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SOME POINTS ON VERVAAT’S TRANSFORM OF BROWNIAN

BRIDGES AND BROWNIAN MOTION

TITUS LUPU

Abstract. In a recent work J. Pitman and W. Tang defined the Vervaat’s
transform for a Brownian bridge with two different endpoints and for a Brow-
nian motion between times 0 and 1. They proved some path decomposition
properties for these Vervaat’s transforms and raised open questions on their
semi-martingale decomposition. In this paper we give an alternative proof for
the path decomposition and answer the open questions.

1. Introduction

Given a continuous function f on [0, 1] and τ(f) the first time it attains its
minimum, Pitman and Tang define in [2] the Vervaat’s transform of f as:

V (f)(t) := f(τ(f) + t mod 1) + f(1)1{t+τ(f)≥1} − f(τ(f))

They apply this transform to the following three cases:

• (i) a Brownian bridge (Bλ,br
t )0≤t≤1 from 0 to λ with λ < 0

• (ii) a Brownian bridge (Bλ,br
t )0≤t≤1 from 0 to λ with λ > 0

• (iii) a Brownian path (Bt)0≤t≤1

For the case (i) they show the following path decomposition: given Z a r.v. on
(0, 1) with distribution:

|λ|√
2πt(1− t)3

exp

(
− λ2t

2(1− t)

)
10<t<1dt

V (Bλ,br) can be decomposed as a positive Brownian excursion on [0, Z] and a first
passage bridge from 0 to λ on [Z, 1], independent conditionally on Z. The proof of
the decomposition studies first the case of bridges of random walks then takes the
weak limit. In case (ii) there is a similar decomposition derived from case (i) by
time reversal: first a time-reversed first passage bridge from λ to 0 then a positive
excursion above level λ. Further Pitman and Tang prove that in all three cases,
the Vervaat transformed paths are semi-martingales, identify the decomposition
in local martingale and finite variation process in case (i) and leave as an open
question the decomposition in case (ii) and (iii).

In this paper we give an other proof of the path decomposition of V (Bλ,br) and
identify the semi-martingale decomposition of Vervaat transformed paths in cases
(ii) and (iii).

2. Alternative proof of path decomposition of a Vervaat’s

transform of a Brownian bridge with arbitrary endpoints

Let λ < 0. Our proof of path decomposition of V (Bλ,br) relies on the decompo-
sition of bridges at their minimum, similar to the decomposition at the maximum
that appears in [3]. Let pT (x, y) be the heat kernel

pT (x, y) =
1√
2πT

exp

(
− (y − x)2

2T

)
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Let P
T
0,λ the law of the Brownian bridge from 0 to λ of length T and for y < x

let P
Ty
x the law of the Brownian path starting from x until the first time it hits

y. Given a distribution Q on paths, Q∧ will denote its image by time reversal.
Given Q and Q′ two distributions on paths, Q◦Q′ will be the distribution obtained
by concatenating two independent paths, one following the distribution Q and the
other the distribution Q′. According to corollary 3 in [3]:

∫ +∞

0

dT pT (0, λ)P
T
0,λ = 2

∫ λ

−∞

dy P
Ty

0 ◦ PTy∧
λ

P
Ty

0 can be decomposed as:

P
Ty

0 = P
Ty−λ

0 ◦ PTy

y−λ

Thus:

(1)

∫ +∞

0

dT pT (0, λ)P
T
0,λ = 2

∫ λ

−∞

dy P
Ty−λ

0 ◦ PTy

y−λ ◦ PTy∧
λ

We extend the definition of Vervaat’s transform to continuous path with finite but
arbitrary life-time: Given a continuous function f on [0, T ] and τ(f) the first time
it attains its minimum, define:

V (f)(t) := f(τ(f) + t mod T ) + f(T )1{t+τ(f)≥T} − f(τ(f))

From identity (1) one gets:
∫ +∞

0

dT pT (0, λ)V∗(P
T
0,λ) = 2

∫ λ

−∞

dy PT0∧
λ−y ◦ PT0

λ−y ◦ P
Tλ

0

= 2

(∫ +∞

0

dy PT0∧
y ◦ PT0

y

)
◦ PTλ

0

(2)

For bridges from 0 to 0 identity (2) becomes:
∫ +∞

0

dT pT (0, 0)V∗(P
T
0,0) = 2

∫ +∞

0

dy PT0∧
y ◦ PT0

y

Let QT
0,0 be the law of positive Brownian excursion of length T (bridge of Bessel 3

from 0 to 0). According to Vervaat’s result ([5]), V∗(P
T
0,0) = QT

0,0. Thus

2

∫ +∞

0

dy PT0∧
y ◦ PT0

y =

∫ +∞

0

dT pT (0, 0)Q
T
0,0

By injecting the above identity in (2) one gets:

(3)

∫ +∞

0

dT pT (0, λ)V∗(P
T
0,λ) =

(∫ +∞

0

ds ps(0, 0)Q
s
0,0

)
◦ PTλ

0

By disintegrating in (3) with respect to the life-time of paths, on gets that V∗(P
T
0,λ)

is a concatenation of an excursion and a first passage bridge.
Let 1t>0ffp,|λ|(t) dt be the distribution of the first hitting time of level λ for a

Brownian motion staring from 0.

ffp,|λ|(t) =
|λ|√
2πt3

exp

(
−λ2

2t

)

From (3) follows that the distribution of the point of split Z between the excursion
and the first passage bridge in V∗(P

1
0,λ) is:

pt(0, 0)ffp,|λ|(1− t)

p1(0, λ)
10<t<1dt =

|λ|√
2πt(1− t)3

exp

(
− λ2t

2(1− t)

)
10<t<1dt
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3. Semi-martingale decomposition of the Vervaat’s transform of a

bridge with positive endpoint

Let λ > 0. The transformed bridge (V (Bλ,br)t)0≤t≤1 can be decomposed in a
time-reversed first passage bridge from λ to 0 and a positive excursion above λ. Let

Ẑ be the position of the split between the two. The density of the distribution of

Ẑ on (0, 1) is given by:

f
Ẑ
(t) =

λ√
2π(1− t)t3

exp

(
−λ2(1− t)

2t

)
10<t<1dt

Let (Rt)t≥0 be a Bessel 3 process starting from 0. We will show that for any
t ∈ [0, 1), the law of (V (Bλ,br)s)0≤s≤t is absolutely continuous with respect to the
law of (Rs)0≤s≤t, identify the corresponding density Dλ

t , and deduce by applying
Girsanov’s theorem the semi-martingale decomposition of (V (Bλ,br)t)0≤t≤1.

For x, y > 0, denote

q̃t(x, y) :=
1

xy
√
2πt

(
exp

(
− (y − x)2

2t

)
− exp

(
− (y + x)2

2t

))

q̃t(x, y)y
2 dy is the semi-group of Bessel 3. Let

q̃t(0, y) = lim
x→0+

q̃t(x, y) =
2√
2πt3

exp

(
−y2

2t

)
=

2

y
ffp,y(t)

q̃t(0, 0) =
2√
2πt3

For x, y ≥ 0, let Qt
x,y be the law of the bridge of Bessel 3 from x to y of length t.

The first passage bridge from x to 0 of length t of the Brownian motion has the law
Qt

x,0 ([1]). Let

θλt := sup{s ∈ [0, t]|Rs ≤ λ}
If Rt ≤ λ then θλt = t. The density Dλ

t will be expressed as a deterministic function
of t, Rt and θλt .

Lemma 1. On the event Rt > λ, the joint distribution of (RT , θ
λ
T ) is:

q̃t(0, y)
ffp,y−λ(t− s)ffp,λ(s)

ffp,y(t)
10<s<t ds 1y>λy

2 dy =

2y2(y − λ)λ

π
√
(t− s)3s3

exp

(
− (y − λ)2

2(t− s)
− λ2

2s

)
10<s<t ds 1y>λ dy

Conditionally on Rt > λ, the value of Rt and of θλt , the paths (Rs)0≤s≤θλ
t

and

(Rθλ
t −s−λ)0≤s≤t−θλ

t
are independent and follow the law Q

θλ
t

0,λ respectively Q
t−θλ

t

0,Rt−λ.

Proof. Let y > λ. Conditionally on Rt = y, (Rt−s)0≤s≤t is a Brownian first passage
bridge from y to 0 and t−θλt is the first time it hits λ. Thus conditionally on Rt = y,
t− θλt is distributed according:

ffp,y−λ(s)ffp,λ(t− s)

ffp,y(t)
10<s<t ds

Moreover conditionally on Rt = y and on the value of θλt , (Rt−s)0≤s≤t−θλ
t
and

(Rθλ
t −s)0≤s≤θλ

t
are two independent Brownian first passage bridges, from y to λ

and from λ to 0. �

3



Proposition 2. For any t ∈ [0, 1), the law of (V (Bλ,br)s)0≤s≤t is absolutely con-

tinuous with respect to the law of (Rs)0≤s≤t. The corresponding density is:

Dλ
t =

exp
(

λ2

2

)

2Rt

∫ 1

t

ds√
2π(1− s)(s− t)

(
exp

(
− (Rt − λ)2

2(s− t)

)
− exp

(
− (Rt + λ)2

2(s− t)

))

+1Rt>λ

(1− θλt )(Rt − λ)√
(1− t)3Rt

exp

(
λ2

2

)
exp

(
− (Rt − λ)2

2(1− t)

)

:=Fλ(t, Rt, θ
λ
t )

Proof. Observe that as as stochastic process, (Dλ
t )0≤t<1 is continuous and in par-

ticular there is no discontinuity as Rt crosses the level λ.
Let t ∈ (0, 1). We will decompose the density Dλ

t as sum of two parts: Dλ
t =

D
1,λ
t + D

2,λ
t , D1,λ

t accounting for the situation Ẑ > t and D
1,λ
t for the situation

Ẑ < t. On the event Rt < λ, we will have Dλ
t = D

1,λ
t .

Conditionally on Ẑ > t and on the position of V (Bλ,br)t, the paths (V (Bλ,br)s)0≤s≤t

is a Bessel 3 bridge from 0 to V (Bλ,br)t, i.e. these are the same conditional laws as

the laws of (Rs)0≤s≤t conditioned on the value of Rt. Conditionally on Ẑ > t and

on the value of Ẑ, the distribution of V (Bλ,br)t is:

q̃t(0, y)q̃Ẑ−t
(y, λ)

q̃
Ẑ
(0, λ)

1y>0 y
2dy

Let

D
1,λ
t :=

∫ 1

t

q̃s−t(Rt, λ)

q̃s(0, λ)
f
Ẑ
(s) ds =

exp
(

λ2

2

)

2Rt

∫ 1

t

ds√
2π(1− s)(s− t)

(
exp

(
− (RT − λ)2

2(s− T )

)
− exp

(
− (Rt + λ)2

2(s− t)

))

Then for any measurable bounded functional Φ on paths:

E

[
D

1,λ
t Φ((Rs)0≤s≤t)

]
= E

[
Φ((V (Bλ,br)s)0≤s≤t)1Ẑ>T

]

Next we consider the case Ẑ < t. Conditionally on Ẑ < t and the position of

Ẑ and V (Bλ,br)t, the paths (V (Bλ,br)s)0≤s≤Ẑ
and (V (Bλ,br)

Ẑ+s
− λ)0≤s≤t−Ẑ

are

independent and follow the law QẐ
0,λ respectively Qt−Ẑ

0,V (Bλ,br)t−λ
. These are the

same conditional laws as in lemma 1. On the event Ẑ < t, the joint distribution of

(V (Bλ,br)t, Ẑ) is:

f
Ẑ
(s)

q̃t−s(0, y − λ)q̃1−t(y − λ, 0)

q̃1−s(0, 0)
1y>λ (y − λ)2dy 10<s<t ds

Let

D
2,λ
t =1Rt>λ

f
Ẑ
(θλt )

q̃t−θλ
t
(0, Rt − λ)q̃1−t(Rt − λ, 0)

q̃1−θλ
t
(0, 0)

(Rt − λ)2

q̃t(0, Rt)
ffp,Rt−λ(t− θλt )ffp,λ(θ

λ
t )

ffp,Rt
(t)

R2
t

=1Rt>λ

(1 − θλt )(Rt − λ)√
(1 − t)3RT

exp

(
λ2

2

)
exp

(
− (Rt − λ)2

2(1− T )

)

By construction, for any Φ measurable bounded function on R
2:

E

[
D

2,λ
t Φ(Rt, θ

λ
t )
]
= E

[
Φ(V (Bλ,br)t, Ẑ)1Ẑ<t

]
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Because of the equality of conditional laws, for any measurable bounded functional
Φ on paths:

E

[
D

2,λ
t Φ((Rs)0≤s≤t)

]
= E

[
Φ((V (Bλ,br)s)0≤s≤t)1Ẑ<t

]

�

Lemma 3. For any t ∈ (0, 1) and a ≥ 0:
∫ 1

t

ds√
(1− s)(s− t)

exp

(
− a

s− t

)
=

√
π

∫ +∞

a
1−t

e−u du√
u

Proof. With the change of variables z :=
1− s

1− t
we get

∫ 1

t

ds√
(1− s)(s− t)

exp

(
− a

s− t

)
=

∫ 1

0

dz√
z(1− z)

exp

(
− a

(1− t)z

)

For x ≥ 0 let:

ϕ(x) :=

∫ 1

0

dz√
z(1− z)

exp
(
−x

z

)

With the change of variables v = z−1 we get:

ϕ(x) =

∫ +∞

1

dv

v
√
v − 1

e−xv

Differentiating with respect to x we get:

ϕ′(x) =−
∫ +∞

1

dv√
v − 1

e−xv = −e−x

∫ +∞

0

dv√
v
e−xv

=− e−x

√
x

∫ +∞

0

dv√
v
e−v = −

√
π
e−x

√
x

Moreover ϕ satisfies the border condition ϕ(+∞) = 0. Thus

ϕ(x) =
√
π

∫ +∞

x

e−u du√
u

�

Let

F 1,λ(t, y) :=
1

2
√
2y

exp

(
λ2

2

)∫ (y+λ)2

2(1−t)

(y−λ)2

2(1−t)

e−u du√
u

F 2,λ(t, y) :=
(y − λ)√
(1− t)3y

exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)

According to lemma 3:

Fλ(t, y, θ) = F 1,λ(t, y) + (1− θ)(0 ∨ F 2,λ(t, y))

F 2,λ is C1. F 1,λ and the partial derivative ∂1F
1,λ are continuous as functions of

two variables. Yet ∂2F
1,λ(t, y) is not defined at y = λ:

∂2F
1,λ(t, λ+)− ∂2F

1,λ(t, λ−) = − 1√
1− tλ

exp

(
λ2

2

)

∂2F
λ(t, λ+, θ)− ∂2F

λ(t,λ−, θ)

=∂2F
1,λ(t, λ+)− ∂2F

1,λ(t, λ−) + (1− θ)∂2F
2,λ(t, λ)

=
(t− θ)√
(1− t)3λ

exp

(
λ2

2

)
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For t > 0 let:

Wt := Rt −
∫ t

0

ds

Rs

(Wt)t≥0 is a standard Brownian motion starting from 0, predictable with respect
the filtration of (Rt)t≥0.

Lemma 4. For all t ∈ [0, 1):

Dλ
t = 1 +

∫ t

0

∂2F
λ(s,Rs, θ

λ
s ) dWs

Proof. One can not just apply Ito’s formula to Fλ(t, Rt, θ
λ
t ) because (θλt )t≥0 is a

process that has jumps.
One can check that F 2,λ and F 1,λ outside {y = λ} satisfy the PDE:

1

2
∂2,2F (t, y) +

1

y
∂2F (t, y) + ∂1F (t, y) = 0

Let (Lλ
t (R))t≥0 be the local time at level λ of (Rt)t≥0. Applying Ito-Tanaka’s

formula, and taking in account the discontinuity of partial derivatives ∂2 at level
y = λ, we get:

F 1,λ(t, Rt) = 1 +

∫ t

0

∂2F
1,λ(s,Rs) dWs −

1

λ
exp

(
λ2

2

)∫ t

0

1√
1− s

dLλ
s (R)

0 ∨ F 2,λ(t, Rt) =

∫ t

0

1Rs>λ∂2F
2,λ(s,Rs) dWs +

1

λ
exp

(
λ2

2

)∫ t

0

1√
(1− s)3

dLλ
s (R)

(1− θλt ) is constant on the intervals of time where 0∨ F 2,λ(t, Rt) is positive. From
theorem 4.2, section V I.4, [4], follows that:

(1 − θλt )(0 ∨ F 2,λ(t, Rt))

=

∫ t

0

1Rs>λ(1 − θλs )∂2F
2,λ(s,Rs) dWs +

1

λ
exp

(
λ2

2

)∫ t

0

(1 − θλs )√
(1− s)3

dLλ
s (R)

=

∫ t

0

1Rs>λ(1 − θλs )∂2F
2,λ(s,Rs) dWs +

1

λ
exp

(
λ2

2

)∫ t

0

1√
1− s

dLλ
s (R)

on the support of dLλ
s (R), (1 − θλs ) being equal to s. Finally

F 1,λ(t, Rt) + (1 − θλt )(0 ∨ F 2,λ(t, Rt))

= 1 +

∫ t

0

(∂2F
1,λ(s,Rs) + (1− θλs )∂2F

2,λ(s,Rs)) dWs

which finishes the proof. �

Proposition 5. For t ∈ (0, 1), let:

θ̃
λ,br
t := sup{s ∈ [0, t]|V (Bλ,br)s ≤ λ}

Then the process
(
V (Bλ,br)t −

∫ t

0

ds

V (Bλ,br)s
−
∫ t

0

∂2F
λ

Fλ
(s, V (Bλ,br)s, θ̃

λ,br
s ) ds

)

0≤t≤1

is a standard Brownian motion.

Proof. For t ∈ [0, 1), let

Xt := V (Bλ,br)t −
∫ t

0

ds

V (Bλ,br)s
6



The law of (Xs)0≤s≤t is absolutely continuous with respect to the law of (Ws)0≤s≤t,
with density Dλ

t . From lemma 4 follows that

[log(Dλ),W ]t =

∫ t

0

∂2F
λ

Fλ
(s,Rs, θ

λ
s ) ds

From Girsanov’s theorem follows that the process:

Xt −
∫ t

0

∂2F
λ

Fλ
(s, V (Bλ,br)s, θ̃

λ,br
s ) ds

is a Brownian motion. �

4. Semi-martingale decomposition of the Vervaat’s transform of a

Brownian path

In this section we consider (V (B)t)0≤t≤1 the Vervaat’s transform of a Brownian
motion on [0, 1]. By definition, V (B)1 = B1. A.s. there is ε > 0 such that for all
t ∈ (0, ε), V (B)t > 0. Let

T̃0 := inf{t ∈ (0, 1]|V (B)t = 0}

Then P(T̃0 ≤ 1) =
1

2
and more precisely {T̃0 ≤ 1} = {V (B)1 ≤ 0}. Conditionally

on T̃0 ≤ 1, T̃0 follows the arcsine law 10<t<1
dt

π
√

t(1− t)
. Conditionally on T̃0 ≤ 1

and on the value of T̃0, (V (B)t)0≤t≤T̃0
has the law QT̃0

0,0 and is independent from

(V (B)t)T̃0≤t≤1. The joint law of (V (B)1, T̃0) on the event T̃0 ≤ 1 is:

1λ<0 dλ√
2π

exp

(
−λ2

2

) |λ|√
2πt(1− t)3

exp

(
− λ2t

2(1− t)

)
10<t<1dt

Thus the law of V (B)1 conditionally on T̃0 is:

(4)
|λ|

1− T̃0

exp

(
− λ2

2(1− T̃0)

)
1λ<0 dλ

For the semi-martingale decomposition of (V (B)t)0≤t≤1 we will split the task in
two: the decomposition of (V (B)t)0≤t≤T̃0

and the decomposition of (V (B)t)T̃0≤t≤1.

We will start with the latter. Let (M̃t)t≥0 be the process:

M̃t := min
[0,t]

V (B)

Lemma 6. Conditionally on the value of T̃0,(
V (B)t +

∫ t

T̃0

V (B)s − M̃s

1− s
ds

)

T̃0≤t≤1

is a Brownian motion

Proof. The value of T̃0 is considered as fixed. Let (B′
t)t≥0 be a Brownian motion

starting from 0 and

M ′
t := min

[0,t]
B′

For any t ∈ [T̃0, 1), the law of (V (B)s)T̃0≤t≤t
is absolutely continuous with respect

to the law of (B′
s)0≤s≤t−T̃0

. The corresponding density is:

(5)

∫ M ′

t−T̃0

−∞

ffp,B′

t−T̃0
−λ(1− t)

ffp,|λ|(1− T̃0)

|λ|
1− T̃0

exp

(
− λ2

2(1− T̃0)

)
dλ

7



In above expression we integrate with respect to the density (4) the function:

1λ<M ′

t−T̃0

ffp,B′

t−T̃0
−λ(1− t)

ffp,|λ|(1− T̃0)

which is the density corresponding to a Brownian first passage bridge from 0 to λ

of length 1− T̃0. (5) rewrites as:

√
1− T̃0

(1− t)3

∫ M ′

t−T̃0

−∞

(B′
t−T̃0

− λ) exp

(
−
(B′

t−T̃0
− λ)2

2(1− t)

)
dλ

=

√
1− T̃0

1− t
exp

(
−
(B′

t−T̃0
−M ′

t−T̃0
)2

2(1− t)

)

Applying Girsanov’s theorem, we get the result of the lemma. �

Next we will deal with the semi-martingale decomposition of (V (B)
t∧T̃0

)0≤t≤1.
As an auxiliary problem we will study first the semi-martingale decomposition of
a process (ξt)t≥0 defined as follows: with probability 1

2 , ξ is a Bessel 3 process

starting from 0. For t ∈ (0, 1), with infinitesimal probability dt

2π
√

t(1−t)
, ξ is a

positive excursion of length t, absorbed at 0 after time t. For any t ∈ (0, 1), the
law of (V (B)

s∧T̃0
)0≤s≤s is absolutely continuous with respect the law of (ξs)0≤s≤t.

Lemma 7. Let

T
ξ
0 := inf{t > 0|ξt = 0}

Let

Jt(y) :=

∫

t≤s≤1

ds

π
√

s(1− s)

q̃s−t(0, y)

q̃s(0, 0)

J̇t(y) :=

∫

t≤s≤1

ds

π(s− t)
√
s(1− s)

q̃s−t(0, y)

q̃s(0, 0)

The process

(Yt)t≥0 :=

(
ξt −

∫ t∧T
ξ
0

0

ds

ξs
+

∫ t∧T
ξ
0 ∧1

0

ξsJ̇s(ξs)

1 + Js(ξs)
ds

)

t≥0

is a Brownian motion with respect the filtration of ξ, stopped at time T
ξ
0 .

Proof. We would like to emphasize that T
ξ
0 is a stopping time for ξ but not for

process Y .
Let ε ∈ (0, 1). We introduce (Bε

t )t≥0 a Brownian motion with the starting point
Bε

0 having the same distribution as ξ
ε∧T

ξ
0
. Let µε be the density of this distribution

on (0,+∞) (total mass < 1).

µε(x) =
q̃ε(0, x)x

2

2
(1 + Jε(x))

Let T ε
0 be the first time Bε hits 0. For any tε, the law of (ξs)0≤s≤t is absolutely

continuous with respect the law (Bε
(s−ε)∧T ε

0
)ε≤s≤t. The corresponding density is:

8



D
ε
t =1Bε

0=0 +
q̃ε(0, B

ε
0)B

ε2
0 q̃T ε

0
(0, Bε

0)

q̃T ε
0 +ε(0, 0)2π

√
T ε
0 (1− T ε

0 )µε(Bε
0)ffp,Bε

0
(T ε

0 )
1T ε

0 ≤t−ε,Bε
0>0

+
1T ε

0 >t−ε

µε(Bε
0)B

ε
0B

ε
t−εq̃t−ε(Bε

0 , B
ε
t−ε)

× q̃ε(0, B
ε
0)B

ε2
0 q̃t−ε(B

ε
0 , B

ε
t−ε)B

ε2
t−ε

2

×
(
1 +

∫ 1

t

ds

π
√
s(1 − s)

q̃t−s(0, B
ε
t−ε)

q̃s(0, 0)

)

=1Bε
0=0 +

q̃ε(0, B
ε
0)B

ε
0

µε(Bε
0)π
√

T ε
0 (1− T ε

0 )q̃T ε
0 +ε(0, 0)

1T ε
0 ≤t−ε,Bε

0>0

+
1T ε

0>t−εq̃ε(0, B
ε
0)B

ε
0B

ε
t−ε

2µε(Bε
0)

×
(
1 + Jt(B

ε
t−ε)

)

(Dε
t )t≥0 seen as time dependent process is continuous. In particular there is no

discontinuity at T ε
0 . This follows from that fact that as y tends to 0, the convolution

kernel
y

2
q̃u(0, y) 1u>0 du

is an approximation to the identity. Since for t ∈ (0, 1)

∂Jt(y)

∂y
= −yJ̇t(y)

applying Girsanov’s theorem we get that (Yt)t≥ε is a continuous martingale rela-

tively the filtration of (ξt)t≥ε with quadratic variation (t − ε) ∧ (T ξ
0 − ε)+. Since

this holds for all ε sufficiently small, this implies the lemma. �

We introduce the functionals F (t, γ) and Ḟ (t, γ) where t is a time and γ a
continuous path:

F (t, γ) :=
2√
2π

∫ +∞

0

Fλ(t, γ(t), sup{s ∈ [0, t]|γ(s) ≤ λ}) exp
(
−λ2

2

)
dλ

Ḟ (t, γ) :=
2√
2π

∫ +∞

0

∂2F
λ(t, γ(t), sup{s ∈ [0, t]|γ(s) ≤ λ}) exp

(
−λ2

2

)
dλ

For any t ∈ (0, 1), the law of (V (B)
s∧T̃0

)0≤s≤s is absolutely continuous with respect

the law of (ξs)0≤s≤t with density

(6) Dt = 1
T

ξ
0 ≤t

+
F (t, ξ) + Jt(ξt)

1 + Jt(ξt)
1
T

ξ
0 >t

Lemma 8. There is a positive function c(t) bounded on intervals of form [0, 1− ε],
such that for all λ > 0, y > 0, θ ≤ t ∈ [0, 1):

Fλ(t, y, θ) ≤ c(t) exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)

Proof. Fλ(t, y, θ) ≤ F 1,λ(t, y) + 1y>λF2(t, y). For y > λ:

F2(t, y) ≤
1√

(1− t)3
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)

For F 1,λ(t, y) we have the inequality

F 1,λ(t, y) ≤ 1

2
√
2y

exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)∫ (y+λ)2

2(1−t)

(y−λ)2

2(1−t)

du√
u

=
2√

(1− t)

min(y, λ)

y
exp

(
λ2

2

)
exp

(
− (y − λ)2

2(1− t)

)

9
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Lemma 9. For t ∈ [0, 1):

[F (·, ξ), ξ]t =
∫ t∧T

ξ
0

0

Ḟ (s, ξ) ds

Proof. It clear that the quadratic variation [F (·, ξ), ξ]t does not increase for t ≥ T
ξ
0 .

We need only to show that for a Bessel 3 process (Rt)t≥0

(7) [F (·, R), R]t =

∫ t

0

Ḟ (s,R) ds

Indeed, given any T ∈ (0, 1) and t ∈ [0, T ), the law of (ξs)0≤s≤t on the event T ξ
0 > T

is absolutely continuous with respect the law of (Rs)0≤s≤t.
For any λ > 0 (Fλ(t, Rt, θ

λ
t )0≤t<1 is a positive martingale with mean 1. Applying

Fubini’s theorem, we get that (F (t, R))0≤t<1 is a positive martingale with mean 1.
Let (Wt)t≥0 be the Brownian motion martingale part of (Rt)t≥0. To prove (7) we
need only to show that the process

(8)

(
F (t, R)Wt −

∫ t

0

Ḟ (s,R) ds

)

0≤t<1

is a (true) martingale. Lemma 4 ensures that for any λ > 0 the process

(9)

(
Fλ(t, Rt, θ

λ
t )Wt −

∫ t

0

∂2F
λ(s,Rs, θ

λ
s ) ds

)

0≤t<1

is a local martingale. Moreover from the bound of lemma 8 follows that (Fλ(t, Rt, θ
λ
t ))0≤t<1

is a square integrable martingale and

E

[∫ t

0

∂2F
λ(s,Rs, θ

λ
s )

2 ds

]
=E

[
Fλ(t, Rt, θ

λ
t )

2
]

≤c(t)2 exp
(
λ2
)
E

[
exp

(
− (Rt − λ)2

(1− t)

)]

Thus

E

[∣∣∣∣F
λ(t, Rt, θ

λ
t )Wt −

∫ t

0

∂2F
λ(s,Rs, θ

λ
s ) ds

∣∣∣∣
]
≤ 2

√
tE

[∫ t

0

∂2F
λ(s,Rs, θ

λ
s )

2 ds

] 1
2

≤ 2
√
tc(t) exp

(
λ2

2

)
E

[
exp

(
− (Rt − λ)2

(1− t)

)] 1
2

It follows that for any λ > 0, the local martingale (9) is a true martingale and the ex-

pectation of its absolute value is integrable with respect
2√
2π

exp

(
−λ2

2

)
1λ>0 dλ.

By Fubini’s theorem, it follows that (8) is a true martingale. �

Proposition 10. The process
(
V (B)t−

∫ t∧T̃0

0

ds

V (B)s
+

∫ t∧T̃0

0

Ḟ (s, V (B)) + V (B)sJ̇s(V (B)s)

F (s, V (B)) + Js(V (B)s)
ds

+

∫

T̃0≤s≤t

V (B)s − M̃s

1− s
ds

)

0≤t≤1

is a Brownian motion.

10



Proof. The density process (Dt)0≤t≤1 given by (6) is time-continuous. In particular

it follows from lemma 8 that on the event T ξ
0 < 1, as t converges to T

ξ
0 from below

and ξt converges to 0, F (t, ξ) remains bounded. Besides Jt(ξt) tends to +∞ at T ξ
0 .

Hence

lim
t→T

ξ
0

F (t, ξ) + Jt(ξt)

1 + Jt(ξt)
= 1

and Dt is continuous as T
ξ
0 .

Using the semi-martingale decomposition of (ξt)t≥0 given by lemma 7, applying
the Girsanov’s theorem together with lemma 9 we get that the process
(
V (B)

t∧T̃0
−
∫ t∧T̃0

0

ds

V (B)s
+

∫ t∧T̃0

0

Ḟ (s, V (B)) + V (B)sJ̇s(V (B)s)

F (s, V (B)) + Js(V (B)s)
ds

)

t≥0

is a martingale with quadratic variation t ∧ T̃0. Lemma 6 describes the semi-

martingale decomposition of V (B) after the stopping time T̃0. �
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