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GEODESIC COMPLETENESS FOR SOBOLEV Hs-METRICS

ON THE DIFFEOMORPHISMS GROUP OF THE CIRCLE

JOACHIM ESCHER AND BORIS KOLEV

Abstract. We prove that the weak Riemannian metric induced by the
fractional Sobolev norm Hs on the diffeomorphisms group of the circle
is geodesically complete, provided s > 3/2.

1. Introduction

The interest in right-invariant metrics on the diffeomorphism group of the
circle started when it was discovered by Kouranbaeva [17] that the Camassa–
Holm equation [3] could be recast as the Euler equation of the right-invariant
metric on Diff∞(S1) induced by the H1 Sobolev inner product on the corre-
sponding Lie algebra C∞(S1). The well-posedness of the geodesics flow for
the right-invariant metric induced by the Hk inner product was obtained by
Constantin and Kolev [5], for k ∈ N, k ≥ 1, following the pioneering work
of Ebin and Marsden [8]. The well-posedness in the case of fractional or-
ders (Hs, s ∈ R+) has been established by Escher and Kolev [10], provided
s ≥ 1/2. The way to establish local existence of geodesics is to extend the
metric and its spray to the Hilbert approximation Dq(S1) (the Hilbert man-
ifold of diffeomorphisms of class Hq) and then to show that the (extended)
spray is smooth. This was proved to work in [10] for s ≥ 1/2 provided we
choose1 q > 2s+3/2. The well-posedness on Diff∞(S1) follows from a result
on no loss and no gain of spatial regularity for the geodesic flow.

Note that the extended metric defines only a weak Riemannian metric on
the Hilbert manifold Dq(S1). A Riemannian metric is strong if at each point
it induces a topological isomorphism between the tangent space and the
cotangent space. It is weak if it defines only an injective linear map between
the tangent space and the cotangent space. On a Banach manifold equipped
with a strong metric, the geodesic semi-distance induced by the metric is a
distance (i.e if ϕ1 6= ϕ2, then d(ϕ1, ϕ2) > 0) [18]. This is no longer true for
a weak metric, in general. It was shown by Bauer, Bruveris, Harms, and
Michor [2] that the geodesic semi-distance identically vanishes for the Hs

metric if 0 ≤ s ≤ 1/2, whereas it is a distance for s > 1/2. This distance is
nevertheless probably never complete on TDq(S1). Moreover, although for
a strong metric topological completeness implies geodesic completeness, this
is generally not true for a weak metric. Finally, we recall that the metric
induced by the H1-norm (or equivalently by A = id−D2) is not geodesically
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1This bound can be sharpen to q > 2s − 1/2 if s is an integer.
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complete, as was shown by Constantin and Escher [4]. The main result of
this paper is the following.

Theorem 1.1. Let s > 3/2 be given. Then the geodesic flow on Dq(S1)
for q > 2s + 3/2 and on Diff∞(S1), respectively, is complete for the weak

Riemannian metric induced by the Hs(S1)-inner product.

Note that we could be lead to think that for s > 3/2 the right-invariant
Hs metric on the Banach manifold Ds(S1) is a strong Riemannian metric.
However it is not clear at all that this metric is smooth on Ds(S1). In [10],
we were only able to show that the Hs metric is smooth on the Banach
manifold Dq(S1) for q > 2s + 3/2.

Let us briefly give an outline of the paper. In Section 2, we introduce basic
facts on right-invariant metrics on Diff∞(S1) and we recall a well-posedness
result for related geodesic flows. In Section 3, we introduce a complete
metric structure on suitable Banach approximations Dq(S1) of Diff∞(S1),
which allows us to describe the precise blow-up mechanism of finite time
geodesics. This is the contents of Section 4. In section 5, we prove our main
result, theorem 1.1. In Appendix A, we recall the material on Friedrichs
mollifier that have been used throughout the paper.

2. Right-invariant metrics on Diff∞(S1)

Let Diff∞(S1) be the group of all smooth and orientation preserving dif-
feomorphisms on the circle. This group is naturally equipped with a Fréchet

manifold structure; it can be covered by charts taking values in the Fréchet

vector space C∞(S1) and in such a way that the change of charts are smooth
mappings (a smooth atlas with only two charts may be constructed, see for
instance [14]).

Since the composition and the inverse mapping are smooth for this struc-
ture, we say that Diff∞(S1) is a Fréchet-Lie group, c.f. [15]. Its Lie algebra,
Vect(S1), is the space of smooth vector fields on the circle. It is isomorphic
to C∞(S1), with the Lie bracket given by

[u, v] = uxv − uvx.

From an analytic point of view, the Fréchet Lie group Diff∞(S1) may be
viewed as an inverse limit of Hilbert manifolds. More precisely, recall that
the Sobolev space Hq(S1) is defined as the completion of C∞(S1) for the
norm

‖u‖Hq(S1) :=

(
∑

n∈Z

(1 + n2)q |ûn|
2

)1/2

,

where q ∈ R
+, and where ûn stands for the n−th Fourier coefficient of

u ∈ L2(S1). Let Dq(S1) denote the set of all orientation preserving home-
omorphisms ϕ of the circle S

1, such that both ϕ and ϕ−1 belong to the
fractional Sobolev space Hq(S1). For q > 3/2, Dq(S1) is a Hilbert manifold

and a topological group, as was shown by Ebin and Marsden [8]. It is how-
ever not a Lie group because neither composition, nor inversion in Dq(S1)
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are differentiable [8]. We have

Diff∞(S1) =
⋂

q> 3

2

Dq(S1).

Remark 2.1. Like any Lie group, Diff∞(S1) is a parallelizable manifold:

TDiff∞(S1) ∼ Diff∞(S1)× C∞(S1).

What is less obvious, however, is that TDq(S1) is also a trivial bundle. In-
deed, let

t : TS1 → S
1 × R

be a smooth trivialisation of the tangent bundle of S1. Then

TDq(S1) → Dq(S1)×Hq(S1), ξ 7→ t ◦ ξ

defines a smooth vector bundle isomorphism (see [8, p. 107]).

A right-invariant metric on Diff∞(S1) is defined by an inner product on
the Lie algebra Vect(S1) = C∞(S1). In this paper, we assume that this inner
product is given by

〈u, v〉 =

∫

S1

(Au)v dx,

where A : C∞(S1) → C∞(S1) is a L2-symmetric, positive definite, invertible
Fourier multiplier (i.e. a continuous linear operator on C∞(S1) which com-
mutes with D := d/dx). For historical reasons going back to Euler’s work
[12], A is called the inertia operator.

By translating the above inner product, we obtain one on each tangent
space TϕDiff∞(S1), which is given by

(2.1) 〈η, ξ〉ϕ = 〈η ◦ ϕ−1, ξ ◦ ϕ−1〉id =

∫

S1

η(Aϕξ)ϕx dx,

where η, ξ ∈ TϕDiff∞(S1), Aϕ = Rϕ ◦ A ◦ Rϕ−1 , and Rϕ(v) := v ◦ ϕ. This

defines a smooth weak Riemannian metric on Diff∞(S1).
This weak Riemannian metric admits the following geodesic spray2

(2.2) F : (ϕ, v) 7→ (ϕ, v, v, Sϕ(v)) ,

where
Sϕ(v) :=

(
Rϕ ◦ S ◦Rϕ−1

)
(v),

and
S(u) := A−1 {[A, u]ux − 2(Au)ux} .

A geodesic is an integral curve of this second order vector field, that is a
solution (ϕ, v) of

(2.3)

{
ϕt = v,

vt = Sϕ(v),

Given a geodesic (ϕ, v), we define its Eulerian velocity as

u := v ◦ ϕ−1.

2A Riemannian metric on a manifold M defines a smooth function on TM , given by
half the square norm of a tangent vector. The corresponding Hamiltonian vector field on
TM , relatively to the pullback of the canonical symplectic structure on T ∗M is called the
geodesic spray.
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Then u solves

(2.4) ut = −A−1 [u(Au)x + 2(Au)ux] ,

called the Euler equation defined by the inertia operator A.

Remark 2.2. When A is a differential operator of order r ≥ 1 then the
quadratic operator

S(u) := A−1 {[A, u]ux − 2(Au)ux}

is of order 0 because the commutator [A, u] is of order not higher than r−1.
One might expect, that for a larger class of operators A, the quadratic
operator S to be of order 0 and consequently that the second order system
(2.3) may be viewed as an ODE on TDq(S1).

Definition 2.3. A Fourier multiplier A = op (a(k)) with symbol a is of
order r ∈ R if there exists a constant C > 0 such that

|a(k)| ≤ C
(
1 + k2

)r/2
,

for every k ∈ Z. In that case, for each q ≥ r, the operator A extends
to a bounded linear operator from Hq(S1) to Hq−r(S1). In this paper, we
only consider symmetric Fourier multipliers, i.e. for which, a(k) ∈ R for all
k ∈ Z.

When A is a differential operator of order r, the map

(2.5) ϕ 7→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

is smooth (it is moreover real analytic) for any q > r + 1/2. Indeed, in this
case, Aϕ is a linear differential operator whose coefficients are polynomial
expressions of 1/ϕx and the derivatives of ϕ up to order r. Unfortunately,
this argument does not apply to a general Fourier multiplier A = op (p(k)).
In that case, even if A extends to a bounded linear operator from Hq(S1)
to Hq−r(S1), one cannot conclude directly that the mapping ϕ 7→ Aϕ is
smooth, because the mapping

ϕ 7→ Rϕ, Dσ(S1) → L(Hq(S1),Hσ(S1))

is not even continuous3, whatever choice of σ ∈ [0, q].
Let us now precisely formulate the conditions that will be required on the

inertia operator subsequently.

Hypothesis 2.4. The following conditions will be assumed on the inertia
operator A:

(a) A = op (a(k)) is a Fourier multiplier of order r ≥ 1, or equivalently,
a(k) = O(|k|r);

(b) For all q ≥ r, A : Hq(S1) → Hq−r(S1) is a bounded isomorphism, or
equivalently, for all k ∈ Z, a(k) 6= 0 and 1/a(k) = O(|k|−r);

(c) For each q > r + 3/2, the mapping

ϕ 7→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

is smooth.

3The map (ϕ, u) 7→ u ◦ ϕ is however continuous but not differentiable.
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Remark 2.5. In [10], we have specified conditions on the symbol of A which
guarantee that A satisfies 2.4. These conditions are satisfied by the inertia
operator

Λ2s := op
((
1 + k2

)s)

of the inner product of the fractional Sobolev space Hs(S1)

(u, v) 7→ 〈Λsu|Λsv〉L2 , u, v ∈ Hs(S1),

when s ≥ 1/2.

If the conditions 2.4 are satisfied, then expression (2.1) defines a smooth,
weak Riemannian metric on Dq(S1). Moreover, we have shown in [10], that
the spray F defined by equation (2.2) extends to a smooth vector field Fq

on TDq(S1), which is the geodesic spray of the extended metric on Dq(S1).
This is valid for q > r + 3/2, in the general case of a Fourier multiplier of
order r ≥ 1, and for q > r − 1/2 when A is a differential operator of order
r ≥ 2. In that case, the Picard–Lindelöf theorem on the Banach manifold
TDq(S1) ensures well-posedness of the geodesic equations (2.3).

Theorem 2.6. Let r ≥ 1 and q > r + 3/2. Suppose that hypothesis 2.4

hold true. Then, given any (ϕ0, v0) ∈ TDq(S1), there exists a unique non-

extendable solution

(ϕ, v) ∈ C∞(J, TDq(S1))

of (2.3), with initial data (ϕ0, v0), defined on the maximal interval of exis-

tence J = (t−, t+). Moreover, the solution depends smoothly on the initial

data.

As a corollary, we get well-posedness in Hq(S1) for the corresponding
Euler equation (2.4).

Corollary 2.7. Let u0 ∈ Hq(S1) be given and denote by J the maximal

time interval of existence for (2.3) with the initial datum (idS1 , u0). Set

u := v ◦ ϕ−1. Then

u ∈ C0(J,Hq(S1)) ∩C1(J,Hq−1(S1))

is the unique, non-extendable solution of the Euler equation (2.4) emanating

from u(0) = u0.

A remarkable observation due to Ebin and Marsden (see [8, Theorem
12.1]) states that, if the initial data (ϕ0, v0) is smooth, then the maximal time
interval of existence Iq(ϕ0, v0) is independent of the parameter q. This is an
essential ingredient in the proof of well-posedness in the smooth category
(see [10]).

Theorem 2.8. Suppose that hypothesis 2.4 hold true. Then, given any

(ϕ0, v0) ∈ TDiff∞(S1), there exists a unique non-extendable solution

(ϕ, v) ∈ C∞(J, TDiff∞(S1))

of (2.3), with initial data (ϕ0, v0), defined on the maximal interval of exis-

tence J = (t−, t+). Moreover, the solution depends smoothly on the initial

data.
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Corollary 2.9. Let u0 ∈ Diff∞(S1) be given and denote by J the maximal

time interval of existence for (2.3) with the initial datum (idS1 , u0). Set

u := v ◦ ϕ−1. Then

u ∈ C∞(J,C∞(S1))

is the unique non-extendable solution of the Euler equation (2.4) emanating

from u(0) = u0.

It is also worth to recall that the metric norm along the flow is conserved.

Lemma 2.10. Let u be a solution to (2.4) on the time interval J , then

(2.6) ‖u(t)‖A =

(∫

S1

(Au)u dx

)1/2

is constant on J .

3. A complete metric structure on Dq(S1)

We recall that in what follows, S1 is the unit circle of the complex plane
and that Diff∞(S1), Dq(S1) may be considered as subset of the set C0(S1,S1)
of all continuous maps of the circle. The Banach manifold Dq(S1) may be
covered by two charts (see [9] for instance). We let

d0(ϕ1, ϕ2) := max
x∈S1

|ϕ2(x)− ϕ1(x)|

be the C0-distance between continuous maps of the circle. Endowed with
this distance C0(S1,S1) is a complete metric space. Let Homeo+(S1) be the
group of orientation preserving homeomorphisms of the circle. Equipped
with the induced topology, Homeo+(S1) is a topological group, and each
right translation Rϕ is an isometry for the distance d0.

Definition 3.1. Given q > 3/2, we introduce the following distance on
Dq(S1)

dq(ϕ1, ϕ2) := d0(ϕ1, ϕ2) + ‖ϕ1x − ϕ2x‖Hq−1 + ‖1/ϕ1x − 1/ϕ2x‖∞ .

Lemma 3.2. Let q > 3/2 be given and assume that B is a bounded subset

of (Dq(S1), dq). Then

inf
ϕ∈B

(
min
y∈S1

ϕx(y)

)
> 0.

Proof. Let M := diamB. Fix ϕ0 ∈ B and put ε := 1/(M + ‖1/ϕ0x‖∞). By
hypothesis, M < ∞, and thus ε > 0. Assume now, by contradiction, that

inf
ϕ∈B

(
min
y∈S1

ϕx(y)

)
= 0.

Then, there is a ϕ1 ∈ B such that miny∈S1 ϕ1x(y) < ε. Using the fact that

‖1/ϕ1x‖∞ = max
y∈S1

(
1

ϕ1x(y)

)
=

(
min
y∈S1

ϕ1x(y)

)−1

>
1

ε
,

we find, by the definition of ε, the contradiction:

M ≥ d(ϕ1, ϕ0) ≥ ‖1/ϕ1x − 1/ϕ0x‖∞ ≥ ‖1/ϕ1x‖∞ − ‖1/ϕ0x‖∞ > M,

which completes the proof. �
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Proposition 3.3. Let q > 3/2. Then (Dq(S1), dq) is a complete metric space

and its topology is equivalent to the Banach manifold topology on Dq(S1).

Proof. Let τ be the Banach manifold topology on Dq(S1) and τd be the
metric topology. Then

id : (Dq(S1), τ) → (Dq(S1), τd)

is continuous because ϕ 7→ ϕ−1 is a homeomorphism of Dq(S1) (equipped
with the manifold topology) and the fact that

d0(ϕ1, ϕ2) . ‖ϕ̃1 − ϕ̃2‖Hq ,

if ϕ̃1 and ϕ̃2 are lifts of ϕ1 and ϕ2, respectively. Conversely,

id : (Dq(S1), τd) → (Dq(S1), τ)

is continuous because given ϕ0, there exists δ > 0 such that, if d0(ϕ0, ϕ) < δ,
then ϕ belongs to the same chart as ϕ0 and in a local chart we have

‖ϕ̃− ϕ̃0‖Hq . dq(ϕ,ϕ0).

This shows the equivalence of the two topologies.
Let now (ϕn) be a Cauchy sequence for the distance dq. We observe first

that (ϕn) converges in C0(S1,S1) to a map ϕ, that this map is C1 and finally
that ϕnx → ϕx in Hq−1(S1), because for n large enough, all ϕn belong to a
same chart. Invoking Lemma 3.2, we know that

inf
n∈N

(
min
y∈S1

ϕnx(y)

)
> 0.

This implies that ϕx > 0 and hence that ϕ is a C1-diffeomorphism of class
Hq, and finally that dq(ϕn, ϕ) → 0. �

Lemma 3.4. Let ϕ ∈ C1(I,Dq(S1)) be a path in Dq(S1) and let v := ϕt be

its velocity. Then

dq(ϕ(t), ϕ(s)) . |t− s|max
[s,t]

‖v‖Hq

(
1 + max

[s,t]
‖1/ϕx‖

2
∞

)

for all t, s ∈ I.

Proof. Let ϕ̃ ∈ C1(I,Hq(R)) be a lift of the path ϕ. Given s, t ∈ I with
s < t, we have first

d0(ϕ(t), ϕ(s)) . ‖ϕ̃(t)− ϕ̃(s)‖∞

≤

∫ t

s
‖ϕt(τ)‖∞ dτ . |t− s|max

[s,t]
‖v‖Hq .

(3.1)

Next, we have

ϕx(t)− ϕx(s) =

∫ t

s
ϕtx(τ)dτ,

in Hq−1(S1) and hence

(3.2) ‖ϕx(t)− ϕx(s)‖Hq−1 ≤

∫ t

s
‖ϕtx(τ)‖Hq−1 dτ ≤ |t− s|max

[s,t]
‖v‖Hq .
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Finally we have

‖1/ϕx(t)− 1/ϕx(s)‖∞ ≤

(
max
[s,t]

‖1/ϕx‖∞

)2 ∫ t

s
‖ϕtx(τ)‖∞

. |t− s|max
[s,t]

‖v‖Hq

(
max
[s,t]

‖1/ϕx‖∞

)2

.

(3.3)

Fusing (3.1), (3.2), and (3.3) completes the proof. �

4. The blow-up scenario for geodesics

In the sequel, a bounded set in Dq(S1) will always mean bounded relative

to the distance dq and a bounded set in TDq(S1) = Dq(S1) × Hq(S1) will
mean bounded relative to the product distance

dq(ϕ1, ϕ2) + ‖v1 − v2‖Hq .

The main result of this section is the following.

Theorem 4.1. Let q > 3/2 be given. Then the geodesic spray

Fq : (ϕ, v) 7→ (v, Sϕ(v))

is bounded on bounded sets of Dq(S1)×Hq(S1).

The proof of this theorem is based on the following lemma.

Lemma 4.2. Let q ≥ ρ > 3/2 be given. Then the mappings

ϕ 7→ Rϕ, Dq(S1) → L(Hρ(S1),Hρ(S1))

and

ϕ 7→ Rϕ−1 , Dq(S1) → L(Hρ(S1),Hρ(S1))

are bounded on bounded subsets of Dq(S1).

Lemma 4.2 is a direct consequence of the following estimates which were
obtained in [10, Appendix A].

(4.1) ‖u ◦ ϕ‖Hρ ≤ C1
ρ (‖1/ϕx‖∞ , ‖ϕx‖∞) ‖ϕx‖Hρ−1 ‖u‖Hρ

for 3/2 < ρ ≤ 5/2,

(4.2) ‖u ◦ ϕ‖Hρ ≤ C2
ρ (‖1/ϕx‖∞ , ‖ϕx‖Hρ−2) ‖ϕx‖Hρ−1 ‖u‖Hρ

for ρ > 5/2, and

(4.3)
∥∥(ϕ−1)x

∥∥
Hρ−1 . C3

ρ(‖1/ϕx‖∞ , ‖ϕx‖Hρ−1)

where Ck
ρ is a positive, continuous function on (R+)2, for k = 1, 2, 3.

Proof of Theorem 4.1. Recall that Sϕ(v) = Rϕ ◦ S ◦Rϕ−1 , where

S(u) := A−1 {[A, u]ux − 2(Au)ux} .

In particular, Sϕ(v) is quadratic in v and

‖Sϕ(v)‖Hq ≤ ‖Rϕ‖L(Hq,Hq) ‖S‖L(Hq×Hq ,Hq)

∥∥Rϕ−1

∥∥2
L(Hq ,Hq)

‖v‖2Hq .

Now, S is a bounded bilinear operator and

ϕ 7→ Rϕ, ϕ 7→ Rϕ−1
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are bounded on bounded subsets of Dq(S1), by Lemma 4.2. This completes
the proof. �

Our next goal is to study the behaviour of geodesics which do not exists
globally, i.e. when t+ < ∞ or t− > −∞. We have the following result,
which is a corollary of Theorem 4.1.

Corollary 4.3. Assume that hypothesis 2.4 are satisfied and let

(ϕ, v) ∈ C∞((t−, t+), TDq(S1))

denote the non-extendable solution of the geodesic flow (2.3), emanating

from

(ϕ0, v0) ∈ TDq(S1).

If t+ < ∞, then

lim
t↑t+

[dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq ] = +∞.

A similar statement holds true if t− > −∞.

Proof. Suppose that t+ < ∞ and set

f(t) := dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq

where (ϕ(t), v(t)) ∈ TDq(S1) is the solution of (2.3) at time t ∈ (t−, t+),
emanating from (ϕ0, v0).

(i) Note first that f cannot be bounded on [0, t+). Otherwise, the spray
Fq(ϕ(t), v(t)) would be bounded on [0, t+) by Theorem 4.1. In that case,
given any sequence (tk) in [0, t+) converging to t+, we would conclude, in-
voking Lemma 3.4, that (ϕ(tk)) is a Cauchy sequence in the complete metric
space (Dq(S1), dq). Similarly, we would conclude that the sequence (v(tk))
is a Cauchy sequence in the Hilbert space Hq(S1). Then, by the Picard–
Lindelöf theorem, we would deduce that the solution can be extended beyond
t+, which would contradict the maximality of t+.

(ii) We are going to show now that

lim
t↑t+

f(t) = +∞.

If this was wrong, then we would have

lim inf
t+

f < +∞ and lim sup
t+

f = +∞.

But then, using the continuity of f , we could find r > 0 and two sequences
(sk) and (tk) in [0, t+), each converging to t+, with

sk < tk, f(sk) = r, f(tk) = 2r

and such that

f(t) ≤ 2r, ∀t ∈
⋃

k

[sk, tk].

However, by Theorem 4.1, we can find a positive constant M such that

‖Sϕ(v)‖Hq ≤ M,

for all (ϕ, v) ∈ TDq(S1) satisfying

dq(ϕ0, ϕ) + ‖v‖Hq ≤ 2r.
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We would get therefore, using again Lemma 3.4, that

r = f(tk)− f(sk) ≤ C |tk − sk| , ∀k ∈ N,

for some positive constant C, which would lead to a contradiction and com-
pletes the proof. �

Assume that t+ < ∞. Then Corollary 4.3 makes it clear that there are
only two possible blow-up scenarios: either the solution (ϕ(t), v(t)) becomes
large in the sense that

lim
t→t+

(‖ϕx(t)‖Hq−1 + ‖v(t)‖Hq) = ∞,

or the family of diffeomorphisms {ϕ(t) ; t ∈ (t−, t+)} becomes singular in
the sense that

lim
t→t+

(
min
x∈S1

{ϕx(t, x)}

)
= 0.

It is however worth emphasizing that the blow-up result in Corollary 4.3
only represents a necessary condition. Indeed, for A = I −D2, i.e. for the
Camassa–Holm equation, the precise blow-up mechanism is known (see [4]):
a classical solution u blows up in finite time if and only if

lim
t→t+

(
min
x∈S1

{ux(t, x)}

)
= −∞,

which is somewhat weaker than blow up in H2(S1). Since it is known that
any (classical) solution to the Camassa–Holm equation preserves the H1

norm and thus stays bounded, one says that the blow up occurs as a wave

breaking. Note also that

ux(t, x) = vx ◦ ϕ(t, x) ·
1

ϕx(t, x)
, for (t, x) ∈ (t−, t+)× S

1.

Hence in the case of a wave breaking, either |vx| becomes unbounded or vx
becomes negative and ϕx tends to 0 as t ↑ t+.

On the other hand, there are several evolution equations, different from
the Camassa–Holm equation, e.g. the Constantin-Lax-Majda equation [6,
24], which corresponds to the case A = HD, where H denotes the Hilbert
transform, c.f. [11], for which the blow up mechanism is much less un-
derstood and so far no sharper results than blow up in H2+σ(S1) for any
σ > 1/2 or pointwise vanishing of ϕx seem to be known.

5. Global solutions

Throughout this section, we suppose that the inertia operator A is of
order r ≥ 1 and satisfies hypothesis 2.4. We suppose that q > r + 3/2, and
we let

(ϕ, v) ∈ C∞(J, TDq(S1))

be the unique solution of the Cauchy problem (2.3), emanating from

(idS1 , v0) ∈ TDq(S1),

and defined on the maximal time interval J . The corresponding solution
u = v ◦ ϕ−1 of the Euler equation (2.4) is a path

u ∈ C0(J,Hq(S1)) ∩ C1(J,Hq−1(S1)).
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The momentum m(t) := Au(t) is defined as a path

m ∈ C0(J,Hq−r(S1)) ∩ C1(J,Hq−r−1(S1)).

It satisfies the Euler-Poincaré equation

(5.1) mt = −mxu− 2mux.

We will prove that the geodesic (ϕ(t), v(t)) is defined for all time, as soon
as ‖u‖C1 is bounded, independently of a particular choice of the inertia
operator A, provided that r ≥ 2.

Remark 5.1. Global solutions in Hq(S1) (q > 3/2) of the Camassa–Holm
equation, which corresponds to the special case where the inertia operator
A = 1 − D2, have been studied by Misiolek [20]. It was established there,
that u(t) is defined on [0,∞) provided ‖u‖C1 is bounded [20, Theorem 2.3].
A similar argument was used in [19] to establish existence of solutions of the
Euler equation for the inertia operator A = (1−D2)k, k ≥ 1, for which m(t)
does not blow up in L2.

The main result of this section is the following estimate.

Theorem 5.2. Let r ≥ 2 and q > r + 3/2. Let

u ∈ C0(J,Hq(S1)) ∩C1(J,Hq−1(S1))

be a solution of (2.4) with initial data u0 ∈ Hq(S1). Suppose that ‖u‖C1 is

bounded on any bounded subinterval of J . Then ‖u‖Hq is bounded on any

bounded subinterval of J .

Remark 5.3. When A is a differential operator of order r ≥ 2, Theorem 5.2
may be true for q > r − 1/2 (see [10, Remark 4.2]). A possible proof could
be obtained by a generalization of the proof of [20, Theorem 2.3].

The approach used here is inspired by that of Taylor [23] and relies on
Friedrichs mollifiers (see Appendix A). It requires also the following com-
mutator estimate due to Kato and Ponce [16] (see also [22]).

Lemma 5.4. Let s > 0 and Λs := op
(
(1 + k2)s/2

)
. If u, v ∈ Hs(S1), then

(5.2) ‖Λs(uv) − uΛs(v)‖L2 . ‖ux‖∞
∥∥Λs−1v

∥∥
L2 + ‖Λsu‖L2 ‖v‖∞

Proof of Theorem 5.2. Let m(t) = Au(t). Note first that the curve t 7→ m(t)
belongs to C1

(
J,Hσ(S1)

)
, for σ ≤ q − r − 1. Since we assume moreover

that q − r > 3/2, this is true in particular for each σ ≤ 1/2. This may
however not be true for 1/2 < σ ≤ q − r. In that case, the curve t 7→ m(t)
is only continuous and to compute time derivatives, we need to replace it
by the curve t 7→ Jεm(t), where Jε is the Friedrichs’ mollifier defined in
Appendix A.

(1) Using the Euler-Poincaré equation (5.1), we have first

d

dt
‖m‖2L2 = −2 〈m,mxu+ 2mux〉L2 ,

and we get
d

dt
‖m‖2L2 ≤ 3 ‖ux‖∞ ‖m‖2L2 .
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Then, by virtue of Gronwall’s lemma, we conclude that ‖m‖L2 is bounded
on any bounded subinterval of J . Now, using the fact that A−1 is a bounded
operator from L2(S1) to Hr(S1), we conclude that ‖u‖Hr is bounded on any
bounded subinterval of J . This applies, in particular, to ‖u‖H2 , because we
assume that r ≥ 2.

(2) We are now going to show that

d

dt
‖Jεm‖2H1 . ‖u‖H2 ‖m‖2H1 ,

uniformly in ε. To do so, note that

d

dt
‖Jεm‖2H1 = −2

∫
(Jεm)(Jεmux)− 4

∫
(Jεm)(Jεmxu)

− 4

∫
(Jεmx)(Jεmuxx)− 6

∫
(Jεmx)(Jεmxux)− 2

∫
(Jεmx)(Jεmxxu).

Using Cauchy–Schwarz’ inequality and Lemma A.2, the first four terms of
the right hand-side can easily be seen to be bounded by ‖u‖H2 ‖m‖2H1 , up
to a positive constant independent of ε. The last term in the right hand-side
can be rewritten as∫

(Jεmx)(uJεmxx) +

∫
(Jεmx)([Jε, uD]mx).

An integration by parts shows that the first term is bounded by ‖u‖C1 ‖m‖2H1 .
Using Lemma A.3, we deduce that the same bound holds for the second term.

(3) Suppose now that 3/2 < σ ≤ q − r. We are going to show that

d

dt
‖Jεm‖2Hσ . ‖u‖Hσ+1 ‖m‖2Hσ ,

uniformly in ε. We have

d

dt
‖Jεm(t)‖2Hσ = −2 〈ΛσJεm,ΛσJε(mxu)〉L2 − 4 〈ΛσJεm,ΛσJε(mux)〉L2 .

Using Cauchy-Schwarz, we get first

〈ΛσJεm,ΛσJε(mux)〉L2 ≤ ‖Jεm‖Hσ ‖Jε(mux)‖Hσ

and, by virtue of (A.2), we have

‖Jεm‖Hσ ‖Jε(mux)‖Hσ . ‖m‖Hσ ‖mux‖Hσ . ‖u‖Hσ+1 ‖m‖2Hσ ,

uniformly in ε (because Hσ(S1) is a multiplicative algebra for σ > 1/2).
Now, using the fact that Λσ and Jε commute (see Appendix A), we have

(5.3) 〈ΛσJεm,ΛσJε(mxu)〉L2 =

∫
Jε (uΛ

σmx)JεΛ
σm

+

∫
Jε ([Λ

σ , u]mx)JεΛ
σm.

By virtue of Cauchy–Schwarz’ inequality and the Kato–Ponce estimate, the
second term in the right hand-side of (5.3) is bounded (up to a constant
independent of ε) by

‖u‖Hσ ‖m‖2Hσ ,
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because ‖mx‖∞ . ‖m‖Hσ for σ > 3/2. Introducing the operator L := uD,
the first term in the right hand-side of (5.3) can be written as
∫

(JεLΛ
σm)(JεΛ

σm) =

∫
(LJεΛ

σm)(JεΛ
σm) +

∫
([Jε, L]Λ

σm)(JεΛ
σm).

We have first∫
(LJεΛ

σm)(JεΛ
σm) =

1

2

∫
{(L+ L∗)JεΛ

σm}(JεΛ
σm)

and since L+ L∗ = −uxI, we get
∫

{(L+ L∗)JεΛ
σm}(JεΛ

σm) . ‖ux‖∞ ‖m‖2Hσ .

Using Cauchy–Schwarz and Lemma A.3, we get
∫

([Jε, L]Λ
σm)(JεΛ

σm) . ‖ux‖∞ ‖m‖2Hσ

Combining all these estimates, we obtain finally

d

dt
‖Jεm(t)‖2Hσ . ‖u‖Hσ+1 ‖m‖2Hσ .

For σ = 1 or σ > 3/2, integrating over [0, t], we get

‖Jεm(t)‖2Hσ ≤ ‖Jεm(0)‖2Hσ + C sup
τ∈[0,t]

‖u(τ)‖Hσ+1

∫ t

0
‖m(τ)‖2Hσ dτ, t ∈ J,

for some positive constant C (independent of ε). Now, let ε → 0. Us-
ing (A.1) and Gronwall’s lemma, we conclude that ‖m(t)‖Hσ is bounded on
any bounded subinterval of J , as soon as ‖u(t)‖Hσ+1 is. Therefore, using an
inductive argument, we deduce that ‖u(t)‖Hq is bounded on any bounded
subinterval of J . This completes the proof. �

We next derive estimates on the flow map induced by time-dependent vec-
tor fields. These results are independent of the geodesic flow (2.3). Therefore
we formulate them in some generality. Note that on a general Banach man-
ifold, the flow of a continuous vector field may not exist [7]. However, in the
particular case we consider here, we have the following result.

Proposition 5.5 (Ebin-Marsden, [8]). Let q > 5/2 be given and let w ∈
C0
(
J,Hq(S1)

)
be a time dependent Hq vector field. Then its flow t → ϕ(t)

is a C1 curve in Dq(S1).

Lemma 5.6. Let w ∈ C0
(
J,Hq(S1)

)
be a time dependent vector field

with q > 3/2. Assume that its associated flow ϕ exists and that ϕ ∈
C1(J,Dq(S1)). If ‖wx‖∞ is bounded on any bounded subinterval of J , then
‖ϕx‖∞ and ‖1/ϕx‖∞ are bounded on any bounded subinterval of J .

Proof. Let

α(t) = max
x∈S1

ϕx(t), and β(t) = max
x∈S1

1/ϕx(t).

Note that α and β are continuous functions. Let I denote any bounded
subinterval of J , and set

K = sup
t∈I

‖wx(t)‖∞ .
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From equation ϕt = w ◦ ϕ, we deduce that

ϕtx = (wx ◦ ϕ)ϕx, and (1/ϕx)t = −(wx ◦ ϕ)/ϕx,

and therefore, we get

α(t) ≤ α(0) +K

∫ t

0
α(s) ds and β(t) ≤ β(0) +K

∫ t

0
β(s) ds.

Thus the conclusion follows from Gronwall’s lemma. �

Lemma 5.7. Let w ∈ C0(J,Hq(S1)) with q > 3/2 be a time-dependent vec-

tor field and assume that its associated flow ϕ exists with ϕ ∈ C1(J,Dq(S1)).
If ‖w‖Hq is bounded on any bounded subinterval of J , then ‖ϕx‖Hq−1 is

bounded on any bounded subinterval of J .

Proof. Let I denote any bounded subinterval of J . For 0 ≤ σ ≤ q − 1, we
have

d

dt
‖ϕx‖

2
Hσ = 2 〈(w ◦ ϕ)x, ϕx〉Hσ ,

and hence
d

dt
‖ϕx‖

2
Hσ . ‖w ◦ ϕ‖Hs+1 ‖ϕx‖Hσ .

(i) Suppose first that 1/2 < σ ≤ 3/2. Then using the fact that ‖ϕx‖∞ and
‖1/ϕx‖∞ are bounded on I by virtue of lemma 5.6, and invoking (4.1), we
conclude by Gronwall’s lemma that ‖ϕx‖Hσ is bounded on J for 0 ≤ σ ≤ 3/2.

(ii) Next, using an induction argument on σ, estimate (4.2), and Gron-
wall’s lemma, we conclude that ‖ϕx‖Hσ is bounded on J for 0 ≤ σ ≤ q − 1.
This completes the proof. �

Theorem 5.8. Assume that conditions 2.4 are satisfied and let

(ϕ, v) ∈ C∞((t−, t+), TDq(S1))

denote the non-extendable solution of the geodesic flow (2.3), emanating

from

(ϕ0, v0) ∈ TDq(S1).

If the C1 norm ‖u‖C1 of the Eulerian velocity u = v ◦ ϕ−1 is bounded on

[0, t+), then t+ = ∞. A similar statement holds for t−.

Proof. Assume t+ < ∞, and that ‖u‖C1 is bounded on [0, t+). Then by
lemma 5.2, we get that ‖u‖Hq is bounded on [0, t+). By lemma 5.6, we
get furthermore that ‖ϕx‖∞, and ‖1/ϕx‖∞ are bounded on [0, t+) and by
lemma 5.7, we get that ‖ϕx‖Hq−1 is bounded on [0, t+). We obtain therefore
that ‖v‖Hq is bounded on [0, t+), by virtue of (4.2). Therefore, we deduce
that

dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq

is bounded on [0, t+). But this contradicts corollary 4.3 which shows that

lim
t↑t+

[d(ϕ0, ϕ(t)) + ‖v(t)‖Hq ] = +∞.

as soon as t+ < +∞. �

Theorem 1.1 follows from Theorem 5.8 and Lemma 2.10 in combination
with Sobolev’s embedding theorem.
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Remark 5.9. The same conclusion holds for the weak Riemannian metric
induced by any inertia operator A of order r > 3 and satisfying hypotesis 2.4,
because then the norm

‖u‖A := 〈Au, u〉L2

is equivalent to the Hr/2-norm.

Appendix A. Friedrichs mollifiers

Friedrichs mollifiers were introduced by Kurt Otto Friedrichs in [13]. Let
ρ be a nonnegative, even, smooth bump function of total weight 1, and
support in (−1/2, 1/2). We set

ρǫ(x) :=
1

ε
ρ
(x
ε

)
,

and defined the Friedrichs’ mollifer Jε as the operator

Jεu = ρǫ ∗ u,

where ∗ denotes the convolution. Note that if u ∈ L2(S1), then Jεu ∈
C∞(S1) and that Jε is a bounded operator from L2(S1) to Hq(S1) for any
q ≥ 0.

The operator Jε commutes with time derivative ∂t, with spatial derivative
D, and more generally with any Fourier multiplier. Indeed, Jε is itself a
Fourier multiplier. Note also that Jε is self-adjoint for the L

2 scalar product.
The main properties of Jε that have been used in this paper are the following.

Lemma A.1. Given q ≥ 0 and u ∈ Hq(S1), then

(A.1) ‖Jεu− u‖Hq → 0, as ε → 0.

Lemma A.1 is a classical result which proof can be found in [1, Lemma
3.15]), for instance.

Lemma A.2. We have

(A.2) ‖Jεu‖Hq . ‖u‖Hq , ∀u ∈ Hq(S1),

uniformly in ε ∈ (0, 1] and q ≥ 0.

The proof of Lemma A.2 is a consequence of the following special case of
Young’s inequality ([21, Theorem 2.2, Chapter 1])

(A.3) ‖f ∗ u‖L2 . ‖f‖L1 ‖u‖L2 ,

and the fact that Λq and Jε commute.
Finally, we have been using the following commutator estimate on [Jε, uD].

Lemma A.3. Let u ∈ C1(S1) and m ∈ L2(S1). Then

‖Jε(umx)− uJε(mx)‖L2 . ‖ux‖∞ ‖m‖L2 ,

uniformly in ε ∈ (0, 1].

Proof. Let u ∈ C1(S1). Note first that the linear operator

Kε(m) := Jε(umx)− uJε(mx),

defined on C∞(S1), is an integral operator with kernel

kε(x, y) =
∂

∂y
{(u(x)− u(y))ρε(x− y)} .
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We have therefore

(A.4) Kε(m) = −ρε ∗ (uxm)−

∫

S1

ρ′ε(x− y)[u(x) − u(y)]m(y) dy.

By virtue of Young’s inequality (A.3), the L2 norm of the first term in the
right hand-side of (A.4) is bounded (up to some positive constant indepen-
dent of ε) by

‖ρε‖L1 ‖uxm‖L2 ≤ ‖ux‖∞ ‖m‖L2 ,

because ‖ρε‖L1 = 1. The L2 norm of the second term of the right hand-side
of (A.4) is bounded by

(ε ‖ux‖∞)
∥∥ρ′ε ∗m

∥∥
L2 ,

because the support of ρε is contained in [−ε/2, ε/2]. Using again Young’s
inequality (A.3), we get then

∥∥ρ′ε ∗m
∥∥
L2 .

∥∥ρ′ε
∥∥
L1 ‖m‖L2 .

1

ε
‖m‖L2 ,

because ‖ρ′ε‖L1 = O(1/ε). This concludes the proof. �
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