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GEODESIC COMPLETENESS FOR SOBOLEV Hs-METRICS

ON THE DIFFEOMORPHISM GROUP OF THE CIRCLE

JOACHIM ESCHER AND BORIS KOLEV

Abstract. We prove that the weak Riemannian metric induced by the
fractional Sobolev norm Hs on the diffeomorphism group of the circle is
geodesically complete, provided that s > 3/2.

1. Introduction

The interest in right-invariant metrics on the diffeomorphism group of the
circle started when it was discovered by Kouranbaeva [17] that the Camassa–
Holm equation [3] can be recast as the Euler equation of the right-invariant
metric on Diff∞(S1) induced by the H1 Sobolev inner product on the corre-
sponding Lie algebra C∞(S1). The well-posedness of the geodesics flow for
the right-invariant metric induced by the Hk inner product was obtained by
Constantin and Kolev [5], for k ∈ N, k ≥ 1, following the pioneering work of
Ebin and Marsden [8]. These investigations have been extended to the case
of fractional order Sobolev spaces Hs with s ∈ R+, s ≥ 1/2 by Escher and
Kolev [10]. The method used to establish local existence of geodesics is to
extend the metric and its spray to the Hilbert approximation Dq(S1) (the
Hilbert manifold of diffeomorphisms of class Hq) and then to show that the
(extended) spray is smooth. This was proved to work in [10] for s ≥ 1/2
provided we choose q > 3/2 and q ≥ 2s. The well-posedness on Diff∞(S1)
follows as q → ∞ from a regularity preserving result of the geodesic flow.

A Riemannian metric is strong if at each point it induces a topological
isomorphism between the tangent space and the cotangent space. It is weak
if it defines merely an injective linear mapping between the tangent space
and the cotangent space. Note that on Diff∞(S1) only weak metrics exist.
Furthermore we also mention that the extended metric on Dq(S1) is not
strong but only weak as soon as q > 2s.

On a Banach manifold equipped with a strong metric, the geodesic semi-
distance induced by the metric is in fact a distance [19]. This is no longer true
for weak metrics. It was shown by Bauer, Bruveris, Harms, and Michor [2]
that this semi-distance identically vanishes for the Hs metric if 0 ≤ s ≤ 1/2,
whereas it is a distance for s > 1/2. This distance is nevertheless probably
not complete on TDq(S1). Indeed, although for a strong metric topological
completeness implies geodesic completeness, this is generally not true for a
weak metric. Finally, we recall that the metric induced by the H1-norm (or
equivalently by A := I−D2) is not geodesically complete, c.f. [4]. The main
result of this paper is the following.
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Theorem 1.1. Let s > 3/2 be given. Then the geodesic flow on Dq(S1)
for q ≥ 2s + 1 and on Diff∞(S1), respectively, is complete for the weak

Riemannian metric induced by the Hs(S1)-inner product.

Completeness results for groups of diffeomorphisms on R
n have been stud-

ied in [26] and in [21]. In both papers, stronger conditions on s had been
presupposed: Compared to our setting s has to be larger than 7/2 in [26]
and an integer larger than 2 in [21], respectively. Additionally, in the work
of [26, 21], the phenomenon that the diffeomorphisms of an orbit with fi-
nite extinction time may degenerate in the sense of the remarks following
Corollary 4.3 is not reported on.

Let us briefly give an outline of the paper. In Section 2, we introduce
basic facts on right-invariant metrics on Diff∞(S1) and we recall a well-
posedness result for related geodesic flows. In Section 3, we introduce a
complete metric structure on suitable Banach approximations of Diff∞(S1),
which allows us to describe the precise blow-up mechanism of finite time
geodesics. This is the subject matter of Section 4. In Section 5, we prove
our main result, Theorem 1.1. In Appendix A, we recall the material on
Friedrichs mollifier that have been used throughout the paper.

2. Right-invariant metrics on Diff∞(S1)

Let Diff∞(S1) be the group of all smooth and orientation preserving dif-
feomorphism on the circle. This group is naturally equipped with a Fréchet

manifold structure; it can be covered by charts taking values in the Fréchet

vector space C∞(S1) and in such a way that the change of charts are smooth
mappings (a smooth atlas with only two charts may be constructed, see for
instance [14]).

Since both the composition and the inversion are smooth for this structure
we say that Diff∞(S1) is a Fréchet-Lie group, c.f. [15]. Its Lie algebra,
Vect(S1), is the space of smooth vector fields on the circle. It is isomorphic
to C∞(S1) with the Lie bracket given by

[u, v] = uxv − uvx.

From an analytic point of view, the Fréchet Lie group Diff∞(S1) may be
viewed as an inverse limit of Hilbert manifolds. More precisely, recall that
the Sobolev space Hq(S1) is defined as the completion of C∞(S1) for the
norm

‖u‖Hq(S1) :=

(
∑

n∈Z

(1 + n2)q |ûn|
2

)1/2

,

where q ∈ R
+ and where ûn stands for the n−th Fourier coefficient of

u ∈ L2(S1). Let Dq(S1) denote the set of all orientation preserving home-
omorphisms ϕ of the circle S

1, such that both ϕ and ϕ−1 belong to the
fractional Sobolev space Hq(S1). For q > 3/2, Dq(S1) is a Hilbert manifold

and a topological group [8]. It is however not a Lie group because neither
composition, nor inversion in Dq(S1) are smooth, see again [8]. We have

Diff∞(S1) =
⋂

q> 3

2

Dq(S1).
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Remark 1. Like any Lie group, Diff∞(S1) is a parallelizable manifold:

TDiff∞(S1) ∼ Diff∞(S1)× C∞(S1).

What is less obvious, however, is that TDq(S1) is also a trivial bundle. In-
deed, let

t : TS1 → S
1 × R

be a smooth trivialisation of the tangent bundle of S1. Then

TDq(S1) → Dq(S1)×Hq(S1), ξ 7→ t ◦ ξ

is a smooth vector bundle isomorphism (see [8, p. 107]).

A right-invariant metric on Diff∞(S1) is defined by an inner product on
the Lie algebra Vect(S1) = C∞(S1). In the following we assume that this
inner product is given by

〈u, v〉 =

∫

S1

(Au)v dx,

where A : C∞(S1) → C∞(S1) is a L2-symmetric, positive definite, invertible
Fourier multiplier (i.e. a continuous linear operator on C∞(S1) which com-
mutes with D := d/dx). For historical reasons going back to Euler’s work
[12], A is called the inertia operator.

By translating the above inner product, we obtain an inner product on
each tangent space TϕDiff∞(S1)

(2.1) 〈η, ξ〉ϕ = 〈η ◦ ϕ−1, ξ ◦ ϕ−1〉id =

∫

S1

η(Aϕξ)ϕx dx,

where η, ξ ∈ TϕDiff∞(S1) and Aϕ = Rϕ ◦A◦Rϕ−1 , and Rϕ(v) := v ◦ϕ. This

defines a smooth weak Riemannian metric on Diff∞(S1).
This weak Riemannian metric admits the following geodesic spray1

(2.2) F : (ϕ, v) 7→ (ϕ, v, v, Sϕ(v))

where
Sϕ(v) :=

(
Rϕ ◦ S ◦Rϕ−1

)
(v),

and S is a quadratic operator on the Lie algebra given by:

S(u) := A−1 {[A, u]ux − 2(Au)ux} .

A geodesic is an integral curve of this second order vector field, that is a
solution (ϕ, v) of

(2.3)

{
ϕt = v,

vt = Sϕ(v),

Given a geodesic (ϕ, v), we define the Eulerian velocity as

u := v ◦ ϕ−1.

Then u solves

(2.4) ut = −A−1 [u(Au)x + 2(Au)ux] ,

1A Riemannian metric on a manifold M defines a smooth function on TM , given by
half the square norm of a tangent vector. The corresponding Hamiltonian vector field on
TM , relatively to the pullback of the canonical symplectic structure on T ∗M is called the
geodesic spray.
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called the Euler equation defined by the inertia operator A.

Remark 2. When A is a differential operator of order r ≥ 1 then the qua-
dratic operator

S(u) = A−1 {[A, u]ux − 2(Au)ux}

is of order 0 because the commutator [A, u] is of order not higher than r−1.
One might expect, that for a larger class of operators A, the quadratic
operator S to be of order 0 and consequently the second order system (2.3)
can be viewed as an ODE on TDq(S1).

Definition 2.1. A Fourier multiplier A = op (a(k)) with symbol a is of
order r ∈ R if there exists a constant C > 0 such that

|a(k)| ≤ C
(
1 + k2

)r/2
,

for every k ∈ Z. In that case, for each q ≥ r, the operator A extends to a
bounded linear operator from Hq(S1) to Hq−r(S1). In this paper we only
consider symmetric operators, i.e. a(k) ∈ R for all k ∈ Z.

When A is a differential operator of order r ≥ 1, the map

(2.5) ϕ 7→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

is smooth (it is in fact real analytic) for q > 3/2 and q ≥ r. Indeed, in
this case Aϕ is a linear differential operator with coefficients consisting of
polynomial expressions of 1/ϕx and of the derivatives of ϕ up to order r.
Unfortunately, this argument does not apply to a general Fourier multiplier

A = op (p(k)). In that case, even if A extends to a bounded linear operator
from Hq(S1) to Hq−r(S1), one cannot conclude directly that the mapping
ϕ 7→ Aϕ is smooth, because the mapping

ϕ 7→ Rϕ, Dq(S1) → L(Hσ(S1),Hσ(S1))

is not even continuous2, for any choice of σ ∈ [0, q].
Let us now precisely formulate the conditions that will be required on the

inertia operator subsequently.

Presupposition 2.2. The following conditions will be assumed on the in-
ertia operator A:

(a) A = op (a(k)) is a Fourier multiplier of order r ≥ 1, or equivalently,
a(k) = O(|k|r);

(b) For all q ≥ r, A : Hq(S1) → Hq−r(S1) is a bounded isomorphism, or
equivalently, for all k ∈ Z, a(k) 6= 0 and 1/a(k) = O(|k|−r);

(c) For each q > 3/2 with q ≥ r, the mapping

ϕ 7→ Aϕ, Dq(S1) → L(Hq(S1),Hq−r(S1))

is smooth.

2The map (ϕ, u) 7→ u ◦ ϕ is however continuous but not differentiable.
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In [10] we have specified conditions on the symbol of A which guarantee
that A satisfies presupposition 2.2. Particularly, inertia operators of the
form of Bessel potentials, i.e.

Λ2s := op
((
1 + k2

)s)
,

which generate the inner product of the fractional order Sobolev space
Hs(S1)

(u, v) 7→ 〈Λsu|Λsv〉L2 , u, v ∈ Hs(S1),

meet these conditions, provided that s ≥ 1/2.
If the conditions 2.2 are satisfied, then expression (2.1) defines a smooth,

weak Riemannian metric on Dq(S1), provided that q > 3/2 and q ≥ r.
Moreover, it can be shown that the spray F defined by equation (2.2) extends
to a smooth vector field Fq on TDq(S1), which is the geodesic spray of the
metric, c.f. [10, Theorem 3.10]. In that case, the Picard-Lindelöf Theorem on
the Banach manifold TDq(S1) ensures that, given any initial data (ϕ0, v0) ∈
TDq(S1), there is a unique non-extendable solution (ϕ, v) of (2.3), defined
on a maximal interval Iq(ϕ0, v0), satisfying the initial condition

(ϕ(0), v(0)) = (ϕ0, v0).

A remarkable observation due to Ebin and Marsden (see [8, Theorem
12.1]) states that, if the initial data (ϕ0, v0) is smooth, then the maximal
time interval of existence Iq(ϕ0, v0) is independent of the parameter q. This
is an essential ingredient in the proof of the local existence theorem for
geodesics on Diff∞(S1) (see [10]).

Theorem 2.3. Suppose that presupposotion 2.2 hold true. Then, given any

(ϕ0, v0) ∈ TDiff∞(S1), there exists a unique non-extendable solution

(ϕ, v) ∈ C∞(J, TDiff∞(S1))

of (2.3), with initial data (ϕ0, v0), defined on the maximal interval of ex-

istence Jmax = (t−, t+). Moreover, the solution depends smoothly on the

initial data.

As a corollary, we get well-posedness for the corresponding Euler equa-
tion (2.4).

Theorem 2.4. Assume that the operator A satisfies presupposition 2.2.

Let v0 ∈ Diff∞(S1) be given and denote by Jmax the maximal interval of

existence for (2.3) with the initial datum (idS1 , v0). Set u := v ◦ ϕ−1. Then

u ∈ C∞(Jmax,C
∞(S1)) is the unique non-extendable solution of the Euler

equation

(2.6)

{
ut = −A−1 [u(Au)x + 2(Au)ux] ,

u(0) = v0.

It is also worth to recall that the metric norm along the flow is conserved.

Lemma 2.5. Let u be a solution to (2.4) on the time interval J , then

(2.7) ‖u(t)‖A =

(∫

S1

(Au)u dx

)1/2

is constant on J .
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3. A complete metric structure on Dq(S1)

We recall that in what follows, S1 is the unit circle of the complex plane
and that Diff∞(S1) and Dq(S1) may be considered as subset of the set
C0(S1,S1) of all continuous maps of the circle. Besides the Banach manifold
Dq(S1) may be covered by two charts (see [9] for instance). We let

d0(ϕ1, ϕ2) := max
x∈S1

|ϕ2(x)− ϕ1(x)|

be the C0-distance between continuous maps of the circle. Endowed with
this distance C0(S1,S1) is a complete metric space. Let Homeo+(S1) be the
group of orientation preserving homeomorphisms of the circle. Equipped
with the induced topology, Homeo+(S1) is a topological group, and each
right translation Rϕ is an isometry for the distance d0.

Definition 3.1. Given q > 3/2, we introduce the following distance on
Dq(S1)

dq(ϕ1, ϕ2) := d0(ϕ1, ϕ2) + ‖ϕ1x − ϕ2x‖Hq−1 + ‖1/ϕ1x − 1/ϕ2x‖∞ .

Lemma 3.2. Let q > 3/2 be given and assume that B is a bounded subset

of (Dq(S1), dq). Then

inf
ϕ∈B

(
min
y∈S1

ϕx(y)

)
> 0.

Proof. Let M := diamB, fix ϕ0 ∈ B and put ε := 1/(M + ‖1/ϕ0x‖∞). By
hypothesis M < ∞, thus ε > 0. Assume now by contradiction that

inf
ϕ∈B

(
min
y∈S1

ϕx(y)

)
= 0.

Then there is a ϕ1 ∈ B such that miny∈S1 ϕ1x(y) < ε. Using

‖1/ϕ1x‖∞ = max
y∈S1

(
1

ϕ1x(y)

)
=

(
min
y∈S1

ϕ1x(y)

)−1

>
1

ε
,

we find by the definition of ε the contradiction:

M ≥ d(ϕ1, ϕ0) ≥ ‖1/ϕ1x − 1/ϕ0x‖∞ ≥ ‖1/ϕ1x‖∞ − ‖1/ϕ0x‖∞ > M,

which completes the proof. �

Proposition 3.3. Let q > 3/2. Then (Dq(S1), dq) is a complete metric space

and its topology is equivalent to the Banach manifold topology on Dq(S1).

Proof. Let τ be the Banach manifold topology on Dq(S1) and τd be the
metric topology. Then

id : (Dq(S1), τ) → (Dq(S1), τd)

is continuous because ϕ 7→ ϕ−1 is a homeomorphism of Dq(S1) (equipped
with the manifold topology) and the fact that

d0(ϕ1, ϕ2) . ‖ϕ̃1 − ϕ̃2‖Hq

if ϕ̃1 and ϕ̃2 are lifts of ϕ1 and ϕ2 respectively. Conversely

id : (Dq(S1), τd) → (Dq(S1), τ)
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is continuous because given ϕ0, there exists δ > 0 such that if d0(ϕ0, ϕ) < δ,
then ϕ belongs to the same chart as ϕ0 and in a local chart we have

‖ϕ̃− ϕ̃0‖Hq . dq(ϕ,ϕ0).

This shows the equivalence of the two topologies.
Let now (ϕn) be a Cauchy sequence for the distance dq. We observe first

that (ϕn) converges in C0(S1,S1) to a map ϕ, that this map is C1 and that
ϕnx → ϕx in Hq−1(S1), because for n large enough, all ϕn belong to a same
chart. Invoking Lemma 3.2, we know that

inf
n∈N

(
min
y∈S1

ϕnx(y)

)
> 0.

This implies that ϕx > 0 and hence that ϕ is a C1-diffeomorphism of class
Hq, and finally that dq(ϕn, ϕ) → 0. �

Lemma 3.4. Let ϕ ∈ C1(I,Dq(S1)) be a path in Dq(S1) and let v := ϕt be

its velocity. Then

dq(ϕ(t), ϕ(s)) . |t− s|max
[s,t]

‖v‖Hq

(
1 + max

[s,t]
‖1/ϕx‖

2
∞

)

for all t, s ∈ I.

Proof. Let ϕ̃ ∈ C1(I,Hq(R)) be a lift of the path ϕ. Given s, t ∈ I with
s < t, we have first

d0(ϕ(t), ϕ(s)) . ‖ϕ̃(t)− ϕ̃(s)‖∞

≤

∫ t

s
‖ϕt(τ)‖∞ dτ . |t− s|max

[s,t]
‖v‖Hq .

(3.1)

Next, we have

ϕx(t)− ϕx(s) =

∫ t

s
ϕtx(τ)dτ,

in Hq−1(S1) and hence

(3.2) ‖ϕx(t)− ϕx(s)‖Hq−1 ≤

∫ t

s
‖ϕtx(τ)‖Hq−1 dτ ≤ |t− s|max

[s,t]
‖v‖Hq .

Finally we have

‖1/ϕx(t)− 1/ϕx(s)‖∞ ≤

(
max
[s,t]

‖1/ϕx‖∞

)2 ∫ t

s
‖ϕtx(τ)‖∞

. |t− s|max
[s,t]

‖v‖Hq

(
max
[s,t]

‖1/ϕx‖∞

)2

.

(3.3)

Fusing (3.1), (3.2), and (3.3) completes the proof. �

4. The blow-up scenario for geodesics

In the sequel a bounded set in Dq(S1) will always mean bounded relative

to the distance dq and a bounded set in TDq(S1) = Dq(S1) × Hq(S1) will
mean bounded relative to the product distance

dq(ϕ1, ϕ2) + ‖v1 − v2‖Hq .

The main result of this section is the following.
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Theorem 4.1. Let q > 3/2 be given with q ≥ r. Then the geodesic spray

Fq : (ϕ, v) 7→ (v, Sϕ(v))

is bounded on bounded sets of Dq(S1)×Hq(S1).

The proof of this theorem is based on Lemma 4.2, which is itself a corollary
of the following estimates obtained in [10, Appendix B].

(4.1) ‖Rϕ‖L(Hρ(S1),Hρ(S1)) ≤ C1
ρ (‖1/ϕx‖L∞ , ‖ϕx‖L∞) ,

for 0 ≤ ρ ≤ 1,

(4.2) ‖Rϕ‖L(Hρ(S1),Hρ(S1)) ≤ C2
ρ (‖1/ϕx‖L∞ , ‖ϕx‖Hq−1) ,

for 0 ≤ ρ ≤ 2,

(4.3) ‖Rϕ‖L(Hρ(S1),Hρ(S1)) ≤ C3
ρ (‖1/ϕx‖L∞ , ‖ϕx‖L∞) ‖ϕx‖Hρ−1 ,

for 3/2 < ρ ≤ 3,

(4.4) ‖Rϕ‖L(Hρ(S1),Hρ(S1)) ≤ C4
ρ (‖1/ϕx‖L∞ , ‖ϕx‖Hρ−2) ‖ϕx‖Hρ−1 ,

for ρ > 5/2, and

(4.5)
∥∥(ϕ−1)x

∥∥
Hρ−1 . C5

ρ(‖1/ϕx‖∞ , ‖ϕx‖Hρ−1),

for ρ > 3/2, where Ck
ρ is a positive, continuous function on (R+)2, for

k = 1, . . . , 5.

Lemma 4.2. Let q > 3/2 and 0 ≤ ρ ≤ q be given. Then the mappings

ϕ 7→ Rϕ, Dq(S1) → L(Hρ(S1),Hρ(S1))

and

ϕ 7→ Rϕ−1 , Dq(S1) → L(Hρ(S1),Hρ(S1))

are bounded on bounded subsets of Dq(S1).

Proof of Theorem 4.1. Recall that Sϕ(v) = Rϕ ◦ S ◦Rϕ−1 where

S(u) := A−1 {[A, u]ux − 2(Au)ux} .

In particular, Sϕ(v) is quadratic in v and

‖Sϕ(v)‖Hq ≤ ‖Rϕ‖L(Hq,Hq) ‖S‖L(Hq×Hq ,Hq)

∥∥Rϕ−1

∥∥2
L(Hq ,Hq)

‖v‖2Hq .

Now, S is a bounded bilinear operator and Rϕ and Rϕ−1 are bounded on

bounded subsets of Dq(S1) by Lemma 4.2. This completes the proof. �

Our next goal is to study the behaviour of geodesics which do not exists
globally, i.e. t+ < ∞ or t− > −∞. We have the following result, which is a
consequence of Theorem 4.1.

Corollary 4.3. Assume that presupposition 2.2 are satisfied and let

(ϕ, v) ∈ C∞((t−, t+), TDq(S1))

denote the non-extendable solution of the geodesic flow (2.3), emanating

from

(ϕ0, v0) ∈ TDq(S1).

If t+ < ∞, then

lim
t↑t+

[dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq ] = +∞.
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A similar statement holds true if t− > −∞.

Proof. Suppose that t+ < ∞ and set

f(t) := dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq

where (ϕ(t), v(t)) ∈ TDq(S1) is the solution of (2.3) at time t ∈ (t−, t+),
emanating from (ϕ0, v0).

(i) Note first that f cannot be bounded on [0, t+). Otherwise, the spray
Fq(ϕ(t), v(t)) would be bounded on [0, t+) by Theorem 4.1. In that case,
given any sequence (tk) in [0, t+) converging to t+, we would conclude, in-
voking Lemma 3.4, that (ϕ(tk)) is a Cauchy sequence in the complete metric
space (Dq(S1), dq). Similarly, we would conclude that the sequence (v(tk))
is a Cauchy sequence in the Hilbert space Hq(S1). Then, by the Picard-
Lindelöf theorem, we would deduce that the solution could be extended
beyond t+, which would contradict the maximality of t+.

(ii) We are going to show now that

lim
tրt+

f(t) = +∞.

If this was wrong, then we would have

lim inf
tրt+

f < +∞ and lim sup
tրt+

f = +∞.

But then, using the continuity of f , we could find r > 0 and two sequences
(sk) and (tk) in [0, t+), each converging to t+, with

sk < tk, f(sk) = r, f(tk) = 2r

and such that

f(t) ≤ 2r, ∀t ∈
⋃

k

[sk, tk].

However, by Theorem 4.1, we can find a positive constant M such that

‖Sϕ(v)‖Hq ≤ M,

for all (ϕ, v) ∈ TDq(S1) satisfying

dq(ϕ0, ϕ) + ‖v‖Hq ≤ 2r.

We would get therefore, using again Lemma 3.4, that

r = f(tk)− f(sk) ≤ C |tk − sk| , ∀k ∈ N,

for some positive constant C, which would lead to a contradiction and com-
pletes the proof. �

Assume that t+ < ∞. Then Corollary 4.3 makes it clear that there are
only two possible blow-up scenarios: either the solution (ϕ(t), v(t)) becomes
large in the sense that

lim
t→t+

(‖ϕx(t)‖Hq−1 + ‖v(t)‖Hq) = ∞,

or the family of diffeomorphisms {ϕ(t) ; t ∈ (t−, t+)} becomes singular in
the sense that

lim
t→t+

(
min
x∈S1

{ϕx(t, x)}

)
= 0.
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It is however worth emphasizing that the blow-up result in Corollary 4.3
only represents a necessary condition. Indeed, for A = I −D2, i.e. for the
Camassa–Holm equation the precise blow-up mechanism is known (see [4]):
a classical solution u blows up in finite time if and only if

(4.6) lim
t→t+

(
min
x∈S1

{ux(t, x)}

)
= −∞,

which is somewhat weaker than blow up in H2(S1). Since it is known that
any (classical) solution to the Camassa–Holm equation preserves the H1

norm and thus stays bounded, one says that the blow up occurs as a wave

breaking. Note also that

ux(t, x) = vx ◦ ϕ(t, x) ·
1

ϕx(t, x)
for (t, x) ∈ (t−, t+)× S

1.

Hence in the case of a wave breaking, either |vx| becomes unbounded or vx
becomes negative and ϕx tends to 0 as t ↑ t+.

On the other hand there are several evolution equations, different from
the Camassa–Holm equation, e.g. the Constantin-Lax-Majda equation [6,
27], which corresponds to the case A = HD, where H denotes the Hilbert
transform, cf. [11] for which the blow up mechanism is much less understood
and so far no sharper results than blow up in H1+σ(S1) for any σ > 1/2 or
pointwise vanishing of ϕx seem to be known.

5. Global solutions

Throughout this section, we suppose that the inertia operator A satisfies
conditions 2.2. We fix some q ≥ r + 1, and we let

(5.1) (ϕ, v) ∈ C∞(J, TDq(S1))

be the unique solution of the Cauchy problem (2.3), emanating from

(idS1 , v0) ∈ TDq(S1)

and defined on the maximal time interval J = (t−, t+). The corresponding
solution u = v ◦ ϕ−1 of the Euler equation (2.6) is a path

(5.2) u ∈ C0(J,Hq(S1)) ∩ C1(J,Hq−1(S1)),

because

(ϕ, v) 7→ v ◦ ϕ−1, Dq(S1)×Hq(S1) → Hq−1(S1),

is C1 for q > 3/2 (see [10, Corollary B.6]). Moreover, since A is of order r,
the momentum m(t) := Au(t) is defined as a path

(5.3) m ∈ C0(J,Hq−r(S1)) ∩ C1(J,Hq−r−1(S1)).

It satisfies the Euler-Poincaré equation

(5.4) mt = −mxu− 2mux in C(J,L2(S1)).

We will prove that the geodesic (ϕ(t), v(t)) is defined for all time, as soon
as ux is bounded below, independently of a particular choice of the inertia
operator A, provided that r ≥ 2.
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Remark 3. Global solutions in Hq(S1) (q > 3/2) of the Camassa–Holm
equation, which corresponds to the special case where the inertia operator
A = 1−D2, have been studied in [22]. It was established there, that u(t) is
defined on [0,∞) provided ‖u‖C1 is bounded [22, Theorem 2.3]. A similar
argument was used in [20] to establish existence of solutions of the Euler
equation for the inertia operator A = (1−D2)k, k ≥ 1, for which m(t) does
not blow up in L2.

The main result of this section is the a priori estimate contained in the
following result.

Theorem 5.1. Let r ≥ 2 and q ≥ r + 1 be given and let

u ∈ C0(J,Hq(S1)) ∩C1(J,Hq−1(S1))

be the solution of (2.4) with initial data u0 ∈ Hq(S1) on J . Let I be some

bounded subinterval of J and suppose that

inf
t∈I

(
min
x∈S1

{ux(t, x)}

)
> −∞.

Then ‖u‖Hq is bounded on I.

The approach used here is inspired by that of Taylor [25] and relies on
Friedrichs mollifiers (see Appendix A). It requires also the following com-
mutator estimate due to Kato and Ponce [16] (see also [24]).

Lemma 5.2. Let s > 0 and Λs := op
(
(1 + k2)s/2

)
. If u, v ∈ Hs(S1), then

(5.5) ‖Λs(uv) − uΛs(v)‖L2 . ‖ux‖∞
∥∥Λs−1v

∥∥
L2 + ‖Λsu‖L2 ‖v‖∞

Proof of Theorem 5.1. (1) Let m(t) = Au(t) for t ∈ J . Invoking (5.3) and
the fact that q − r − 1 ≥ 0, we conclude that the curve [t 7→ m(t)] belongs
to C1(J,L2(S1)). Thus the Euler-Poincaré equation (5.4) implies that

d

dt
‖m‖2L2 = −2 〈m,mxu+ 2mux〉L2 on J.

Consequently, we get

d

dt
‖m‖2L2 ≤ −3min

x∈S1
{ux(t, x)} ‖m‖2L2 ,

and by virtue of Gronwall’s lemma, we conclude that ‖m‖L2 is bounded on
I. Recalling that A−1 is a bounded operator from L2(S1) to Hr(S1), we see
that ‖u‖Hr is bounded on I. This applies, in particular, to ‖u‖H2 , because
we assumed that r ≥ 2.

(2) Our next goal is to derive an H1 a priori estimate for m. Since
the curve [t 7→ m(t)] belongs merely to C1(J,Hq−r−1(S1)) and q − r − 1
may be smaller than 1, we need to replace it by the curve t 7→ Jεm(t),
where Jε is a Friedrichs’ mollifier with respect to the spatial variable in S

1,
cf. Appendix A. We note that Jεm ∈ C1(J,C∞(S1)). For this regularized
curve Jεm, we are going now to show that

(5.6)
d

dt
‖Jεm‖2H1 . ‖u‖H2 ‖m‖2H1 ,
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for ε ∈ (0, 1]. To do so, note that

d

dt
‖Jεm‖2H1 = −2

∫
(Jεm)(Jεmxu)− 4

∫
(Jεm)(Jεmux)

− 4

∫
(Jεmx)(Jεmuxx)− 6

∫
(Jεmx)(Jεmxux)− 2

∫
(Jεmx)(Jεmxxu).

Using Cauchy–Schwarz’ inequality and Lemma A.2, the first four terms of
the right hand-side can easily be bounded by ‖u‖H2 ‖m‖2H1 , up to a positive
constant independent of ε. The last term in the right hand-side can be
rewritten as ∫

(Jεmx)(uJεmxx) +

∫
(Jεmx)([Jε, uD]mx).

An integration by parts shows that the first term is bounded by ‖ux‖∞ ‖m‖2H1 .
By Cauchy-Schwarz’ inequality and Lemma A.3, the same is true for the sec-
ond term.

(3) Suppose now that 3/2 < σ ≤ q − r. We are going to show that

(5.7)
d

dt
‖Jεm‖2Hσ . ‖u‖Hσ+1 ‖m‖2Hσ ,

for ε ∈ (0, 1]. We have

d

dt
‖Jεm(t)‖2Hσ = −2 〈ΛσJεm,ΛσJε(mxu)〉L2 − 4 〈ΛσJεm,ΛσJε(mux)〉L2 .

Applying Cauchy-Schwarz’ inequality, we first get

〈ΛσJεm,ΛσJε(mux)〉L2 ≤ ‖Jεm‖Hσ ‖Jε(mux)‖Hσ

and, by virtue of (A.2), we have

‖Jεm‖Hσ ‖Jε(mux)‖Hσ . ‖m‖Hσ ‖mux‖Hσ . ‖u‖Hσ+1 ‖m‖2Hσ ,

uniformly in ε (because Hσ(S1) is a multiplicative algebra as soon as σ >
1/2). Observing that Λσ and Jε commute (see Appendix A), we have

(5.8) 〈ΛσJεm,ΛσJε(mxu)〉L2 =

∫
Jε (uΛ

σmx)JεΛ
σm

+

∫
Jε ([Λ

σ , u]mx)JεΛ
σm.

By virtue of Cauchy–Schwarz’ inequality, (A.2) and the Kato–Ponce esti-
mate (Lemma 5.2), the second term in the right hand-side of (5.8) is bounded
(up to a constant independent of ε) by

‖u‖Hσ ‖m‖2Hσ ,

because ‖mx‖∞ . ‖m‖Hσ for σ > 3/2. Introducing the operator L := uD,
the first term in the right hand-side of (5.8) can be written as
∫

(JεLΛ
σm)(JεΛ

σm) =

∫
(LJεΛ

σm)(JεΛ
σm) +

∫
([Jε, L]Λ

σm)(JεΛ
σm).

We have first∫
(LJεΛ

σm)(JεΛ
σm) =

1

2

∫
{(L+ L∗)JεΛ

σm}(JεΛ
σm).
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But, since L+ L∗ = −uxI, we get∫
{(L+ L∗)JεΛ

σm}(JεΛ
σm) . ‖ux‖∞ ‖m‖2Hσ .

Now, using Cauchy–Schwarz’ inequality and Lemma A.3, we have∫
([Jε, L]Λ

σm)(JεΛ
σm) . ‖ux‖∞ ‖m‖2Hσ .

Combining these estimates, we obtain finally

d

dt
‖Jεm(t)‖2Hσ . ‖u‖Hσ+1 ‖m‖2Hσ .

(4) If either σ = 1 or σ > 3/2, we integrate (5.6) or (5.7), respectively,
over [0, t] to get

‖Jεm(t)‖2Hσ ≤ ‖Jεm(0)‖2Hσ + C sup
τ∈[0,t]

‖u(τ)‖Hσ+1

∫ t

0
‖m(τ)‖2Hσ dτ, t ∈ J,

for some positive constant C (independent of ε). Again, letting ε → 0
and invoking (A.1) in combination with Gronwall’s lemma, we conclude
that ‖m(t)‖Hσ is bounded on I, as soon as ‖u(t)‖Hσ+1 is. Therefore, using
an inductive argument, we deduce that ‖u(t)‖Hq is bounded on I. This
completes the proof. �

We next derive estimates on the flow map induced by time-dependent vec-
tor fields. These results are independent of the geodesic flow (2.3). Therefore
we formulate them in some generality. Note that on a general Banach man-
ifold, the flow of a continuous vector field may not exist [7]. However, in the
particular case we consider here, we have the following result.

Proposition 5.3 (Ebin-Marsden, [8]). Let q > 5/2 be given and let u ∈
C0
(
I,Hq(S1)

)
be a time dependent Hq vector field. Then its flow t → ϕ(t)

is a C1 curve in Dq(S1).

Lemma 5.4. Let u ∈ C0
(
J,Hq(S1)

)
be a time dependent vector field with

q > 3/2. Assume that its associated flow ϕ exists and that ϕ ∈ C1(J,Dq(S1)).
If ‖ux‖∞ is bounded on any bounded subinterval of J , then ‖ϕx‖∞ and

‖1/ϕx‖∞ are bounded on any bounded subinterval of J .

Proof. Let

α(t) = max
x∈S1

ϕx(t)(x), and β(t) = max
x∈S1

1/ϕx(t)(x).

Note that α and β are continuous functions. Let I denote any bounded
subinterval of J , and set

K = sup
t∈I

‖ux(t)‖∞ .

From equation ϕt = u ◦ ϕ, we deduce that

ϕtx = (ux ◦ ϕ)ϕx, and (1/ϕx)t = −(ux ◦ ϕ)/ϕx,

and therefore, we get

α(t) ≤ α(0) +K

∫ t

0
α(s) ds and β(t) ≤ β(0) +K

∫ t

0
β(s) ds.

Thus the conclusion follows from Gronwall’s lemma. �
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Lemma 5.5. Let u ∈ C0(J,Hq(S1)) with q > 3/2 be a time-dependent vector

field and assume that its associated flow ϕ exists with ϕ ∈ C1(J,Dq(S1)). If

‖u‖Hq is bounded on any bounded subinterval of J , then ‖ϕx‖Hq−1 is bounded

on any bounded subinterval of J .

Proof. Let I denote any bounded subinterval of J . For 0 ≤ ρ ≤ q − 1, we
have

d

dt
‖ϕx‖

2
Hρ = 2 〈(u ◦ ϕ)x, ϕx〉Hρ . ‖(u ◦ ϕ)x‖Hρ ‖ϕx‖Hρ .

(i) Suppose first that 1/2 < ρ ≤ 1. Invoking (4.1), we get

‖(u ◦ ϕ)x‖Hρ . ‖ux ◦ ϕ‖Hρ ‖ϕx‖Hρ

. C1
ρ (‖1/ϕx‖L∞ , ‖ϕx‖L∞) ‖u‖Hq ‖ϕx‖Hρ .

Therefore, using the fact that ‖ϕx‖∞ and ‖1/ϕx‖∞ are bounded on I by
virtue of Lemma 5.4, we conclude by Gronwall’s lemma that ‖ϕx‖Hρ is
bounded on I, for 0 ≤ ρ ≤ 1.

(ii) Suppose now that 1 ≤ ρ ≤ 2. Invoking (4.3), we get

‖(u ◦ ϕ)x‖Hρ . ‖u ◦ ϕ‖Hρ+1

. C3
ρ+1 (‖1/ϕx‖L∞ , ‖ϕx‖L∞) ‖ϕx‖Hρ ‖u‖Hq .

and we conclude again by Gronwall’s lemma that ‖ϕx‖Hρ is bounded on I,
for 0 ≤ ρ ≤ 2.

(iii) Suppose finally that ρ ≥ 3. Invoking (4.4), we get

‖(u ◦ ϕ)x‖Hρ . ‖u ◦ ϕ‖Hρ+1

. C4
ρ+1 (‖1/ϕx‖L∞ , ‖ϕx‖Hρ−1) ‖ϕx‖Hρ ‖u‖Hq .

and we conclude by an induction argument on ρ that ‖ϕx‖Hρ is bounded on
I for 0 ≤ ρ ≤ q − 1. This completes the proof. �

Theorem 5.6. Let r ≥ 2 and q ≥ r + 1. Assume that conditions 2.2 are

satisfied and let

(ϕ, v) ∈ C∞((t−, t+), TDq(S1))

denote the non-extendable solution of the geodesic flow (2.3), emanating

from

(ϕ0, v0) ∈ TDq(S1).

If the Eulerian velocity u = v ◦ ϕ−1 satisfies the estimate

(5.9) inf
t∈[0,t+)

(
min
x∈S1

{ux(t, x)}

)
> −∞,

then t+ = ∞. A similar statement holds for t−.

Proof. Assume that t+ < ∞ and that estimate (5.9) holds. In view of The-
orem 5.1 we conclude that ‖u‖Hq is bounded on [0, t+). By Lemma 5.4 we
get furthermore that ‖ϕx‖∞, and ‖1/ϕx‖∞ are bounded on [0, t+) and by
Lemma 5.5 we know that ‖ϕx‖Hq−1 is bounded on [0, t+). We obtain there-
fore that ‖v‖Hq is bounded on [0, t+), by virtue of Lemma 4.2. Therefore,
we deduce that

dq(ϕ0, ϕ(t)) + ‖v(t)‖Hq
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is bounded on [0, t+). But this contradicts Corollary 4.3 which shows that

lim
t↑t+

[d(ϕ0, ϕ(t)) + ‖v(t)‖Hq ] = +∞.

as soon as t+ < +∞. �

Theorem 1.1 follows from Theorem 5.6 and Lemma 2.5 in combination
with Sobolev’s embedding Theorem.

Remark 4. The same conclusion holds for the weak Riemannian metric in-
duced by any inertia operator A of order r > 3 and satisfying presupposi-
tion 2.2, because then the norm

‖u‖A := 〈Au, u〉L2

is equivalent to the Hr/2-norm.

Appendix A. Friedrichs mollifiers

Friedrichs mollifiers were introduced by Kurt Otto Friedrichs in [13]. We
briefly recall the construction for periodic functions (see [18] for more de-
tails). Let ρ be a nonnegative, even, smooth bump function of total weight
1 and supported in (−1/2, 1/2). We set

ρǫ(x) :=
1

ε
ρ
(x
ε

)
,

and define the Friedrichs’ mollifer Jε as the operator

Jεu = ρǫ ∗ u,

where ∗ denotes the convolution. Note that if u ∈ L2(S1), then Jεu ∈
C∞(S1) and that Jε is a bounded operator from L2(S1) to Hq(S1) for any
q ≥ 0.

The operator Jε is a Fourier multiplier. Thus it commutes with any other
Fourier multiplier, in particular with the spatial derivative D. It commutes
of course also with temporal derivative ∂t for functions depending on (t, x) ∈
R×S

1. Note also that Jε is symmetric with respect to the L2 scalar product.
The main properties of Jε that have been used in this paper are the following.

Lemma A.1. Given q ≥ 0 and u ∈ Hq(S1), then

(A.1) ‖Jεu− u‖Hq → 0, as ε → 0.

Lemma A.1 is a classical result. Its proof can be found in [1, Lemma
3.15]), for instance.

Lemma A.2. We have

(A.2) ‖Jεu‖Hq . ‖u‖Hq , ∀u ∈ Hq(S1),

uniformly in ε ∈ (0, 1] and q ≥ 0.

The proof of Lemma A.2 is a consequence of the following special case of
Young’s inequality ([23, Theorem 2.2, Chapter 1])

(A.3) ‖f ∗ u‖L2 . ‖f‖L1 ‖u‖L2 ,

and the fact that Λq and Jε commute.
Finally, we have been using the following commutator estimate on [Jε, uD].
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Lemma A.3. Let u ∈ C1(S1) and m ∈ L2(S1). Then

‖Jε(umx)− uJε(mx)‖L2 . ‖ux‖∞ ‖m‖L2 ,

uniformly in ε ∈ (0, 1].

Proof. Let u ∈ C1(S1). Note first that the linear operator

Kε(m) := Jε(umx)− uJε(mx),

defined on C∞(S1), is an integral operator with kernel

kε(x, y) =
∂

∂y
{(u(x)− u(y))ρε(x− y)} .

We have therefore

(A.4) Kε(m) = −ρε ∗ (uxm)−

∫

S1

ρ′ε(x− y)[u(x) − u(y)]m(y) dy.

By virtue of Young’s inequality (A.3), the L2-norm of the first term of the
right hand-side of (A.4) is bounded (up to some positive constant indepen-
dent of ε) by

‖ρε‖L1 ‖uxm‖L2 ≤ ‖ux‖∞ ‖m‖L2 ,

because ‖ρε‖L1 = 1. The L2 norm of the second term of the right hand-side
of (A.4) is bounded by

(ε ‖ux‖∞)
∥∥ρ′ε ∗m

∥∥
L2 ,

because the support of ρε is contained in [−ε/2, ε/2]. Using again Young’s
inequality (A.3), we get then

∥∥ρ′ε ∗m
∥∥
L2 .

∥∥ρ′ε
∥∥
L1 ‖m‖L2 .

1

ε
‖m‖L2 ,

because ‖ρ′ε‖L1 = O(1/ε). This concludes the proof. �
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