 

(M3) from the customer's point of view: the mean time to failure or failure rate (either 

the instantaneous failure rate or the expected residual failure rate in operational 

life) so as to evaluate the reliability of the whole system (hardware and software), 

(M4) from the supplier's point of view: the expected number of failures among all 

installations (or the number of corrections to be introduced in the software) in order 

to estimate the maintenance effort still needed. 

2-2- Overview of the overall reliability analysis and evaluation method 

Figure 1 summarizes the various operations that can be performed on the collected data 

set and the results that may be expected from these operations.  

The collected data may include foreign data (see Section 3-1). Filtering these data 

items is thus needed in order to keep only data related to the software. Depending on the 

objectives of the study, reliability analysis may be performed using this data set or sub-sets of 

it obtained through data partition.  

Several partitions can be accomplished, according to (a) failure severity, (b) fault 

location, (c) the life-cycle phase, (d) type of installation (when the software is installed on 

several systems with different operational profiles for instance), etc. These partitions allow 

more detailed analyses leading to more elaborate results. Two types of analysis may be 

performed on the whole data set or/and on the derived sub-sets: either statistical processing of 

the data  for trend analysis and reliability growth model application or/and descriptive 

analysis. Statistical processing concerns the evolution with respect to time of reliability 

measures such as the time to failure, the number of failures over time, whereas descriptive 

analyses relate to other statistics such as (a) number of faults per kilo-lines of source code, (b) 
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number of faults per release, or (c) combined analyses such as fault location and failure 

severity.  

Collected data

Software

data set

FILTERING

PARTITION

Failure severity

• • • 

Life-cycle phase Faulty component

TREND
ANALYSIS

RELIABILITY GROWTH
MODEL APPLICATION

R3: RELIABILITY MEASURES

R1: DESCRIPTIVE STATISTICS

DATA 
ANALYSIS

R2: RELIABILITY TREND

 

Figure 1: Different steps in reliability analysis and evaluation. 

Measure (M1) stated above is reached by means of trend analyses (results R2 of 

Figure 1) which constitute a major tool for monitoring the development process, they allow 

appreciating the efficiency of testing activities. Measures (M2), (M3) and (M4) are reached 

through application of one or several reliability growth models (results R3 of Figure 1).  

Results R1 of Figure 1 are not directly related to reliability objectives as stated above, 

their aim is mainly to improve knowledge about the software and the corresponding failure 

data. Results R2 relative to trend analyses may constitute the totality of the results of a 

reliability study if the objectives are to monitor development progress. They are also of great 

help for reliability growth models to give better estimations (results R3) since these models 

can be applied to data displaying trend in accordance with their assumptions rather than 

blindly. 

Operations concerning data filtering, partition and analyses are specific to (a) the 

system under study, (b) the way data have been collected, (c) the purpose and the structure of 
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the software, (d) the objectives of the analysis, etc. These operations are thus application 

dependent, hence, we will merely outline the aims of these steps in Section 3. Trend analyses 

and model application are more systematic (i.e., less application dependent); therefore, a 

section is devoted to each of them. 

2-3- Related work 

Many papers consider the different operations introduced above. Few, however, give 

an overall approach and examples of practical application. Examples of descriptive analyses 

are to be found in e.g., [Iyer 1982], [Basili 1984] or [Troy 1985].  Trend tests are studied at a 

theoretical level in [Cox 66], [Ascher 1984], [Gaudoin 1990]. More general results 

concerning trend tests and their use within software reliability analyses are to be found among 

our previous publications, see for instance [Kanoun 1991a]. The definition and application of 

reliability growth models are discussed in many publications, see e.g., [Musa 1987]. 

Application examples on concrete cases are far rarer, because results are often confidential; 

we have however interesting examples of application of reliability growth models in [Currit 

1986], [Musa 1987], [Lyu 1992] for example. 

In this paper, we synthesize our experience concerning processing of software failure 

data. Applications to real software systems following the main steps of the overall method 

can be found in [Kanoun 1987], [Kaâniche 1990], [Kanoun 1991a] for instance. The 

presentation of these main steps is given in [Kanoun 1988] where the role of trend analysis 

during validation was not emphasized, this latter has been published in [Kanoun 1991b]. The 

features of a tool, SoRel, supporting this method, are described in [Kanoun 1993b]. This 

paper is intended to give a more general view about the method including our last 

investigations in the field. It is worth noting that most of the results concerning the 

application considered in Section 6 have not been published yet.  

3- DATA FILTERING, PARTITION AND ANALYSIS 

All these successive operations may not be needed for all reliability studies. For 

instance, if the collected data is entered in a database and checked as it is entered, filtering is 

not needed. Data partition and analysis are performed or not depending on the level of detail 

looked for. 

3-1- Data filtering 

Usually the collected data include reports corresponding to actual software failures or 

to errors detected during software inspection as well as extraneous data such as: false trouble 

reports (e.g., inconsistent data or hardware failures) or duplicated data (i.e., multiple reporting 

of the same failure). It is worth noting that multiple manifestations of the same fault (usually 

called rediscoveries) have to be kept since they correspond to different failures occurring on 

the same installation or not (since they affect the observed reliability). Filtering of the raw 

data is thus needed in order to keep only those corresponding to (a) genuine software faults, 

i.e., faults activated during software execution (software failure data) and/or (b) faults 

detected during design or code inspection.  
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The data filtering activity is time-consuming and cumbersome. It necessitates precise 

knowledge about the system and the software as well as interview of the persons involved in 

software testing and in data collection. When the trouble reports are entered in a database, a 

part of the filtering activity can be automated as in the CREDO system for instance [Cannon 

1991, Chap. 7]. From our experience [Kaâniche 1990] as well those reported in [Basili 1984], 

[Levendel 1990], the ratio between filtered data and raw data ranges around 50%. This step is 

essential since the reliability analysis is carried out on the filtered data; it has to be fulfilled 

carefully. 

Filtering leads to retain two categories of reports: failure reports (FR) issued from 

software execution (either from development or operational life) and trouble reports (TR) 

issued from design and/or code inspection1. FRs (resp. TRs) allow creation of files containing 

data in the form of times to failures or number of failures per unit of time (resp. number of 

troubles reported per unit of time). The choice between one form or the other may be guided 

by the objective of the reliability study (development follow up, maintenance planning or re-

liability evaluation) and the life cycle phase concerned by the study. The use of data in the 

form of "number of failures per unit of time" reduces the impact of very local fluctuations on 

software reliability evaluation. The unit of time is function of the type of system usage as 

well as the number of failures occurring during the considered units of time and it may be 

different for different phases. The subsequent data processing will be carried out on the 

retained data sets or sub-sets derived from data partition.  

3-2- Data partition 

Data partition into sub-sets is needed whenever a more complete analysis is required. 

The most common partitions concern failure severity and software faulty components (i.e., 

fault location). Other partitions may also be carried out according for instance to failure 

occurrence conditions or to the type of hardware installation when the software is in operation 

with several copies installed on different systems.  

Applying reliability growth models to the most severe failures allows for example 

evaluation of the software failure rate corresponding to the most critical behavior. This failure 

rate is generally more significant than the software overall failure rate which may also 

incorporate the failure rate relative to failures that do not have major impact on system 

behavior [Kanoun 1987]. Concerning partition according to the fault location, evaluation of 

the failure rate of the various components allows (a) weighting the influence of each one on 

the whole failure rate and (b) identification of the most (un)reliable ones as done in Section 6. 

3-3- Descriptive analyses 

Descriptive analyses consist in making syntheses of the observed phenomena in the 

form of control charts, tables or pies in order to identify the most significant ones. It may 

                                                
1 Usually only FRs are dealt with. However, due to the importance of design and code inspection in the 

software debugging process, we recommend to process TRs recorded during this phase in the same manner 

as FRs, in order to manage the inspection phase as well [Kanoun 1993a]. 
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consist of simple analyses such as for example: failure distribution among software 

components (new, modified, re-used), the fault typology, or combined analysis such as the 

relationship between (a) failure occurrence conditions and criticality or (b) fault location and 

failure criticality or (c) number of faults in the components and the component size, etc. 

These statistics are very useful, and are commonly used by the companies and organizations 

[Grady 1987], [Ross 1989], [Valette 1988]: accumulation and analysis of information about 

several projects, products and releases allows them to (a) have better insights into their 

products and (b) establish links between their products and the process of developing them. 

4- TREND ANALYSIS 

Reliability growth can be analyzed through the use of trend tests: these tests give a 

better insight into the evolution of the reliability. Only the most used and significant trend 

tests are presented in this section, more complete reviews may be found in [Ascher 1984] or 

[Gaudoin 1990]. The presentation of trend tests is followed by a discussion on how they can 

be used in real situations. Some typical results that can be drawn from trend analysis are 

discussed in the last sub-section. 

4-1- Reliability growth characterization 

Regarding the time to failure, a natural definition of reliability growth is that the 

successive times to failure tend to become larger. Considering the number of failures over 

time, reliability growth is characterized by the fact that the increase in the expected number of 

failures tends to become lower; which means that the curve representing the cumulative 

number of failures is concave, or, equivalently, that the failure intensity is non-increasing. An 

alternative definition allowing for local fluctuations is that the expected number of failures in 

any initial interval is no lower than the expected number of failures in any interval of the 

same length occurring later: this property is known as the subadditive property (see e.g. 

[Hollander 1974]).   

A graphical interpretation of the subadditive property has been derived in 

[Kanoun 1993a] as follows. Let H(x) denote the cumulative number of failures, Ct the portion 

of the curve between 0 and t and Lt the line joining the two ending points of Ct, i.e., the chord 

from the origin to point (t, H(t)) of Ct (Figure 2). Let A[Ct] denote the area delimited by Ct 

and the coordinate axes and A[Lt] denote the area delimited by Lt and the coordinate axes. 

The subadditive property can be stated as: H(x) is subadditive over [0,T] if A[Ct] - A[Lt] ! 0 

for all  

t ! [0,T]. Figure 2 displays an interesting case: Ct is subadditive over [0,T], denoting a global 

reliability growth on [0,T] despite local fluctuations indicated by the changes in the 

concavity. 



 

7 

T

H(x)

Ct

Lt

t

x

0
 

Figure 2: Graphical interpretation of the subadditive property 

From what precedes subadditivity can be seen as a generalization of the concavity: a 

function which is concave is subadditive but the converse is not true. 

4-2- Trend tests 

There are a number of trend tests (either graphical or analytical) which can be used to 

help determine whether the system undergoes reliability growth or reliability decrease. Three 

very simple graphical tests can be used: the plots giving the evolution of the observed (a) 

times to failure, or (b) cumulative number of failures or (c) the number of failures per unit of 

time (i.e., the failure intensity). Among the existing analytical tests our choice goes to the 

Laplace test [Cox 1966] for several reasons stated beneath.  

Detailed presentation, analysis and comparison of several analytical tests (Laplace, 

MIL-HDBK 187, Gnedenko, Spearman and Kendall tests) are carried out in [Gaudoin 1990] 

where it is shown that from a practical point of view, all these tests give similar results in 

their ability to detect reliability trend variation. From the optimality point of view, it is shown 

in this reference that the Laplace test is superior and it is recommended to use it when the 

Non Homogeneous Poisson Process (NHPP) assumption is used (even though its significance 

level is not exact and it is not possible to estimate its power). These results confirm our 

experience on processing real failure data: we have observed the equivalence of the results 

from these various tests and the superiority of the Laplace test.  

The Laplace test consists in calculating the Laplace factor, u(x), for the observation 

period [0,x]. The expression of this factor is given in Annex A. The practical use in the 

context of reliability growth is: 

• negative values indicate a decreasing failure intensity (i.e., reliability growth), 

• positive values suggest an increasing failure intensity (i.e., reliability decrease), 

• null values indicate stable reliability (reliability is neither increasing nor 

decreasing).  

These practical values are deduced from the significance levels associated with the statistics; 

for example, for a significance level of 5%, values oscillating between -2 and +2 indicate 

stable reliability. 
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In addition, there is a link between the Laplace test and the subadditive property 

[Kanoun 1993a]: the sign of the Laplace factor when calculated from the number of failures 

per unit of time, indicates in fact whether the cumulative number of failures is subadditive or 

not (see Annex A). As a direct consequence, the Laplace factor may be used in order to 

identify local fluctuations which are typical of experimental data; this is made clear in the 

next sub-section. 

4-3- Local and global trends 

Let us consider the plot of the Laplace factor as indicated on Figure 3 where u(k) is 

evaluated step by step (at each unit of time or after each failure), ignoring for the time being 

the comments on the figure concerning local and global trends. If we change the origin of the 

considered interval, and let the observation interval start at TL1, u(k) becomes negative over 

the whole (remaining) interval. It is noteworthy that the change in the origin does not result in 

a simple translation: removal of failure data from 0 to TL1 underlines the local variations and 

amplifies as thus the Laplace factor variation, however the points of trend change are 

preserved. This topic will be illustrated in Section 6 on real data. 
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Figure 3: Laplace factor and local fluctuation 

From a pragmatic point of view, i.e., using the Laplace factor as a trend indicator, the 

above remarks enable local and global trends to be defined as: 

• negative (resp. positive) values of the Laplace factor indicate global reliability 

growth (resp. global reliability decrease) over an interval, 

• decreasing (resp. increasing) values of the Laplace factor over a sub-interval 

indicate local reliability growth (resp. local reliability decrease) over this sub-

interval. 

Figure 4 summarizes some typical situations of trend evolution and shows the link 

between the cumulative number of failures, the failure intensity and the Laplace factor 

evolution. In real situations, we use the Laplace test to analyze the trend considering the sign 
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of its factor as well as the evolution of this factor with time as it enables both local and global 

trends to be identified "at a glance". 

4-4- Typical results that can be drawn from trend analyses 

Trend tests enable to draw attention to problems that might otherwise not be noticed 

until too late, and to solve these problems as early as possible. They cannot replace the 

interpretation of someone who knows the software that the data are related to, as well as the 

development process and the user environment. In the following, three typical situations are 

outlined. 

Reliability decrease at the beginning of a new activity such as (a) start of a new life 

cycle phase, (b) changes in the test sets within the same phase, (c) addition of new users or 

(d) activation of the system according to a different profile of use, etc., is generally expected 

and is considered as a normal situation (see e.g., [Kenney 1992]). Reliability decrease may 

also result from regression faults. Trend tests allow this kind of behavior to be noticed. If the 

period of decrease seems long, one has to pay attention and, in some situations, if it keeps 

decreasing this can point out some problems within the software: the analysis of the reasons 

of this decrease as well as the nature of the activated faults is of prime importance in such 

situations. Such analysis may help in the decision to re-examine the corresponding piece of 

software. 
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Figure 4: Cumulative number of failures, failure intensity, Laplace factor  and trend evolution 
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Reliability growth after reliability decrease is usually welcomed since it indicates that, 

after first faults removal, the corresponding activity reveals less and less faults. When 

calendar time is used, mainly in operational life, sudden reliability growth may result from a 

period of time during which the system is less used or is not used at all; it may also result 

from the fact that some failures are not recorded. When such situation is noticed, one has to 

be very careful and, more important, an examination of the reasons of this sudden increase is 

essential. 

Stable reliability with almost no failures indicates that the corresponding activity has 

reached a "saturation": application of the corresponding set of tests does not reveal new 

faults, or the corrective actions performed are of no perceptible effect on reliability. One has 

either to stop testing or to introduce new sets of tests or to proceed to the next phase. More 

generally, it is recommended to continue to apply a test set as long as it exhibits reliability 

growth and to stop its application when stable reliability is reached. As a consequence, in real 

situations, the fact that stable reliability is not reached may lead the validation team (as well 

as the manager) to take the decision to continue testing before software delivery since it will 

be more efficient to continue testing and remove faults. 

5- MODEL APPLICATION 

Several models have been developed during the last twenty years, and all the 

practitioners agree on the fact that no particular reliability growth model is superior in 

assessing software behavior for all software systems in any circumstances. More recently, 

methods for improving model performance have been developed. Among these methods, we 

have the linear combination model approach [Lyu 1992], the recalibration technique 

[Brocklehurst 1992] and our approach based on trend analysis, first used in [Kanoun 87], 

[Kanoun 1988] and [Kanoun 1991a] and presented in this paper.  

Our objectives in this section are to (a) analyze the relevance of reliability growth 

models in software reliability assessment according to the life-cycle phase considered and (b) 

show how to use trend test results and reliability growth models in combination in order to 

improve the model performance. We will not present the fifty already existing reliability 

models which can be found in the literature neither address the problems of parameter 

estimation and validation criteria. These items may be found for example in [Musa 1987] or 

[Xie 1991].  

However, in order to ease the comprehension of Section 6, a brief description of the 

models that are used is given in Annex B. 

5-1- Relevance of reliability growth models 

Application of reliability growth models to a particular real-world software enables to 

(a) evaluate software reliability during validation, in order to manage the delays and ensure 

that the software meets its reliability requirements, and (b) assess the software reliability in 

operation, in order to estimate the overall system dependability. Estimation of the number of 

failures that will occur the next period of time is useful in planning maintenance effort; 
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during development, due to the frequent changes in the environment of use, one can only 

expect very short term estimations. 

The relevance of the measures obtained from reliability growth model application 

varies with the considered life-cycle phase, for instance: 

• application of reliability growth models during early stages of the validation is not 

convincing: when the observed times to failure are of the order of magnitude of 

minutes or hours, the predictions for the mean time to failure performed from such 

data can hardly exceed minutes or hours… which is so distant of any expected 

reasonable reliability and is thus not very helpful; in this case, software validation 

should be guided by trend analyses as shown in the previous section, 

• when the program under validation becomes more reliable, the times to failure may 

be large and the application of reliability growth models is more convincing 

particularly when the software is activated under operational profile, 

• when the software is in operation, on multiple installations, the results are usually 

of high relevance since we have true statistical failure data (see e.g. [Adams 1984], 

[Kanoun 1987] for examples of such studies).  

5-2- Reliability growth models and trend analysis 

Applying blindly reliability growth models may lead to non realistic results when the 

trend displayed by the data differs from the one assumed by the  model. However, if they are 

applied to data displaying trend in accordance with their assumptions, results may be 

improved considerably as shown in our previous publications. This difficulty results from the 

fact that the already existing reliability growth models only allow two types of behavior to be 

modeled: (a) decreasing failure intensity (i.e. reliability growth) or (b) increasing failure 

intensity prior to undergoing decreasing failure intensity. Thanks to trend analyses, failure 

data can be partitioned according to their trend and reliability growth models can be selected 

as follows: 

• in case of reliability growth (situation A of Figure 4), most of the existing 

reliability growth models can be applied, 

• when the failure data exhibit reliability decrease followed by reliability growth 

(situation C of Figure 4), an S-Shaped model [Ohba 1984] can be applied, 

• when stable reliability is noticed (situation D of Figure 4), a constant failure 

intensity model can be applied (HPP model): reliability growth models are in fact 

not needed. 

The idea of partitioning data into subsets according to trend has already been 

considered in [Tohma 1989] but in an empirical way: the Laplace test tells where to do it. 

5-3- How to use reliability growth models according to trend in real time? 

Models can be applied either in a retrodictive way (the aim is to reproduce the 

observed behavior based on the observed failure data) or in a predictive way (the aim is then 

to predict future behavior based on the observed failure data). In a predictive situation, 
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statements have to be made regarding the future reliability of a software and we can only 

make use of the information available at that time. A trend test carried out on the available 

data helps in choosing the reliability growth model(s) to be applied and the subset of data to 

which this (or these) model(s) will be applied. 

The models are applied as long as the environmental conditions remain significantly 

unchanged (no major changes in the testing strategy or in the specifications, no new system 

installation with different operational profile…). In fact even in these situations, reliability 

decrease may be noticed. Initially, one can consider that it is due to a local random fluctuation 

and that reliability will increase some time in the near future:  predictions are still made 

without partitioning data. If reliability keeps decreasing, one has to find out why and new 

predictions may be made by partitioning data into subsets according to the new trend 

displayed by the data. 

If a significant change in the development or operational conditions takes place, great 

care is needed since local reliability trend changes may result, leading to erroneous 

predictions: 

• if there is insufficient evidence that a different phase in the program's reliability 

evolution has been reached, application of reliability growth models can be 

continued, 

• if there is an obvious reliability decrease, reliability growth models application has 

to be stopped until a new reliability growth period is reached again; the observed 

failure data have to be partitioned according to the new trend.  

6- CASE STUDY 

TROPICO R-4096 is an Electronic Switching System (ESS) allowing connection of 

4096 subscribers2. The data regarding software faults detected and removed are recorded in 

appropriate failure reports (FR). Collected data have been filtered as they were entered in the 

database: the 211 FRs we received from TELEBRAS-CPqD, the Brazilian 

telecommunication company, correspond to genuine software faults that have been removed. 

These 211 FRs have been recorded over 32 units of time including the end of validation (8 

units of time, 77 FRs) and the beginning of operation (24 units of time, 134 FRs) during 

which 42 ESSs were installed progressively.  

Due to space limitation, we cannot illustrate all the different aspects presented in the 

previous sections. We will limit ourselves to the following: we will first analyze the trend for 

the whole data set and then we concentrate on operational reliability. Since several functions 

are fulfilled by the software, we will consider the associated components in order to evaluate 

their reliability as well. Maintenance planning will then be addressed. 

                                                
2 The reliability of its predecessor, the TROPICO R-1500, has been studied in [Kanoun 1991a] 
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6-1-Software decomposition 

 The software is decomposed into four components corresponding to the four main 

functions that are: (a) telephony, including all modules providing switching, (b) defense, 

including all on-line testing and reconfiguration mechanisms, (c) interface, including all 

interfaces with local devices (memories, terminals, alarms, etc.), and (d) management, 

including programs allowing communication with external devices. 

For this purpose, the failure data is partitioned into four sub-sets according to these 

components. Figure 5 gives the size of the various components as well as the number of 

corrections carried out on each of them during operational life. It is worth noting that the sum 

of the number of corrections in operation (146) is higher than the number of corrections 

performed on the whole software in operation (134). This is due to the fact that 8 failures led 

to modify more than one component: these components are thus not totally independent, 

however dependent faults amount only to 6%. 

 

 Size (kilo-bytes) # corrections 

Telephony  75  41 

Defense  101  47 

Interface  112  40 

Management  44  18 

Total  332  146 

Figure 5: Size and number of corrections in operation for the various components 

6-2- Trend analysis 

Figure 6 plots the Laplace factor for the whole data set when considering all the 

installed ESSs. Between time units 4 and 6 reliability decrease took place as a result of 

changes in the nature of tests within the validation phase: new parts of programs have been 

activated. The software has been put into operation before observing a noticeable reliability 

growth. It can be seen that reliability growth took place only during operational life. 

Evaluating the Laplace factor for FRs relative only to operation leads to Figure 7b. Figure 7b 

shows reliability fluctuation from time unit 14 up to 24 which was not evident when 

considering the whole data set. This confirms the fact that removal of a part of the data 

corresponding to reliability decrease (i.e., positive Laplace factor) leads to (a) negative values 

of Laplace factor and (b) amplifies the variation in the trend (see § 4-3). This fluctuation is 

mainly due to the installation of 40 ESSs during this period. Note that on Figure 7a, the 

considered unit of time has been divided by 4 in order to obtain more precise information.  

Taking into account the number of installations during operation and considering an 

average system (i.e., dividing the observed failure intensity by the number of installations in 

service during the corresponding unit of time) leads to Figure 8. It is worth noting that the 

curve of Figure 8 is smooth compared to that of Figure 7b. Reliability fluctuation between 14 

and 17 results from the introduction of 6 ESSs. Notice that reliability growth tends to be 

regular from time unit 17. This behavior is also observed for the four components as shown in 

Figure 9 where the Laplace factor is displayed for the various components (considering an 
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average system also). Figure 9 shows that all the components exercised reliability fluctuation 

between 14 and 16  and that Management was more sensible to this fluctuation.  

6-3- Reliability growth model application 

We will first adopt the customer viewpoint by addressing measure M3 of § 2-1, which 

leads to estimate the residual failure rate of the software in operation. This will be achieved 

through the application of the Hyperexponential model to data corresponding to an average 

system. Then, we will adopt the supplier viewpoint by addressing measure M4 of § 2-1, 

which leads to estimate the number of failures expected to occur during the next period of 

time on all the installed systems in order to plan maintenance.  

6-3-1- Software and component residual  failure rates  

The results of the trend analyses evidence regularity over the last 15 units of time 

(Figures 7 and 8). These results guide the model application. The residual failure rate of the 

software is evaluated from the Hyperexponential model which will be applied to the whole 

software and to the components using failure data observed during the last 15 units of time. 

Results of application of the Hyperexponential model to each component separately are 

displayed in Figure 10 which gives the observed and the estimated failure intensities. Notice 

that the failure intensity evolution is quite different: reliability was improved faster for 

Telephony and Management, which also seem to be the most unreliable at the beginning. 
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Figure 6: Laplace factor for all the installed systems and for the whole data set 
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Figure 7: Laplace factors for all the installed systems for validation and operational phases 
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Figure 8: Laplace factors for an average system 

Defense and Interface had lower failure intensity at the beginning and since they 

exercised reduced improvement they become less reliable at the end. Interface seems to have 

been debugged later leading to a greater failure intensity at the end of the considered period. 

These results are confirmed by the values of the residual failure rates issued from model 

application and given in Figure 11:  Interface has the highest failure rate whereas Telephony 

has the lowest one. 

The Interface component deserves the following comment: reliability decrease at time 

units 19 and 30 showed in Figure 10 is not identified by the Laplace factor since they are 

masked by the global reliability growth. 
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Figure 9: Laplace factor for software components 
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Figure 10: Failure intensities observed and estimated by the Hyperexponential model 
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Telephony 2.85 10
-6

/h 

Defense 6.47 10
-6

/h 

Interface 2.76 10
-5

/h 

Management 4.79 10
-6

/h 

Sum 4.17 10
-5

/h 

Figure 11: Residual failure rates evaluated by the Hyperexponential model 

Figure 12 gives the results obtained from (a) direct application of the Hyperexponential 

model to the whole data set and (b) the sum of the failure intensities of Figure 10. This figure 

deserves the following remarks: 

• evaluation of the whole failure intensity masks the real evolution of the failure 

intensities of the various components, 

• direct application and summation lead to very close results, however the failure 

intensity obtained by summation is slightly higher, which is due to the dependency 

of the various components and to the precision of the results,  

• the residual failure rate derived from direct application of the Hyperexponential 

model is 4.53 10
-5

/h which is to be compared to that obtained by summing over the 

residual failure rates of the four components (4.17 10
-5

/h), these results are 

coherent. 

 

!

0

5.0E-4

1.0E-3

1.5E-3

2.0E-3

2.5E-3

3.0E-3

3.5E-3

17 19 21 23 25 27 29 31

Failure intensity estimated by the hyperexponential model

failure intensities of the components

estimated by the hyperexponential model

Observed failure intensity

 

Figure 12: Failure intensities observed and estimated by the Hyperexponential model 

This failure rate may be regarded as high when compared to other systems, however 

this has to be moderated by the fact that the severity of failures are not distinguished, it 

includes failures with minor consequences as well. 
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6-3-2- Maintenance planning 

In the previous section, we adopted the customer point of view and we evaluated the 

failure intensity and the residual failure rate in operation for an average system. We are now 

addressing the supplier (more precisely the maintainer) point of view and we will use the 

reliability growth models in order to help maintenance decisions. For this purpose, we 

consider data collected from all the installed systems.  

Figures 6 and 7 indicate global reliability growth over the operational life and suggest 

application of models with decreasing failure intensity: we will use the Hyperexponential and 

the Exponential models for data pertaining to operation. However, the results of an S-Shaped 

model will be presented in order to allow for comparison and to highlight the advantage of 

using trend analysis prior to model application. We will use failure data observed during units 

of time 9 to 19 in order to predict the number of failures that will occur during the rest of the 

observation period. Results are displayed in Figure 13: as expected, the Hyperexponential and 

the Exponential models give good results whereas the S-Shaped model is very optimistic. The 

Hyperexponential and the Exponential models predict respectively 37 and 33 failures for 

period 20-32 whereas the S-Shaped model predicts only 9 (these values are to be compared to 

34 which is the observed number of failures during this period). 
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Exponential

Hyperexponential

prediction

observed
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# failures  Exponential Hyperexponential S-Shaped Observed 

from 20 to 32 33 37 9 34 

Figure 13: Cumulative number of failures observed and estimated by the models using 

operational data set 

However, Figure 6 suggests application of the S-Shaped model from the beginning in 

order to include the trend change (around 5 to 9) which is more in kept with its assumptions. 

Results are displayed in Figure 14: predictions improvement is significant.  
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What precedes shows how much utilization of trend test results can improve the 

predictions; moreover, several models based on different assumptions applied on periods of 

time which may be different (one is a subset of the other) give equivalent results. 
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Figure 14: Cumulative number of failures estimated by the S-Shaped model using the whole 

data set 

7- CONCLUSION 

We have presented a method enabling analysis and evaluation of software reliability. 

We have presented the various steps in analyzing data collection on the software and put 

emphasis on their aims and the results that can be expected from each step. Application to 

failure data collected on an ESS highlighted the benefits of such analyses. This method has 

already proved its worth to evaluate reliability of several real-life software systems, the 

characteristics of which are given in Figure 15. It has evolved all along our experience and we 

think that it is now mature enough to be integrated into the software quality control process 

allowing thus for quantified aspects. 

 

System Languages Volume Observation Phases # Systems # FR and/or CR 
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Val. / Op. 
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TROPICO-R 
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Val. / Op. 

 

15 

 

461 FR/CR 

TROPICO-R 

4096 

 

Assembler 
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32 months 

 

Val. / Op. 

 

42 

 

211 FR/CR 

 

Telecommunication 

Equipment 

 

PLM-86 

 

5 105 inst. 

 

16 months 

 

Val. 

 

4 

 

2150 FR 



 

20 

 

Work station 

 

various 

 

-- 

 

4 years 

 

Op. 

 

1 
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FR: failure report  CR: correction report       Val.: validation        Op.: operation 

Figure 15: Characteristics of some real-life software systems whose reliability has been 

evaluated using the method presented in this paper 
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ANNEX A: LAPLACE FACTOR 

The Laplace test [Cox 1966] consists of calculating the Laplace factor, u(T), for the 

observation period [0, T]. When expressed in terms of times to failure, the Laplace factor is: 

u(T) = Erreur!!  (A1) 

where:  "
j
 is the time to failure j counted from system restart after failure j-1  

 N[T] the number of failures in [0,T] 

Following the method outlined in [Cox 1966], we have derived [Kanoun 1991a] the 

expression of the Laplace factor in terms of failures per unit of time: 

u(k) = Erreur!!  (A2) 

where n(i) is the number of failures during the i-th unit of time  

Relation (A2) can also be written as a function of the cumulative number of failures  

N(k) = Erreur!!; elementary manipulations lead to: 

u(k) = -  Erreur!!  (A3) 

It is worth noting that the numerator of u(k) is nothing else than (A[Ck] - A[Lk]) (see  

§ 4-1) which is the difference of areas between the curve plotting the cumulative number of 

failures and the chord joining the origin and the current cumulative number of failures. 

Therefore, testing for the sign of u(k) is indeed testing for the sign of (A[Ck] - A[Lk]). This 

shows that the Laplace indicator is directly related to the subadditive property. 
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ANNEX B: RELIABILITY GROWTH MODELS 

The failure intensity of the Hyperexponential model [Laprie 84], [Laprie 91] is given by: 

h(t) = Erreur!!   with 0 " # " 1, #+Erreur!!=1  

h(t) is non-increasing with time. $inf corresponds to the residual failure rate. This model 

admits as special cases: 

• the stable reliability situation when (a) $sup = $inf , or  (b) # = 0 or #;—  = 0, 

• a failure intensity tending asymptotically towards zero: $inf = 0.  

The failure intensity of the Exponential model [Goel 1979] is given by: 

h(t) = a b e-bt       a, b > 0 

h(t) is decreasing  from h(0) = ab to zero.  

The failure intensity of the S-Shaped model [Yamada 1983] is given by: 

h(t) = a b2 t e-bt      a, b > 0 

h(t) is increasing and then decreasing denoting reliability decrease before reliability growth. 

The trend changes at point t = 1/b (which corresponds to the inflexion point of the cumulative 

number of failures). 

Figure A1 gives the evolution of these failures intensities in time. 
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Figure A1: Typical failure intensity for  the Hyperexponential, the Exponential and  

the S-Shaped models 
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