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A Global Homogeneity Test for

High-Dimensional Linear Regression

Camille Charbonnier∗ , Nicolas Verzelen† and Fanny Villers‡

Abstract: This paper is motivated by the comparison of genetic networks based
on microarray samples. The aim is to test whether the differences observed between
two inferred Gaussian graphical models come from real differences or arise from
estimation uncertainties. Adopting a neighborhood approach, we consider a two-
sample linear regression model with random design and propose a procedure to test
whether these two regressions are the same. Relying on multiple testing and variable
selection strategies, we develop a testing procedure that applies to high-dimensional
settings where the number of covariates p is larger than the number of observations
n1 and n2 of the two samples. Both type I and type II errors are explicitely controlled
from a non-asymptotic perspective and the test is proved to be minimax adaptive to
the sparsity. The performances of the test are evaluated on simulated data. Moreover,
we illustrate how this procedure can be used to compare genetic networks on Hess
et al breast cancer microarray dataset.

AMS 2000 subject classifications: Primary 62H15; secondary 62P10.
Keywords and phrases: Gaussian graphical model, two-sample hypothesis testing,
high-dimensional statistics, multiple testing, adaptive testing, minimax hypothesis
testing, detection boundary.

1. Introduction

The recent flood of high-dimensional data has motivated the development of a vast range
of sparse estimators, in particular a large variety of derivatives from the Lasso. If the-
oretical guarantees have been provided in terms of prediction, estimation and selection
performances (among a lot of others [6, 42, 28]), only a rather small proportion of the
research effort has focused on quantifying the uncertainty surrounding the estimate on a
given data set with given design proportions, be it in terms of confidence intervals or para-
metric hypothesis testing schemes guaranteeing a control on type I errors. Yet, quantifying
the uncertainty is essential in applications where further experiments or developments rely
on selected models and estimated coefficients.

This paper is mainly motivated by the validation of differences observed between
Gaussian graphical models inferred from transcriptomic data from two subpopulations
([26],[15],[11]) when looking for potentially new drug or knock-out targets [20]. Following
the development of differential analysis techniques, there is now a surging need for statis-
tical validations of differential regulations between pairs of conditions. Of course, graph
theory comes with a vast literature about graph comparisons. Yet, we would like to stress
that the objective here is not to compare two graphical structures taken for granted, but
to test whether the divergences in estimated graphical structures could come from estima-
tion uncertainties or unveil actual differences between biological mechanisms. Adopting a
neighborhood selection approach [26], hypothesis testing in the Gaussian graphical model
can be solved via multiple hypothesis testing in the usual linear regression framework [40].

Therefore in the sequel we keep this motivation in mind but adopt the more general
theoretical framework of high-dimensional linear regression. Formally, we consider the
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following statistical model

Y (1) = X(1)β(1) + ε(1) (1)

Y (2) = X(2)β(2) + ε(2) , (2)

where the size p row vectors X(1) and X(2) follow Gaussian distributions N (0p,Σ
(1)) and

N (0p,Σ
(2)), whose covariance matrices remain unknown. The noise components ε(1) and

ε(2) are independent from the design matrices and follow a centered Gaussian distribution
with unknown standard deviations σ(1) and σ(2). In this formal setting, our objective is
to develop a test for the equality of β(1) and β(2) which remains valid in high-dimension.

1.1. Related results

The literature on high-dimensional two-sample tests is very light. In the context of high-
dimensional two-sample comparison of means, [4, 33, 10, 25] have introduced global tests
to compare the means of two high-dimensional Gaussian vectors with unknown vari-
ance. Recently, [8, 23] developped a two-sample test for covariance matrices of two high-
dimensional vectors.

In contrast, the one-sample analog of our problem has recently attracted a lot of at-
tention, offering as many theoretical bases for extension to the two-sample problem. In
fact, the high-dimensional linear regression tests for the nullity of coefficients can be in-
terpreted as a limit of the two-sample test in the case where β(2) is known to be zero, and
the sample size n2 is considered infinite so that we perfectly know the distribution of the
second sample.

There are basically two different objectives in high-dimensional linear testing: the local
approach and the global approach. In the local approach, one considers the p tests of the

nullity of the coefficientsH0,i : β
(1)
i = 0 (i = 1, . . . , p), and the objective is to control error

measures such as the false discovery rate of the resulting multiple testing procedures. In a
way, one aims to assess the statistical significance of the variables. This can be achieved by
providing a confidence region of β(1). In his seminal paper, [37] suggests such a confidence
region for the Lasso estimator but his region inappropriately gives a null variance for all
coefficients which are set to zero. A somewhat answer to this issue would be provided
by Bayesian approaches like the Bayesian Lasso [21], which provides posterior credible
intervals for each coefficient. Two recent papers have also addressed these issues from
a frequentist point of view. [44] provides robust confidence intervals for each individual
component of β building upon the Lasso and the scaled Lasso [2, 35, 36]. Independently,
[7] develop a similar idea, building upon the Ridge estimator. Another line of work in the
local approach, amounts to derive p-values for the nullity of the coefficients. Indeed, [43]
suggests to split the sample in half and apply model selection on the first half in order to
test for the significance of each coefficient using the usual combination of ordinary least
squares and Student t-test on a model of reasonnable size on the second half. To reduce
the dependency of the results to the splitting, [27] advocate to use half-sampling B times,
and aggregate the B p-values obtained for variable j in a way which controls either the
family-wise error rate or false discovery rate.

In the global approach, the objective is to test the null hypothesis H0 : β(1) = 0. If
the global approach is clearly less informative than approaches providing individual sig-
nificance tests like [27, 44, 7], global approaches can reach better performances for fewer
sample sizes. The idea of [41], based upon the work of [5], is to approximate the alternative

H1 : β(1) 6= 0 by a collection of tractable alternatives {HS1 : ∃j ∈ S , β
(1)
j 6= 0, S ∈ S}

working on subsets S ⊂ {1, . . . , p} of reasonable size. The null hypothesis is rejected if
the null hypothesis HS0 is rejected for at least one the collection S ∈ S. If the resulting
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procedure is computationally intensive, it is non-asymptotically minimax adaptive to the
unknown sparsity of β(1), that is it achieves the optimal rate of detection without any
assumption on the population covariance Σ(1) of the covariates. Another series of work
relies on the higher-criticism. Higher-criticism was originally introduced in orthonormal
designs [14], but has been proved to reach optimal detection rates in high-dimensional
linear regression as well [3, 19]. In the end, higher-criticism is highly competitive in terms
of computing time, and achieves the asymptotic rate of detection with the optimal con-
stants. However, these nice properties require strong assumptions on the design.

While writing this paper, we came across the parallel work of Städler and Mukherjee
[34], which nicely adapts the screen and clean procedure of Wasserman and Roder [43] as
well as Meinshausen et al. [27] to the two-sample framework. Most importantly, because
they estimate the supports of sample-specific estimators and joint estimator separately in
the screening step, they resort to an elegant estimation of the p-values for the non-nested
likelihood ratio test in the cleaning step. Yet, they do not provide any theoretical controls
on type I error control or power for their overall testing strategy.

In this paper, we will build our testing strategy upon the global approach developed by
[5] and [41]. Contrary to the screen and clean procedure, which can suffer in both steps
from power losses following half-sampling of already small samples, this approach can be
proved to achieve optimal rates of detection.

1.2. Testing hypotheses and form of the design

Suppose that we observe an n1-sample of (Y (1), X(1)) and an n2-sample of (Y (2), X(2))

noted Y(1), Y(2), X(1), and X(2). Defining analogously ε(1) and ε(2), we obtain the de-
compositions Y(1) = X(1)β(1) + ε(1) and Y(2) = X(2)β(2) + ε(2). The objective is to test
whether models (1) and (2) are the same, that is{

H0 : β(1) = β(2) , σ(1) = σ(2) , and Σ(1) = Σ(2)

H1 : β(1) 6= β(2) , σ(1) 6= σ(2) .
(3)

In the null hypothesis, we have included the assumption that the population covariances
of the covariates are equal (Σ(1) = Σ(2)). This choice of assumption is primarely motivated
by our final objective to derive homogeneity tests for Gaussian graphical models.

Furthermore, our assumption can be interpreted as an intermediary case between two
fixed designs settings: design equality (X(1) = X(2)) and arbitrary different design (X(1) 6=
X(2)). In the first case, the two-sample problem amounts to a one-sample problem by
considering Ỹ = Y(1) − Y(2) and it has therefore been studied in the aforementionned
literature. The second case is extremely difficult. Indeed, we show in Section 7 that, in
this particular setting, no test can do better than random guess. Below, we shall prove
that the testing problem (3) is much simpler than fixed and different design and at the
same time more versatile than design equality.

1.3. Our contribution

In this paper, we introduce a novel two-sample testing procedure for testing the homo-
geneity of two high-dimensional regression models (3). This test, which is built upon the
work of [5], is completely data-driven and its type I error is explicitely controlled. Fur-
thermore, it is computationally amenable in a large p and small n setting. Interestingly,
the procedure does not require any half-sampling steps which are known to decrease the
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robustness when the sample size is small. Finally, we prove that this procedure is minimax
adaptive to the sparsity of β(1) and β(2) from a non-asymptotic point of view. Below, we
describe the ideas underlying our approach.

Likelihood ratio statistics used to test such hypotheses like H0 in the classical large n,
small p setting are untractable on high-dimensional datasets for the mere reason that
the maximum likelihood estimator is not itself defined under high-dimensional design
proportions. Our approach approximates the untractable high-dimensional test by a mul-
tiple testing construction, similarly to the strategy developped by [5] in order to derive
statistical tests against non-parametric alternatives and adapted to one sample tests for
high-dimensional linear regression in [41]. The testing strategy relies on the fundamental
assumption that either the true supports of β(1) and β(2) are sparse or that their difference
β(1)−β(2) is sparse, so that the test can be successfully led in a subset S? ⊂ {1, . . . , p} of
variables with reasonnable size, compared to the sample sizes n1 and n2. Of course, this
low dimensional subset S? is unknown. The whole objective of the testing strategy is to
achieve similar rates of detection (up to a logarithmic constant) as an oracle test which
would know in advance the optimal low-dimensional subset S?.

If S stands for any subset of {1, . . . , p} satisfying 2|S| ≤ n1∧n2, we define the following
restricted linear regression model :{

Y(1) = X
(1)
S β

(1)
S + ε

(1)
S

Y(2) = X
(2)
S β

(2)
S + ε

(2)
S ,

where X
(1)
S and X

(2)
S represent the restriction of the random vectors X(1) and X(2) to

covariates indexed by S, with covariance structures Σ
(1)
S and Σ

(2)
S respectively. Of course,

ε
(1)
S and ε

(2)
S follow centered Gaussian distributions with new unkwown conditional stan-

dard deviations σ
(1)
S and σ

(2)
S . Coefficients β

(1)
S and β

(2)
S represent the coefficients of the

orthogonal linear projection of Y(1) and Y(2) upon the spaces generated by X
(1)
S and X

(2)
S

respectively. We now state the test hypotheses in reduced dimension:{
H0,S : β

(1)
S = β

(2)
S , σ

(1)
S = σ

(2)
S , and Σ

(1)
S = Σ

(2)
S ,

H1,S : β
(1)
S 6= β

(2)
S , or σ

(1)
S 6= σ

(2)
S .

Of course, there is no reason in general for β
(1)
S and β

(2)
S to coincide with the restrictions

of β(1) and β(2) to S, even less in high-dimension since variables in S can be in all likelihood
correlated with covariates in Sc. Yet, as exhibited by Lemma 1.1, there is still a strong link
between the collection of low dimension hypotheses H0,S and the global null hypothesis
H0.

Lemma 1.1. The hypothesis H0 implies H0,S for any subset S ⊂ {1, . . . p}.

Proof. Under H0, the random vectors of size p+1 (Y (1), X(1)) and (Y (2), X(2)) follow the

same distribution. Hence, for any subset S, Y (1) follows conditionally on X
(1)
S the same

distribution as Y (2) conditionnally on X
(2)
S . In other words, β

(1)
S = β

(2)
S .

By contraposition, it suffices to reject at least one of the H0,S hypotheses to reject the
global null hypothesis. This fundamental observation motivates our testing procedure.
The idea is to build a multiple testing procedure that considers the testing problems H0,S

against H1,S for a collection of subsets S. Obviously, it would be prohibitive in terms
of algorithmic complexity to test for each null hypothesis H0,S for each S ⊂ {1, . . . , p},
since there would be 2p such sets. As a result, we restrain ourselves to a relatively small
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collection of hypotheses {H0,S , S ∈ Ŝ}, where the collection of supports Ŝ is potentially
data-driven. If the collection S is judiciously selected, then we can manage not to lose too
much power compared to the exhaustive search.

Concretely, we proceed in three steps :

1. We define new parametric statistics for testing H0,S against H1,S . These statistics
are related to the likelihood ratio statistic between the conditional distributions
Y (1)|X(1)

S and Y (2)|X(2)
S . Even if the distribution of these relevant statistics are

free from any unknown parameter, it is computationally intensive to estimate the
p-value by Monte-Carlo. This is why we provide an explicit and non-asymptotic
upper bound of the p-values corresponding to these statistics.

2. We define algorithms aiming to select a data-driven collection of subsets Ŝ iden-
tified as most informative for our testing problem. These collections rely on the
regularization path of the Lasso applied to a reparametrized linear model.

3. We define two calibration procedures wich both guarantee a control on type-I error:

• we use a Bonferroni calibration which is both computationally and conceptually
simple;

• we define a calibration procedure based upon permutations to reach a fine
tuning of multiple testing calibration in practice, for an increase in empirical
power.

After a short clarification of the notations, we devote Section 2 to the description of
the adaptive likelihood-ratio procedure, along with theoretical controls of type-I error.
Section 3 provides a non-asymptotic control of the power. Then, we derive that our test-
ing procedure is minimax adaptive to the sparsity. Additional results on the power are
postponed to Section 5. Section 4 provides simulated experiments comparing the perfor-
mances of the suggested procedures along with an illustration of how to use this stragegy
to compare Gaussian graphical models inferred from microarray samples. Section 7 pro-
vides additional details about the technique used in Section 2 to control the quantiles of
the likelihood-ratio statistic. Finally, all the proofs are postponed to Section 8.

1.4. Notation

In the sequel, `p norms are denoted | · |p, except for the l2 norm which is referred as ‖.‖ to
alleviate notations. For any positive definite matrix Σ, ‖.‖Σ denotes the Euclidean norm
associated with the scalar product induced by Σ: for every vector x, ‖x‖2Σ = xᵀΣx. Besides,
for every set S, |S| denote its cardinality. For any integer k, Ik stands for the identity
matrix of size k. For any square matrix A, ϕmax(A) and ϕmin(A) denote respectively
the maximum and minimum eigenvalues of A. When the context makes it obvious, we
may omit to mention A to alleviate notations and use ϕmax and ϕmin instead. Moreover,
Y refers to the size n1 + n2 concatenation of Y(1) and Y(2) and X refers to the size
(n1 + n2)× p the concatenation of X(1) and X(2).

To finish with, L refers to a positive numerical constant that may vary from line to
line.

2. Adaptive Homogeneity Tests

We now turn to the description of the three major elements required by our strategy:
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1. a parametric statistic to test the hypotheses H0,S ;

2. a well-targeted data-driven collection of models Ŝ;
3. a calibration procedure guaranteeing the control on type I error.

2.1. Parametric Test Statistic

Likelihood-based Statistic. In the following, L(1) (resp. L(2)) denotes the log-likelihood
of the first (resp. second) sample normalized by n1 (resp. n2). Given a subset S ⊂
{1, . . . , p} of size smaller than n1 ∧ n2, (β̂

(1)
S , σ̂

(1)
S ) stands for the maximum likelihood

estimator of (β(1), σ(1)) among vectors β whose supports are included in S. Similarly, we

note (β̂
(2)
S , σ̂

(2)
S ) for the maximum likelihood corresponding to the second sample.

We introduce a new parametric statistic taking the form of a two-sample likelihood-
ratio, measuring the adequacy of sample-specific estimators to the opposite sample. To
do so, let us define the likelihood ratio in sample i between an arbitrary pair (β, σ) and

the corresponding sample-specific estimator
(
β̂

(i)
S , σ̂

(i)
S

)
:

D(i)
ni (β, σ) := L(i)

ni

(
β̂

(i)
S , σ̂

(i)
S

)
− L(i)

ni (β, σ) .

With this definition, D(1)
n1 (β̂(2), σ̂(2)) measures how far (β̂(2), σ̂(2)) is from (β̂(1), σ̂(1)) in

terms of likelihood within sample 1.
We now define the following symmetrized statistic:

FS := 2
[
D(1)
n1

(β̂(2), σ̂(2)) +D(2)
n2

(β̂(1), σ̂(1))
]
. (4)

The statistic FS amounts to comparing the estimators (β̂
(1)
S , σ̂

(1)
S ) and (β̂

(2)
S , σ̂

(2)
S ) through

their corresponding log-likelihoods. In order to simplify the forthcoming analysis, we de-
compose the test statistic FS into the sum of three terms FS,1 + FS,2 + FS,3, where

FS,1 = −2 +
‖Y(1) −X(1)β̂

(1)
S ‖2/n1

‖Y(2) −X(2)β̂
(2)
S ‖2/n2

+
‖Y(2) −X(2)β̂

(2)
S ‖2/n2

‖Y(1) −X(1)β̂
(1)
S ‖2/n1

FS,2 =
‖X(2)

S (β̂
(1)
S − β̂

(2)
S )‖2/n2

‖Y(1) −X(1)β̂
(1)
S ‖2/n1

FS,3 =
‖X(1)

S (β̂
(1)
S − β̂

(2)
S )‖2/n1

‖Y(2) −X(2)β̂
(2)
S ‖2/n2

.

This decomposition highlights the different distances at stake in FS . While the first term
FS,1 evaluates the discrepancies in terms of conditional variances, the last two terms FS,2
and FS,3 address the comparison of β(1) to β(2).

We characterize the distribution of FS via the distribution of each of these terms under
H0,S , given in Proposition 2.1. To simplify notations, we denote by g the non-negative
function defined on R+ mapping x to −2 + x+ 1/x.

Proposition 2.1 (Conditional distributions of FS,1, FS,2 and FS,3 under H0,S).

1. Let Z denote a Fisher random variable with (n1 − |S|, n2 − |S|) degrees of freedom.
Then, under the null hypothesis,

FS,1|XS ∼
H0,S

g

[
Z
n2(n1 − |S|)
n1(n2 − |S|)

]
.
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2. Let Z1 and Z2 be two centered and independent Gaussian vectors with covariance

X
(2)
S

[
(X

(1)∗
S X

(1)
S )−1 + (X

(2)∗
S X

(2)
S )−1

]
X

(2)∗
S and In1−|S|. Then, under the null hy-

pothesis,

FS,2|XS ∼
H0,S

‖Z1‖2/n2

‖Z2‖2/n1
.

A symmetric result holds for FS,3.

Because the statistics FS and FS,i, i = 1, . . . , 3 are naturally increasing with the size
of model S, the only way to calibrate the multiple testing step over a collection of models
of various sizes is to convert the statistics to a unique common scale. The most natural
is to convert observed FS,i’s into p-values. In the sequel, we note Q1,|S|(u|XS) (resp.

Q2,|S|(u|XS) and Q3,|S|(u|XS)) for the conditional probability that FS,1 (resp. FS,2 and

FS,3) is larger than u. With this notation, Qi,|S|(FS,i|XS) denotes the p-value associated
with FS,i, conditional on XS .

Although the distributions identified in Proposition 2.1 are not familiar distributions
with ready-to-use quantile tables, they all share the advantage that they do not depend
on any unknown quantity, such as design variances Σ(1) and Σ(2), noise variances σ(1)

and σ(2), or even true signals β(1) and β(2). By Proposition 2.1, the p-value Q1,|S|(x|XS)
is easily computed from distribution function of a Fisher random variable. Since the
conditional distribution of FS,2 given XS only depends on |S|, n1, n2, and XS , one could
compute an estimation of the p-value Q2(u|XS) associated with an observed value u by
Monte-Carlo simulations. However, this approach is computationally prohibitive for large
collections of subsets S. This is why we use instead an explicit upper bound ofQ2,|S|(u|XS)
based on Laplace method, as given by Proposition 2.2.

Proposition 2.2 (Upper-bound on FS,2 and FS,3 quantiles). Let us note a = (a1, . . . , a|S|)
the positive eigenvalues of

n1

n2(n1 − |S|)
X

(2)
S

[
(X

(1)∗
S X

(1)
S )−1 + (X

(2)∗
S X

(2)
S )−1

]
X

(2)∗
S .

For any u > |a|1, take

Q̃2,|S|(u|XS) := exp

−1

2

|S|∑
i=1

log (1− 2λ∗ai)−
n1 − |S|

2
log

(
1 +

2λ∗u

n1 − |S|

) ,

where λ∗ is explicitely defined in Section 7. Then, for any u > |a|1,

Q2,|S|(u|XS) ≤ Q̃2,|S|(u|XS).

From now on, we use the upper-bounds Q̃i,|S|(FS,i|XS) of the ideal p-values as the test
statistics rather than the original statistics FS,i. To simplify notations, we also denote by

Q̃1,|S| the true p-value Q1,|S| associated with FS,1.

2.2. Choices of Test Collections

Many collections S can be thought of. The ideal collection S must satisfy the best tradeoff
between the inclusion of the maximum number of relevant models S and a reasonable
computing time, which is linear in the size |S| of the collection. In the following, we
distinguish deterministic and data-driven collections, which we differentiate by adding a
hat on data-driven collections Ŝ.
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Deterministic Collections. Among deterministic collections of tests, the most straight-
forward collections consist of all size-k subsets of {1, . . . , p}, which we denote Sk. This
kind of family is interesting in at least two ways. First, it neglects none of the variables:
we cannot miss any signal. Second, it provides collections of tests which are independent
from the data, thereby reducing the risk of overfitting. However, as we allow the model
size k or total number of candidate variables p to grow, these deterministic families can
rapidly reach unreasasonble sizes. Admittedly, S1 always remains feasible, but reducing
the search to models of size 1 can be costly in terms of power. As a variation on size k
models, an interesting collection in terms of theoretical developments is the collection of
all models of size smaller than k, denoted S≤k =

⋃k
j=1 Sj .

Data-driven Collections. In order to investigate models of varying sizes while keeping
the size of the collection moderate, we suggest to derive data-driven collections of tests
Ŝ. The idea is to start from a deterministic family S and define an algorithm mapping
(X(1),X(2),Y(1),Y(2)) to some data-driven collection Ŝ ⊂ S of restricted size. In practice,

we start from S≤Dmax
, where Dmax = b(n1 ∧ n2)/2c, and derive the collection Ŝ from

the Lasso regularization path of a reparametrized joint regression model, presented in
Equation (5). [

Y(1)

Y(2)

]
=

[
X(1) X(1)

X(2) −X(2)

][
θ

(1)
∗

θ
(2)
∗

]
+

[
ε(1)

ε(2)

]
. (5)

In this reparametrized model, θ
(1)
∗ captures the mean effect (β(1) + β(2))/2, while θ

(2)
∗

captures the discrepancy between the sample-specific effect β(i) and the mean effect θ
(1)
∗ ,

that is to say θ
(2)
∗ = (β(1) − β(2))/2. Combining this reparametrization with variable

selection by the Lasso, we aim to select, on the one hand, variables presenting strong

common effects through θ
(1)
∗ , on the other hand, variables presenting strong diverging

effects through θ
(2)
∗ . We build two families of models from this reparametrized model:

first, the increasing family Ŝ(2)
L of variables included by the Lasso in the θ

(2)
∗ part, by

order of activation, second the increasing family Ŝ(1)
L of variables included by the Lasso

algorithm, independently from its activation in the θ
(2)
∗ or θ

(1)
∗ part.

Given λ > 0, we write T̂λ for the support of the Lasso estimator of θ∗ = (θ
(1)
∗ , θ

(2)
∗ )

with tuning parameter λ. Then we build the subsets Ŝ
(1)
λ and Ŝ

(2)
λ of {1, . . . p} by

i ∈ Ŝ(1)
λ ⇔ (i ∈ T̂λ or i+ p ∈ T̂λ) , i ∈ Ŝ(2)

λ ⇔ (i+ p ∈ T̂λ) .

Denote by λ1, λ2, . . . , λkmax the parameter of the Lasso regularization path for regression

model (5). Here kmax is the smallest integer q such that |Ŝ(1)
λq+1
| > Dmax. This allows us

to build the two following families from the reparametrized model:

Ŝ(1)
L = {Ŝ(1)

λk
; k = 1, . . . , kmax}, Ŝ(2)

L = {Ŝ(2)
λk

; k = 1, . . . , kmax}.

The justification of the second subset family is that we want to focus on variables which
have disagreeing effects between the two samples. However, the divergence between effects
might only appear conditionally on other variables with similar effects, this is why the
first subset family is chosen to include both types of variables. In the end, we consider
the collection ŜLasso, consisting of the reunion of both subset families and S1,

ŜLasso := Ŝ(1)
L ∪ Ŝ

(2)
L ∪ S1. (6)

Of course, this part of the testing strategy is highly flexible: any other relevant model
selection strategy can be used.
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2.3. Combining the parametric statistics

The objective of this Section is to calibrate a multiple testing procedure based on the
p-values {(Q̃1,|S|(FS,i|XS), Q̃2,|S|(FS,i|XS), Q̃3,|S|(FS,i|XS)), S ∈ Ŝ}, so that the type-I
error remains smaller than a chosen level α.

When using a data-driven model collection, we must take good care of preventing
the risk overfitting which results from using the same dataset both for model selection
and hypothesis testing. In that purpose, we consider a given a deterministic collection S
of subsets and assume that the data-driven collection Ŝ results from a fixed algorithm
mapping (X(1),X(2),Y(1),Y(2)) to Ŝ ⊂ S. For the sake of simplicity, we assume in the
two following sections that ∅ * S, which merely means that we do not include in the
collection of tests the raw comparison of Var(Y(1)) to Var(Y(2)).

Testing Procedure Given a model collection Ŝ and a sequence α̂ = {αi,S , i =

1, 2, 3, S ∈ Ŝ}, we define the following test function:

T α̂Ŝ =

{
1 if ∃S ∈ Ŝ, ∃i ∈ {1, 2, 3} Q̃i,|S|(FS,i|XS) ≤ αi,S .
0 otherwise.

(7)

In other words, the test function rejects the global null if there exists at least one model
S ∈ S such that at least one of the three p-values is below the corresponding threshold
αi,S .

The next two paragraphs define two different calibrations for multiple testing over the
collection of parametric tests.

Bonferroni Calibration (B). The collection of weights α̂B = {αi,S , S ∈ S} is chosen
such that ∑

S∈S

3∑
i=1

αi,S ≤ α . (8)

For the collection S≤k, or any data-driven collection derived from S≤k, a natural choice
is

α1,S =
α

2k

(
|S|
p

)−1

, α2,S = α3,S =
α

4k

(
|S|
p

)−1

, (9)

which puts as much weight to the comparison of the conditional variances (FS,1) and the

comparison the coefficients ((FS,2, FS,3)). Similarly, for the collection ŜLasso, a natural
choice is (9) with k replaced by b(n1 ∧ n2)/2c. Alternatively, one can give a Bayesian
flavor to the choice of the weights αi,S , S ∈ S.

Denote by TB
Ŝ

the multiple testing procedure associated with the collection of models

Ŝ and the weight sequence α̂B . Proposition 2.3 shows that TB
Ŝ

is a test of size α.

Proposition 2.3 (Size of TB
Ŝ

). The test function TB
Ŝ

satisfies PH0
[TB
Ŝ
< 0] ≤ α.

Remark 2.1 (Bonferroni correction on S and not on Ŝ). Note that even though we

restrict ourselves to the collection Ŝ, the Bonferroni correction must be applied to the
initial deterministic collection S including Ŝ. Indeed, if we replace the condition (8) by

the condition
∑
S∈Ŝ

∑3
i=1 αi,S ≤ α, then the size of the corresponding is not constrained

anymore to be smaller than α. This is due to the fact that we use the same data set to
select Ŝ ⊂ S and to perform the multiple testing procedure. As a simple example, consider
any deterministic collection S and the data-driven collection

Ŝ =

{
arg min

S∈S
min
i=1,2,3

Q̃i,|S| (FS,i|XS)

}
,
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meaning that we select in Ŝ the subset S that minimizes the p-values of the parametric
tests. Thus, computing TB

Ŝ
for this particular collection Ŝ is equivalent to performing a

multiple testing procedure on S.

If procedure TB
Ŝ

is computationally and conceptually simple, the size of the correspond-
ing test can be much lower than α because of three difficulties:

1. Independently from our problem, Bonferroni corrections are known to be too con-
servative under dependence of the test statistics.

2. As emphasized by Remark 2.1, while the Bonferroni correction needs to be based
on the whole collection S, only the subsets S ∈ Ŝ are considered. Provided we could
afford the computational cost of testing all subsets within S, this loss cannot be
compensated for if we use the Bonferroni correction.

3. As underlined in Subsection 2.1, for computational reasons, we do not consider in (7)
the conditional p-value Q2,|S|(FS,2|XS) and Q3,|S|(FS,3|XS) but only upper bounds

Q̃2,|S|(FS,2|XS) and Q̃3,|S|(FS,3|XS) of them. We therefore overestimate the type I
error due to FS,2 and FS,3.

We address the three aforementionned issues applying a permutation approach.

Calibration by permutation (P). The collection of weights α̂P = {αi,S , S ∈ S} is
chosen such that each αi,S remains inversely proportional to

(
p
|S|
)

in order to put all

subsets sizes at equal footage. We also maintain an equal Bonferroni correction at the
p-value level. In other words, we choose a collection of weights of the form

αi,S = Ĉi

(
p

|S|

)−1

, (10)

where Ĉi’s are calibrated by permutation to control the type I error of the global test.
Given a permutation π of the set {1, . . . , n1 + n2}, one gets Yπ and Xπ by permuting

the components of Y and the rows of X. This allows to us to get a new sample (Yπ,(1),

Yπ,(2), Xπ,(1), Xπ,(2)). Using this new sample, we compute a new collection Ŝπ and
parametric statistics FπS,1, FπS,2, FπS,3, respectively. We note P the uniform distribution
over the permutations of size n1 + n2.

We define Ĉ1 as the α/2-quantiles with respect to P of

min
S∈Ŝπ

{
Q̃1,|S|

(
FπS,1|Xπ

S

)( p

|S|

)}
.

Similarly, Ĉ2 = Ĉ3 are the α/2-quantiles with respect to P of

min
S∈Ŝπ

{(
Q̃2,|S|

(
FπS,2|Xπ

S

)∧
Q̃3,|S|

(
FπS,3|Xπ

S

))( p

|S|

)}
.

In practice, we estimate the quantiles Ĉi by sampling a large number N of permutations.
Proposition 2.4 proves that the test TP

Ŝ
associated with the weight sequence α̂P allows to

control the type-I error rate at level α.

Proposition 2.4 (Size of TP
Ŝ

). The test function TP
Ŝ

satisfies

α/2 ≤ PH0

[
TPŜ < 0

]
≤ α .
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Remark 2.2. Through the three constants Ĉ1, Ĉ2 and Ĉ3, this permutation approach
corrects simultaneously for the losses mentioned earlier due to the Bonferroni correction,
in particular the restriction to a data-driven class Ŝ and the upper bounds of QS,2 and

QS,3.

Yet, the level of TP
Ŝ

is not exactly α because we treat separately the two p-values and
apply a Bonferroni correction. It would be possible to calibrate all the statistics simulta-
neously in order to constrain the size of the corresponding test to be exactly α. However,
this last approach would favor the statistic FS,1 too much, because we would put on the

same level the exact p-value QS,1 and the upper bounds Q̃S,2 and Q̃S,3.

3. Power and Adaptation to Sparsity

Let us fix some number δ ∈ (0, 1). The objective is to investigate the set of parameters
(β(1), σ(1), β(2), σ(2)) that enforce the power of the test to exceed 1 − δ. We focus here
on the Bonferroni calibration (B) procedure because the analysis is easier. Section 4 will
illustrate that the permutation calibration (P) outperforms the Bonferroni calibration (B)
in practice. In the sequel, A . B (resp. A & B) means that for some constant L(α, δ)
that only depends on α and δ, A ≤ L(α, δ)B (resp. A ≥ L(α, δ)B).

3.1. Symmetrized Kullback-Leibler divergence

Intuitively, the test TBS should rejectH0 with large probability when (β(1), σ(1)) is far from
(β(2), σ(2)) in some sense. A classical way of measuring the divergence between two dis-
tributions is the Kullback-Leibler discrepancy. In the sequel, we note K

[
PY (1)|X ;PY (2)|X

]
the Kullback discrepancy between the conditional distribution of Y (1) given X(1) = X
and conditional distribution of Y (2) given X(2) = X. Then, we denote K1 the expectation
of this Kullback divergence when X ∼ N (0p,Σ

(1)). Exchanging the roles of Σ(1) and Σ(2),
we also define K2:

K1 := EX(1)

{
K
[
PY (1)|X ;PY (2)|X

]}
, K2 := EX(2)

{
K
[
PY (2)|X ;PY (1)|X

]}
.

The sum K1 + K2 forms a semidistance with respect to (β(1), σ(1)) and (β(2), σ(2)) as
proved by the following decomposition

2 (K1 +K2) =

(
σ(1)

σ(2)

)2

+

(
σ(2)

σ(1)

)2

− 2 +
‖β(2) − β(1)‖2

Σ(2)

(σ(1))2
+
‖β(2) − β(1)‖2

Σ(1)

(σ(2))2
.

When Σ(1) 6= Σ(2), we quantify the discrepancy between these covariance matrices by

ϕΣ(1),Σ(2) := ϕmax

{√
Σ(2)(Σ(1))−1

√
Σ(2) +

√
Σ(1)(Σ(2))−1

√
Σ(1)

}
.

3.2. Power for a deterministic collection S

First, we control the power of TBS for a deterministic collection S = S≤k (with some
k ≤ (n1∧n2)/2) and the Bonferroni calibration weights α̂i,S as in (9). Results for arbitrary
deterministic collections S are postponed to Section 5. For any β ∈ Rp, |β|0 refers to the
size of its support and |β| stands for the vector (|βi|), i = 1, . . . , p. We consider the two
following assumptions

A.1 : log(1/(αδ)) . n1∧n2 .

A.2 : |β(1)|0 + |β(2)|0 . k∧
(
n1 ∧ n2

log(p)

)
, log(p) ≤ n1 ∧n2 .
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Remark 3.1. Condition A.1 requires that the type I and type II errors under consider-
ation are not exponentially smaller than the sample size. Condition A.2 tells us that the
number of non-zero components of β(1) and β(2) has to be smaller than (n1 ∧ n2)/ log(p).
This requirement has been shown [39] to be minimal to obtain fast rates of testing of the
form (11) in the specific case β(2) = 0, σ(1) = σ(2) and n2 =∞.

Theorem 3.1 (Power of TBS≤k). Assuming that A.1 and A.2 hold, P[TBS≤k = 1] ≥ 1− δ
as long as

K1 +K2 & ϕΣ(1),Σ(2)

{
|β(1)|0 ∨ |β(2)|0 ∨ 1

}
log (p) + log

(
1
αδ

)
n1 ∧ n2

. (11)

If we further assume that Σ(1) = Σ(2) := Σ, then P[TBS≤k = 1] ≥ 1− δ as long as

‖β(1) − β(2)‖2Σ
Var[Y (1)] ∧Var[Y (2)]

&
|β(1) − β(2)|0 log (p) + log

(
1
αδ

)
n1 ∧ n2

. (12)

Remark 3.2. The condition Σ(1) = Σ(2) is not necessary to control the power of TBS≤k
in terms of |β(1)−β(2)|0 as in (12). However, the expression (12) would become far more
involved.

Remark 3.3. Before assessing the optimality of Theorem 3.1, let us briefly compare the
two rates of detection (11) and (12). According to (11), TBS≤k is powerful as soon as the

symmetrized Kullback distance is large compared {|β(1)|0 ∨ |β(2)|0} log (p) /(n1 ∧ n2). In
contrast, (12) tells us that TBS≤k is powerful when ‖β(1) − β(2)‖2Σ/(Var[Y (1)] ∧ Var[Y (2)])

is large compared to the sparsity of the difference: |β(1) − β(2)|0 log (p) /(n1 ∧ n2).
When β(1) and β(2) have many non-zero coefficients in common, |β(1)−β(2)|0 is much

smaller than |β(1)|0 ∨ |β(2)|0. Furthermore, the left-hand side of (12) is of the same order
as K1 +K2 when Σ(1) = Σ(2), σ(1) = σ(2) and ‖β(i)‖Σ/σ(i) . 1 for i = 1, 2, that is when
the conditional variances are equal and when the signals ‖β(i)‖Σ are at most at the same
order as the noises levels σ(i). In such a case, (12) outperforms (11) and only the sparsity
of the difference β(1) − β(2) plays a role in the detection rates. Below, we prove that both
(11) and (12) are both optimal from a minimax point of view but on different sets.

Proposition 3.2 (Minimax lower bounds). Assume that p ≥ 5, Σ(1) = Σ(2) = Ip, fix
some γ > 0, and fix (α, δ) such that α + δ < 53%. There exist two constants L(γ) and
L′(γ) such that the following holds.

• For all 1 ≤ s ≤ p1/2−γ no level-α test has a power larger than 1− δ simultaneously
over all s-sparse vectors (β(1), β(2)) satisfying A.2 and

K1 +K2 ≥ L(α, δ, γ)
s

n1 ∧ n2
log (p) . (13)

• For all 1 ≤ s ≤ p1/2−γ , no level-α test has a power larger than 1− δ simultaneously
over all sparse vectors (β(1), β(2)) satisfying A.2, |β(1)−β(2)|0 ≤ s, ‖β(1)‖Ip ≤ σ(1),

‖β(2)‖Ip ≤ σ(2) and

‖β(1) − β(2)‖2Ip
Var[Y (1)] ∧Var[Y (2)]

≥ L′(α, δ, γ)
s

n1 ∧ n2
log (p) . (14)

The proof (in Section 8) is a straightforward application of minimax lower bounds
obtained for the one-sample testing problem [41, 3].
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Remark 3.4. Equation (11) together with (13) tells us that TBS≤k simultaneously achieves

(up to a constant) the optimal rates of detection over s-sparse vectors β(1) and β(2) for
all

s . k ∧ p1/2−γ ∧ n1 ∧ n2

log(p)
,

for any γ > 0. If the minimax lower bound is only proved for Σ(1) = Σ(2) = Ip, the
detection rate (11) of TBS≤k is valid for any (Σ(1),Σ(2)).

Remark 3.5. Equation (12) together with (14) tells us that TBS≤k simultaneously achieves

(up to a constant) the optimal rates of detection over s-sparse differences β(1) − β(2)

satisfying ‖β
(1)‖Σ
σ(1) ∨ ‖β

(2)‖Σ
σ(2) ≤ 1 for all s . k ∧ p1/2−γ ∧ n1∧n2

log(p) .

Remark 3.6 (Informal justification of the introduction of the collection ŜLasso). If we look
at the proof of Theorem 3.1, we observe that the power (11) is achieved by the statistics
(FS∪,1, FS∪,2, FS∪,3) where S∪ is the union of the support of β(1) and β(2). In contrast, (12)
is achieved by the statistics (FS∆,1, FS∆,2, FS∆,3) where S∆ is the support of β(1) − β(2).

Intuitively, the idea underlying the collection Ŝ(1)
L in the definition (6) of ŜLasso is to

estimate S∪, while the idea underlying the collection Ŝ(2)
L is to estimate S∆.

3.3. Power of TB
ŜLasso

For the sake of simplicity, we restrict here to the case n1 = n2 := n, more general
results being postponed to Section 5. The test TBS≤n/2 is computationally expensive (non

polynomial with respect to p). The collection ŜLasso has been introduced to fix this burden.
We consider TB

ŜLasso
with the prescribed Bonferroni calibration weights α̂i,S (as in (9) with

k replaced by b(n1 ∧ n2)/2c. In the statements below, ψ
(1)

Σ(1),Σ(2) , ψ
(1)

Σ(1),Σ(2) ,. . . refer to

positive quantities that only depend on the largest and the smallest eigenvalues of Σ(1)

and Σ(2). Consider the additional assumptions

A.3 : |β(1)|0∨|β(2)|0 . ψ
(1)

Σ(1),Σ(2)

n

log(p)
.

A.4 : |β(1)|0 ∨ |β(2)|0 . ψ
(2)

Σ(1),Σ(2)

√
n

log(p)
.

Theorem 3.3. Assuming that A.1 and A.3 hold, we have P[TB
ŜLasso

= 1] ≥ 1− δ as long
as

K1 +K2 & ψ
(3)

Σ(1),Σ(2)

{
|β(1)|0 ∨ |β(2)|0 ∨ 1

}
log (p) + log

(
1
αδ

)
n

. (15)

If Σ(1) = Σ(2) = Σ and if A.1 and A.4 hold, then P[TB
ŜLasso

= 1] ≥ 1− δ as long as

‖β(1) − β(2)‖2Σ
Var[Y (1)] ∧Var[Y (2)]

& ψ
(4)
Σ,Σ

|β(1) − β(2)|0 log (p) + log
(

1
αδ

)
n

. (16)

Remark 3.7. The rates of detection (15) and the sparsity condition A.3 are analogous
to (11) and Condition A.2 in Theorem 3.1 for TBS≤(n1∧n2)/2

. The second result (16) is also

similar to (12). As a consequence, TB
ŜLasso

is minimax adaptive to the sparsity of (β1, β
(2))

and of β(1) − β(2).
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Remark 3.8. Dependencies of A.3, A.4, (15) and (16) on Σ(1) and Σ(2) are unavoid-

able because the collection ŜLasso is based on the Lasso estimator which require design
assumptions to work well [9]. Nevertheless, one can improve all these dependencies us-
ing restricted eigenvalues instead of largest eigenvalues. This and other extensions are
considered in Section 5.

4. Numerical Experiments

This section evaluates the performances of the suggested test statistics along with afore-
mentioned test collections and calibrations on simulated linear regression datasets. An
illustration of how to adapt this testing strategy to the global comparison of Gaussian
graphical models inferred from real transcriptomic data is given in the second part.

4.1. Synthetic Linear Regression Data

In order to calibrate the difficulty of the testing task, we simulate our data according to
the rare and weak parametrization adopted in [3]. We choose a large but still reasonable
number of variables p = 200, and restrict ourselves to cases where the number of observa-
tions n = n1 = n2 in each sample remains smaller than p. The sparsity of sample-specific
coefficients β(1) and β(2) is parametrized by the number of non zero common coefficients
p1−η and the number of non zero coefficients p1−η2 which are specific to β(2). The mag-
nitude µr of all non zero coefficients is set to a common value of

√
2r log p, where we let

the magnitude parameter range from r = 0 to r = 0.5:

β(1) = (µr µr . . . µr 0 . . . 0 0 . . . 0)
β(2) = (µr µr . . . µr︸ ︷︷ ︸

p1−η common coefficients

µr . . . µr︸ ︷︷ ︸
p1−η2 sample-2-specific coefficients

0 . . . 0)

We consider three sample sizes n = 25, 50, 100, and generate two sub-samples of equal
size n1 = n2 = n according to the following sample specific linear regression models:{

Y(1) = X(1)β(1) + ε(1),
Y(2) = X(2)β(2) + ε(2).

Design matrices X(1) and X(2) are generated by multivariate Gaussian distributions,

X
(j)
i ∼ N (0,Σ(j)) with varying choices of Σ(j), as detailed below. Noise components ε

(1)
i

and ε
(2)
i are generated independantly from X(1) and X(2) according to a standard centered

Gaussian distribution.
The next two paragraphs detail the different design scenarios under study as well as

test statistics, collections and calibrations in competition. Each experiment is repeated
1000 times.

Design Scenarios Under Study.

Sparsity Patterns. We study six different sparsity patterns as summarized in Table 1.
The first two are meant to validate type I error control. The last four allow us to compare
the performances of the various test statistics, collections and calibrations under different
sparsity levels and proportions of shared coefficients. In all cases, the choices of sparsity
parameters η and η2 lead to strong to very strong levels of sparsity. The last column
of Table 1 illustrates the signal sparsity patterns of β(1) and β(2) associated with each
scenario. In scenarios 1 and 2, sample-specific signals share little, if not none, non zero
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coefficient. In scenarios 3 and 4, sample-specific coefficients show some overlap. Scenario 4
is the most difficult one since the number of sample-2-specific coefficients is much smaller
than the number of common non zero coefficients: the sparsity of the difference between
β(1) and β(2) is much smaller than the global sparsity of β(2). This explains why the
illustration in the last column might be misleading: the two patterns are not equal but
do actually differ by only one covariate.

Beyond those six varying sparsity patterns, we consider three different correlation struc-
tures Σ(1) and Σ(2) for the generation of the design matrix. In all three cases, we assume
that Σ(1) = Σ(2) = Σ. On top of the basic orthogonal matrix Σ(1) = Σ(2) = Ip, we
investigate two randomly generated correlation structures.

Power Decay Correlation Structure. First, we consider a power decay correlation struc-
ture such that Σi,j = ρ|i−j|. Since the sparsity pattern of β(1) and β(2) is linked to the
order of the covariates, we randomly permute at each run the columns and rows of Σ in
order to make sure the correlation structure is independent from the sparsity pattern.

Gaussian Graphical Model Structure. Second, we simulate correlation structures cor-
responding to a Gaussian graphical model with an affiliation structure between three
clusters, as generated by the GGMselect R package. A new structure is generated at each
run.

Both random correlation structures are calibrated such that, on average, each covariate
is correlated with 10 other covariates with correlations above 0.2 in absolute value. This
corresponds to fixing ρ at a value of 0.75 in the power decay correlation structure and the
intra-cluster connectivity coefficient to 5% in the Gaussian graphical model structure.

Test statistics, collections and calibrations in competition In the following, we
present the results of the proposed test statistics combined with two test collections,
namely a deterministic and data-driven model collection, respectively S1 and ŜLasso, as
well as with a Bonferroni (B) or Permutation (P) calibration (computed with 100 random
permutations).

Furthermore, to put those results in perspective, we compare the suggested test statistic

to the usual likelihood ratio statistic for the equality of β
(1)
S and β

(2)
S , which follows a Fisher

distribution with |S| and n1 + n2 − 2|S| degrees of freedom, for a given support |S| of
reduced dimension:

FiS =
‖Y −XS β̂S‖2 − ‖Y(1) −X

(1)
S β̂

(1)
S ‖2 − ‖Y(2) −X

(2)
S β̂

(2)
S ‖2

‖Y(1) −X
(1)
S β̂

(1)
S ‖2 + ‖Y(2) −X

(2)
S β̂

(2)
S ‖2

n1 + n2 − 2|S|
|S|

, (17)

where β̂S is the maximum likelihood estimator restricted to covariates in support S on the
concatenated sample (X,Y). If this statistic FiS is able to detect differences between β(1)

and β(2), it is not really suited for detecting differences between the standard deviatons
σ(1) and σ(2).

The Fisher statistic FiS is adapted to the high-dimensional framework similarly as
the suggested statistics (FS,1, FS,2, FS,3), except that exact p-values are available. The

corresponding test with a collection Ŝ and a Bonferroni (resp. permutation) calibration

is denotes TB,Fisher

Ŝ
(TP,Fisher

Ŝ
).

Validation of Type I Error Control
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Setting η ] common η2 ] β(2) specific Signals

H00 - 0 - 0
β(2)

β(1)

H0 5/8 7 - 0
β(2)

β(1)

1 - 0 5/8 7
β(2)

β(1)

2 7/8 1 5/8 7
β(2)

β(1)

3 5/8 7 5/8 7
β(2)

β(1)

4 5/8 7 7/8 1
β(2)

β(1)

Table 1
Summary of the six different sparsity patterns under study.

Control Under the Global Null Hypothesis H00. Table 2 presents level checks under a
restricted null hypothesis H00, such that β(1) = β(2) = 0, along with 95% Gaussian
confidence intervals.

As expected, the Bonferroni calibration combined with the majoration of quantiles or
data-driven test collections is, by far, much too conservative. Even with the likelihood
ratio statistic, for which we know the exact p-value, it is unthinkable to use Bonferroni
calibration as soon as we adopt data-driven test collections instead of deterministic ones.

Control Under the Global Equality of Non Null Coefficients H0. Figures 1 and 2 present
level checks under H0 but with non null β(1) = β(2) 6= 0, under respectively orthogonal
and non-orthogonal correlation structures. Conclusions are perfectly similar to the case
H00: all methods behave well, except the Bonferroni calibration which is as conservative
as expected for T ∗

Ŝ
(using any test collection) and for T ∗,Fisher

Ŝ
as soon as we use the

data-driven test collection ŜLasso instead of the deterministic collection S1.

Power Analysis. Figure 3 represents power performances for the suggested test T ∗
Ŝ

and

the usual likelihood ratio test T ∗,Fisher

Ŝ
combined with either S1 or ŜLasso test collections

using a calibration by permutation under an orthogonal covariance matrix Σ. Figure 4
represents equivalent results for power decay and GGM covariance structures.

In the absence of common coefficients (scenarios 1 and 2), the suggested test T ∗
Ŝ

reaches

100% power from very low signal magnitudes and small sample sizes. Compared to the test
based on usual likelihood ratio statistics, which does not reach more than 40% power when
n = 25 given the signal magnitudes under consideration, the suggested statistics proves
itself extremely efficient. Under these settings as well, any subset of size 1 containing one
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Model collection S1 ŜLasso

Calibration (B) (P) (B) (P)
n= 25 1± 0.6 6.9± 1.6 0± 0 6.9± 1.6
n= 50 1.8± 0.8 5.8± 1.4 0± 0 6± 1.5
n= 100 1.0± 0.6 7.4± 1.6 0.1± 0.2 7.4± 1.6

(a) Tests T ∗
Ŝ

Model collection S1 ŜLasso

Calibration (B) (P) (B) (P)
n= 25 5.5± 1.4 6.8± 1.6 0.5± 0.4 6.5± 1.5
n= 50 4.5± 1.3 5.5± 1.4 0.1± 0.2 5.3± 1.4
n= 100 4.8± 1.3 0.1± 1.5 6.6± 0.2 6.5± 1.5

(b) Tests T ∗,Fisher

Ŝ

Table 2
Estimated test levels in percentage along with 95% Gaussian confidence interval (in percentage) under

H00 for the seven different strategies, based upon 1000 simulations.
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Figure 1. Estimated test levels in percentage under H0 for the six different strategies for varying mag-
nitudes of common non null coefficients, based upon 1000 simulations. Bonferroni calibration in dotted
lines, calibration by permutation in plain lines. Blue squares represent the suggested test T ∗

Ŝ
, red triangles

stand for the Fisher test T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in plain points, while the

data-driven collection ŜLasso is in empty points.

of the variables activated in only β(2) can suffice to reject the null, which is why collection
S1 performs actually very well when associated with (FS,1, FS,2, FS,3) and not so badly
when associated with FiS .

However, in more complex settings 3 and 4, where larger subsets are required to correct
for strong and numerous common effects, subset collection ŜLasso performs much better
than the collection S1.

Figure 4 provide similar results under respectively power decay correlated designs and
GGM-like correlated designs for a sample size of n = 50, leading to similar conclusions as
in the uncorrelated case.

4.2. Real Transcriptomic Breast Cancer Data

The procedure developed in Section 2 can be adapted to the case of Gaussian graphical
models as in [40]. Adopting a neighborhood selection approach, estimation of the Gaussian
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Power decay GGM
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Figure 2. Estimated test levels in percentage under H0 for the 4 strategies calibrated by permutation for
varying magnitudes of common non null coefficients, based upon 1000 simulations, under power decay
and GGM correlation structures when n = 50. Blue squares represent the suggested test T ∗

Ŝ
, red triangles

stand for the Fisher test T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in plain points, while the

data-driven collection ŜLasso is in empty points.

graphical model amounts to the estimation of p independent linear regressions. Therefore,
the idea is to run for each gene in the network a neighborhood test conducted at level
α/p, thereby correcting for multiple testing.

We apply this strategy to the full (training and validation) breast cancer dataset studied
by [18] and [29], whose training subset was originally published in [31]. The full dataset
consists of microarray gene expression profiles from 133 patients with stage I-III breast
cancer undergoing preoperative chemotherapy. A majority of patients (n=99) presented
residual disease (RD), while 34 patients demonstrated a pathologic complete response
(pCR). The common objective of [18] and [29] was to develop a predictor of complete
response to treatment from gene expression profiling. In particular, [18] identified an
optimal predictive subset of 30 probes, mapping to 26 distinct genes.

[1] inferred Gaussian graphical models among those 26 genes on each patient class using
weighted neighborhood selection. The corresponding graphs of conditional dependencies
for medium regularization are presented in Figure 5. Those two graphs happen to differ
dramatically from one another. The question we tackle is whether those differences remain
when taking into account estimation uncertainties.

We run for each of the 26 genes a neighborhood test TP
ŜLasso

at level 0.05/26. We

associate to each neighborhood test a p-value computed as the fraction of the 10000
permutation values of the statistic that are less than the observed test statistic.

Most of the graph estimation methods proposed in the literature, such as the proce-
dure of [1] leading to Figure 5, rely on the assumption that observations are i.i.d. Yet
the training and validation datasets have been collected and analysed separately by two
different clinical centers. We therefore start by checking whether the pooled sample can be
considered as homogeneous. Within each group of patients (RD and pCR), we lead a test
for the homogeneity of Gaussian graphical models between the training and validation
subsets.

Within pCR patients (3), two neighborhood tests corresponding to CA12 and PDGFRA
are rejected at level 0.05/26. Within RD patients (4), half of the neighborhoods happen to
differ significantly between the training and validation datasets. Genes CA12 and JMJD2B
are responsible for the rejection of respectively seven and six neighborhoods.

Because of these surprisingly significant divergences between training and validation
subsets, we restrict the subsequent analysis to the training set (n=82 patients, among
which 61 RD and 21 pCR patients).
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Settings n = 25 n = 50 n = 100
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Figure 3. Power (in percentage) as a function of signal magnitude parameter r for the suggested test

T ∗
Ŝ

and the test T ∗,Fisher

Ŝ
based on the likelihood ratio, combined with S1 or ŜLasso test collections and

a calibration by permutation, for various sparsity pattern under the assumption of uncorrelated designs
Σ(1) = Σ(2) = Ip. Blue squares represent the suggested test T ∗

Ŝ
, red triangles stand for the Fisher test

T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in plain points, while the data-driven collection ŜLasso

is in empty points.
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Settings Power decay GGM
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Figure 4. Power (in percentage) as a function of signal magnitude parameter r for the suggested test

T ∗
Ŝ

and the test T ∗,Fisher

Ŝ
based on the likelihood ratio, combined with S1 or ŜLasso test collections and a

calibration by permutation, for various sparsity patterns under power decay and GGM correlated designs,
at n = 50 observations. Blue squares represent the suggested test T ∗

Ŝ
, red triangles stand for the Fisher

test T ∗,Fisher

Ŝ
. The deterministic collection S1 is drawn in plain points, while the data-driven collection

ŜLasso is in empty points.
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Pathologic Complete Response (pCR) Residual Disease (RD)

Figure 5. Graphs of conditional dependencies among the 26 genes selected by [18] on patients with
pathologic complete response or residual disease with medium regularization as presented in Figure 3 of
[1].

AMFR BB S4 BECNI BTG3 CA12 CTNND2 E2F3
decision 0 0 0 0 1 0 0
p-value 0.0492 0.0072 0.1972 1 0.0018 0.0100 0.1080

ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT GFRAI IGFBP4
decision 0 0 0 0 0 0 0
p-value 0.5610 0.0242 0.2542 0.0312 0.1158 0.5318 0.0458

JMJD2B KIA1467 MAPT MBTP SI MELK METRN PDGFRA
decision 0 0 0 0 0 0 1
p-value 0.0128 0.0272 0.0178 0.0062 0.5602 1 0.0012

RAMPI RRM2 SCUBE2 THRAP2 ZNF552
decision 0 0 0 0 0
p-value 0.0444 0.0022 0.2372 0.0228 0.0028

Table 3
Homogeneity test between training and test samples among pCR patients. Summary of test decisions
after Bonferroni multiple testing correction and p-values for each neighborhood test. The suggested

statistic is combined with a data-driven model collection 10000 permutations. The p-value is computed
as the fraction of the permutation values of the statistic that are less than the observed test statistic.

To roughly check that we got rid of the underlying heterogeneity, we create an artificial
dataset under H0 by permutation of the patients, regardless of their class. No neighbor-
hood test is rejected at a level corrected for multiple testing. We also cut the group of
patients with residual disease artificially in half. When testing for the difference between
the two halves, no significant heterogeneity remains, whatever the neighborhood.

Within the training set, the comparison of Gaussial graphical structures between pCR
and RD patients leads to the rejection of all neighborhood tests after Bonferroni correction
for multiple testing of the 26 neighborhoods, as summarized in Table 5. RRM2, MAPT
and MELK genes appear as responsible for the rejection of respectively nine, nine and four
of these neighborhood tests. Quite interestingly, these three genes have all been described
in clinical literature as new promising drug targets. [17] exhibited inhibitors of RRM2
expression, which reduced in vitro and in vivo cell proliferation. [32] led functional biology
experiments validating the relationship between MAPT expression levels and response
to therapy, suggesting to inhibit its expression to increase sensivity to treatment. More
recently, [12] developed a therapeutic candidate inhibiting MELK expression that was
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AMFR BB S4 BECNI BTG3 CA12 CTNND2 E2F3
decision 0 1 1 0 1 0 0
p-value 0.0046 <0.0001 <0.0001 0.0202 <0.0001 0.0684 0.0428

ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT GFRAI IGFBP4
decision 0 1 1 1 1 0 0
p-value 0.26 <0.0001 <0.0001 0.002 <0.0001 0.3606 0.389

JMJD2B KIA1467 MAPT MBTP SI MELK METRN PDGFRA
decision 1 1 0 1 0 0 1
p-value <0.0001 2e-04 0.006 6e-04 0.1556 0.1054 <0.0001

RAMPI RRM2 SCUBE2 THRAP2 ZNF552
decision 0 0 0 1 1
pvalue23 0.2288 0.2988 0.3552 <0.0001 <0.0001

Table 4
Homogeneity test between training and test samples among RD patients. Summary of test decisions
after Bonferroni multiple testing correction and p-values for each neighborhood test. The suggested

statistic is combined with a data-driven model collection 10000 permutations. The p-value is computed
as the fraction of the permutation values of the statistic that are less than the observed test statistic.

proved to suppress the growth of tumour-initiating cells in mice with various cancer types,
including breast cancer.

AMFR BB S4 BECNI BTG3 CA12 CTNND2 E2F3
decision 1 1 1 1 1 1 1
p-value < 0.0001 <0.0001 4e-04 <0.0001 2e-04 <0.0001 <0.0001
rejected model RRM2 RRM2 MAPT MAPT MAPT RRM2 MAPT

ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT GFRAI IGFBP4
decision 1 1 1 1 1 1 1
p-value <0.0001 4e-04 4e-04 <0.0001 <0.0001 <0.0001 <0.0001
rejected model MELK MAPT RRM2 MAPT RRM2 BTG3 MELK

JMJD2B KIA1467 MAPT MBTP SI MELK METRN PDGFRA
decision 1 1 1 1 1 1 1
p-value <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001
rejected model MAPT MELK RRM2 E2F3 MAPT MELK RRM2

RAMPI RRM2 SCUBE2 THRAP2 ZNF552
decision 1 1 1 1 1
p-value <0.0001 <0.0001 <0.0001 <0.0001 2e-04
rejected model RRM2 MAPT BTG3 E2F3 RRM2

Table 5
Summary of neighborhood tests between RD and pCR patients within the training set (n=82). Decision

is made at level 0.05/26 to correct for multiple testing. The suggested statistic is combined with a
data-driven model collection 10000 permutations. The p-value is computed as the fraction of the

permutation values of the statistic that are less than the observed test statistic.

For comprehensiveness, we add that similar analysis of the validation set (n=51 pa-
tients, among which 38 RD and 13 pCR patients) leads to the identification of only 9
significantly altered neighborhoods between pCR and RD patients 6. This difference in
the number of significantly altered neighborhoods can be explained by the reduced size
of the sample. Yet, genes responsible for the rejection of the tests differ from those iden-
tified on the training set. In particular, five of the significant tests are rejected because of
SCUBE2, which has been recently recognised as a novel tumor suppressor gene [24].
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AMFR BB S4 BECNI BTG3 CA12 CTNND2 E2F3
decision 0 0 0 1 0 0 1
p-value 0.0024 0.0028 0.0048 0.0018 0.0028 0.0082 <0.0001
rejected model - - - SCUBE2 - - METRN

ERBB4 FGFRIOP FLJ10916 FLJI2650 GAMT GFRAI IGFBP4
decision 1 0 1 0 0 1 1
p-value 0.0014 0.0072 8e-04 0.0142 0.0046 8e-04 2e-04
rejected model SCUBE2 - SCUBE2 - - E2F3 SCUBE2

JMJD2B KIA1467 MAPT MBTP SI MELK METRN PDGFRA
decision 0 1 0 0 0 1 0
p-value 0.0054 0.0018 0.0032 0.0078 0.0036 4e-04 0.0104
rejected model - SCUBE2 - - - E2F3 -

RAMPI RRM2 SCUBE2 THRAP2 ZNF552
decision 0 0 1 0 0
p-value 0.0056 0.0034 2e-04 0.0024 0.006
rejected model - - FLJ10916 - -

Table 6
Summary of neighborhood tests between RD and pCR patients within the validation set (n=51).

Decision is made at level 0.05/26 to correct for multiple testing. The suggested statistic is combined
with a data-driven model collection 10000 permutations. The p-value is computed as the fraction of the

permutation values of the statistic that are less than the observed test statistic.

5. Additional results

This section provides two additional results to the power analysis of Section 3. Theorem 5.1
extends Theorem 3.1 from deterministic collections of the form S≤k to any deterministic
collection S, unveiling a bias/variance-like trade-off linked to the cardinality S of collection
S. In a second part, Propositions 5.2 and 5.3 explicit the dependency of the constants
in Theorem 3.3 on Σ(1) and Σ(2) through largest and smallest sparse eigenvalues and
compatibility constants.

5.1. Power of TB
S

Let us provide a general analysis of the power of TBS for arbitrary deterministic collections
S. To do so, we need to consider the Kullback discrepancy between the conditional distri-

bution of Y (1) given X
(1)
S = XS and the conditional distribution of Y (2) given X

(2)
S = XS ,

which we denote K
[
PY (1)|XS ;PY (2)|XS

]
. For short, we respectively note K1(S) and K2(S)

K1(S) := E
X

(1)
S

{
K
[
PY (1)|XS ;PY (2)|XS

]}
,

K2(S) := E
X

(2)
S

{
K
[
PY (2)|XS ;PY (1)|XS

]}
.

Intuitively, K1(S) + K2(S) corresponds to some distance between the regression of Y (1)

given X
(1)
S and of Y (2) given X

(2)
S . Noting Σ

(1)
S (resp. Σ

(2)
S ) the restriction of Σ(1) (resp.

Σ(2)) to indices in S, we define

ϕS := ϕmax

{√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S +

√
Σ

(1)
S (Σ

(2)
S )−1

√
Σ

(1)
S

}
. (18)

Theorem 5.1 (Power of TBS for any deterministic S). For any S ∈ S, we note αS =
mini=1,2,3 αi,S. The power of TBS is larger than 1 − δ as long as there exists S ∈ S such
that |S| . n1 ∧ n2 and

1 + log[1/(δαS)] . n1 ∧ n2 , (19)
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and

K1(S) +K2(S) & ϕS

(
1

n1
+

1

n2

)[
|S|+ log

(
1

αSδ

)]
. (20)

Remark 5.1. Let us note ∆(S) the right hand side of (20). According to Theorem 5.1,
The term ∆(S) plays the role of a variance term and therefore increases with the cardi-
nality S. Furthermore, the term K1−K1(S) +K2−K2(S) plays the role of a bias. Let us
note S∗ the subcollection of S made of sets S satisfying (19). According to theorem 5.1,
TBS is powerful as long as K1 +K2 is larger (up to constants)

inf
S∈S∗

{K1 −K1(S) +K2 −K2(S)}+ ∆(S) (21)

Such a result is comparable to oracle inequalities obtained in estimation since the test TBS
is powerful when the Kullback loss K1 + K2 is larger than the trade-off (21) between a
bias-like term and a variance-like term without requiring the knowledge of this trade-off in
advance. We refer to [5] for a thorough comparison between oracle inequalities in model
selection and second type error terms of this form.

5.2. Sharper analysis of TB
ŜLasso

Given a matrix X, an integer k, and a number M , one respectively defines the largest
and smallest eigenvalues of order k, the compatibility constants κ[M,k,X] and η[M,k,X]
(see [38]) by

Φk,+(X) = sup
θ,1≤|θ|0≤k

‖Xθ‖2

‖θ‖2
, Φk,−(X) = inf

θ,1≤|θ|0≤k

‖Xθ‖2

‖θ‖2
,

κ[M,k,X] = min
T,θ: |T |≤k, θ∈C(M,T )

{
‖Xθ‖
‖θ‖

}
,

η[M,k,X] = min
T,θ: |T |≤k, θ∈C(M,T )

{√
k
‖Xθ‖
|θ|1

}
, (22)

where C(M,T ) = {θ : |θT c |1 < M |θT |1}. Given an integer k, define

γΣ(1),Σ(2),k :=

∧
i=1,2 κ

2
[
6, k∗,

√
Σ(i)

]
∨
i=1,2 Φk∗,+(

√
Σ(i))

,

γ′Σ(1),Σ(2),k :=

∨
i=1,2 Φ2

k,+(
√

Σ(i))∧
i=1,2 Φk,−(

√
Σ(i))

∧
i=1,2 κ

2[6, k,
√

Σ(i)]
,

that measure the closeness to orthogonality of Σ(1) and Σ(2). Theorem 3.3 is straightfor-
ward consequence of the two following results.

Proposition 5.2. There exist four positive constants L∗, L∗1, L∗2, and L∗3 such that fol-
lowing holds. Define k∗ as the largest integer that satisfies

(k∗ + 1) log(p) ≤ L∗(n1 ∧ n2) , (23)

and assume that
1 + log [1/(αδ)] < L∗1(n1 ∧ n2) . (24)

The hypothesis H0 is rejected by TB
ŜLasso

with probability larger than 1−δ for any (β(1), β(2))

satisfying

|β(1)|0 + |β(2)|0 ≤ L∗2γΣ(1),Σ(2),kk∗

(
n1

n2
∧ n2

n1

)
. (25)
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and

K1 +K2 ≥ L∗3γ′Σ(1),Σ(2),k∗

(
|β(1)|0 ∨ |β(2)|0 ∨ 1

)
log(p) + log{1/(αδ)}

n1 ∧ n2

(
n1

n2
∨ n2

n1

)
.

This proposition tells us that TB
ŜLasso

behaves nearly as well as what has been obtained

in (11) for TBS≤(n1∧n2)/2
, at least when n1 and n2 are of the same order.

In the next proposition, we assume that Σ(1) = Σ(2) := Σ. Given an integer k, define

γ̃Σ,k :=
κ[6, k,

√
Σ]Φ

1/2
k,−(
√

Σ)

Φ1,+(
√

Σ)
, γ̃

(2)
Σ,k :=

κ2
[
6, k,
√

Σ
]

Φk,+(
√

Σ)
, γ̃

(3)
Σ,k :=

Φ2
1,+(
√

Σ)

κ2[6, k,
√

Σ]
.

Proposition 5.3. Let us assume that Σ(1) = Σ(2) := Σ. There exist five positive constants
L∗, L̃∗, L∗1, L∗2, and L∗3 such that following holds. Define k∗ and k̃∗ as the largest positive
integers that satisfy

(k∗ + 1) log(p) ≤ L∗(n1 ∧ n2) ,

k̃∗ ≤ L̃∗γ̃Σ,k∗

[
n1 ∧ n2

|n1 − n2|
∧
√
n1 ∧ n2

log(p)

]
, (26)

with the convention x/0 =∞. Assume that

1 + log [1/(αδ)] < L∗1(n1 ∧ n2) .

The hypothesis H0 is rejected by TB
ŜLasso

with probability larger than 1−δ for any (β(1), β(2))

satisfying

|β(1)|0 + |β(2)|0 ≤ L∗2γ̃
(2)

Σ,k̃∗
k̃∗ . (27)

and

‖β(1) − β(2)‖2Σ
Var(Y (1)) ∧Var(Y (2))

≥ L∗3γ̃
(3)
Σ,k∗

[(
|β(1) − β(2)|0 ∨ 1

)
log(p) + log{1/(αδ)}

]
.

Remark 5.2. The definition (26) of k̃∗ together with Condition (27) restrict the number
of non-zero components |β(1)|0 + |β(2)|0 to be small in front of (n1 ∧ n2)/|n1 − n2|. This
technical assumption enforces the design matrix in the reparametrized model (5) to be

almost block-diagonal and allows us to control efficiently the Lasso estimator θ̂
(2)
λ of θ

(2)
∗

for some λ > 0 (see the proof in Section 8 for further details). Still, this is not clear to
what extent this assumption is necessary.

6. Discussion

In this paper, we develop an adaptive likelihood-ratio test which reaches minimax high-
dimensional rates of testing to compare two linear regressions. To control explicitely the
type I error of the global test, a two-step calibration method has been proposed. First, the
p-values of each individual test (FS,i, i ∈ {1, 2, 3}, S ∈ Ŝ) are explicitely upper bounded

(Proposition 2.2), then the thresholds (Ĉi) are calibrated using a permutation method
with weights given by (10). Using a naive permutation approach without properly bound-
ing the p-values or without correcting the weights as in (10) would have favored large
subsets S in the global procedure.

In the spirit of [5], our type II error analysis is completely non-asymptotic. However,
the numerical constants involved in the bounds are clearly not optimal. Another line of
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work initiated by [14] considers an asymptotic but high-dimensional framework and aims
at providing detection rates with optimal constants. For instance [3, 19] have derived such
results in the one-sample high-dimensional linear regression testing problem under strong
assumptions on the design matrices. In our opinion, both analyses are complementary. If
deriving sharp detection rates (under perhaps stronger assumptions on the covariance) is
a stimulating open problem, it is beyond the scope of our paper.

The Kullback discrepancies considered in the power analysis of the test depend on β(1)

and β(2) through the prediction distances ‖β(1) − β(2)‖Σi , i = 1, 2 rather than the l2
distance ‖β(1) − β(2)‖. On the one hand, such a dependency on the prediction abilities is
natural, as our testing procedures relies on the likelihood ratio. On the other hand, it is
possible to characterize the power of our testing procedures as in Theorems 3.1 and 3.3
in terms of the distance ‖β(1) − β(2)‖ by inverting Σ(1) and Σ(2) at β(1) − β(2). However,

the inversion would lead to an additional factor of the form Φ−1
|β(1)−β(2)|0,−

(
√

Σ(i)) in the

testing rates.
In terms of interpretation, even though our procedure adopts a global testing approach

through prediction distances, our real dataset example illustrates that identifying which
subset in the collection is responsible for rejecting the null hypothesis provides clues into
which specific coefficients are most likely to differ between samples.

Thinking of gene network inference by Gaussian graphical modeling, the high levels of
correlations encountered within transcriptomic datasets and the potential number of miss-
ing variables result in highly unstable graphical estimations. Our global testing approach
provides a way to validate whether sample-specific graphs eventually share comparable
predictive abilities or disclose genuine structural changes. Such a statistical validation is
obviously crucial before translating any graphical analysis into further biological experi-
ments. Interestingly, the three main genes pointed out by our testing strategy have been
validated as promising therapeutic targets by functional biology experiments.

Finally, this test should also facilitate the validation of the fundamental i.i.d. assump-
tion across multiple samples, paving the way to pooled analyses when possible. In that
respect, we draw attention to the significant heterogeneity detected between the training
and validation sets of the well-known Hess et al dataset, suggesting that these samples
should be used as originally intended. Methods which require i.i.d. observations should
only be applied with caution to this dataset if considered as a unique homogeneous sample.

7. Technical Details

7.1. Two-sample testing for fixed and differents designs

Proposition 7.1. Consider X1 and X2 as fixed and assume that σ(1) = σ(2) = 1. If the
(n1 + n2 × p) matrix formed by X1 and X2 has rank n1 + n2, then any test T based on
the data (Y,X) satisfies:

sup
β∈Rp

Pβ,β [T = 1] + inf
β(1) 6=β(2)∈Rp

Pβ(1),β(2) [T = 0] ≥ 1 .

In other words, any level-α test T has a type II error larger than 1−α, and this uniformly
over β(1) and β(2). Consequently, any test in this setting cannot perform better than
complete random guess.

Proof. Using the rank condition, we derive that for any vector (a, b) in Rn1 × Rn2 , there
exists β ∈ Rp such that X(1)β = a and X(2)β = b. Consequently, under the null hypothesis,
(Y(1),Y(2)) follows any distributions N (a, In1

)⊗N (b, In2
) with (a, b) arbritary in Rn1 ×

Rn2 . Hence, for any β(1) 6= β(2) ∈ Rp, the distribution Pβ(1),β(2) of (Y(1),Y(2)) is not
distinguishable from the null hypothesis. The result follows.
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7.2. Upper bounds of the quantiles

This Section explicits the upper bounds Q̃2,|S|(u|XS) and Q̃3,|S|(u|XS). Because of the
symmetry between FS,2 and FS,3, we only provide developments for FS,2. Let us note
a = (a1, . . . , a|S|) the positive eigenvalues of

n1

n2(n1 − |S|)
X

(2)
S

[
(X

(1)ᵀ
S X

(1)
S )−1 + (X

(2)ᵀ
S X

(2)
S )−1

]
X

(2)ᵀ
S .

Definition 7.2 (Recall of the definition of the upper-bound Q̃2,|S|(u|XS)). Consider
some number u > |a|1. If all the components of a are equal, then we take

λ∗ =
u− |a|1

2u(|a|∞ + |a|1
n1−|S| )

If a is not a constant vector, then we define λ∗ by

b :=
|a|1u

|a|∞(n1 − |S|)
+ u+

‖a‖2

|a|∞
− |a|1,

∆ := b2 − 4u (u− |a|1)

(n1 − |S|)|a|∞

(
|a|1 −

‖a‖2

|a|∞

)
, (28)

λ∗ :=
1

4u
n1−|S|

(
|a|1 − ‖a‖

2

|a|∞

) (b−√∆
)

(29)

We recall that Q̃2,|S|(u|XS) is defined as follows

Q̃2,|S|(u|XS) := exp

−1

2

|S|∑
i=1

log (1− 2λ∗ai)−
n1 − |S|

2
log

(
1 +

2λ∗u

n1 − |S|

) .

Proof of Proposition 2.2. For the sake of simplicity, we note N = n1 − |S|, (Z1, . . . , Z|S|)
a standard Gaussian random vector and WN a χ2 random variable with N degrees of
freedom. We apply Laplace method to upper bound P[FS,2 ≥ u]:

P[FS,2 ≥ u] = P

 |S|∑
i=1

aiZ
2
i ≥ uWN/N

 ≤ inf
λ>0

E exp

λ |S|∑
i=1

aiZ
2
i − λuWN/N


≤ inf

0<λ<|a|∞/2
exp [ψu(λ)] ,

where

ψu(λ) = −1

2

|S|∑
i=1

log(1− 2λai)−
N

2
log

(
1 +

2λu

N

)
.

The sharpest upper-bound is given by the value λ∗ which minimizes ψu(λ). We obtain
an approximation of λ∗ by cancelling the second-order approximation of its derivative.
Deriving ψu gives

ψ′u(λ) =

|S|∑
i=1

ai
1− 2λai

− u

1 + 2λu
N

,
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which admits the following second order approximation :

|a|1 +
2λ‖a‖2

1− 2|a|∞λ
− u

1 + 2λu
N

. (30)

Cancelling this quantity amounts to solving a polynomial equation of the second degree.
The smallest solution of this equation leads to the desired λ∗.

8. Proofs

Additional Notations. Given a subset S, Π
(1)
S (resp. Π

(2)
S ) stands for the orthogonal

projection onto the space spanned by the rows of X
(1)
S (resp. X

(2)
S ). Moreover, Π

(1)

S⊥
denotes

the orthogonal projection along the space spanned by the rows of X
(1)
S .

8.1. Distributions of FS,1, FS,2 and FS,3 (Proposition 2.1)

Let us consider the regression of Y (1) (resp. Y (2)) with respect to X
(1)
S (resp. X

(2)
S ):

Y (1) = X
(1)
S β

(1)
S + ε

(1)
S , Y (2) = X

(2)
S β

(2)
S + ε

(2)
S .

Under the null hypothesis H0,S , we have β
(1)
S = β

(2)
S and σ

(1)
S = σ

(2)
S . For the sake of

simplicity, we write βS and σS for these two quantities. Define the random variable T1

and T2 as

T1 =
‖Π(1)

S⊥
ε

(1)
S ‖2

(n1 − |S|)σ2
S

, T2 =
‖Π(2)

S⊥
ε

(2)
S ‖2

(n2 − |S|)σ2
S

. (31)

Given X, T1/T2 follows a Fisher distribution with (n1 − |S|, n2 − |S|) degrees of freedom.
Observing that under the null hypothesis

FS,1 = −2 +
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

allows us to prove the first assertion of Proposition 2.1. Let us turn to the second statistic:

FS,2 =
n1

n2(n1 − |S|)
U

T1
,

where

U =
‖X(2)

S (X
(2)ᵀ
S X

(2)
S )−1X

(2)ᵀ
S ε

(2)
S −X

(2)
S (X

(1)ᵀ
S X

(1)
S )−1X

(1)ᵀ
S ε

(1)
S ‖2

σ2
S

.

Given X, U is independent from T1 since T1 is a function of Π
(1)

S⊥
ε

(1)
S while U is a function

of (ε
(2)
S ,Π

(1)
S ε

(1)
S ). Furthermore, U is the squared norm of a centered Gaussian vector with

covariance
X

(2)
S

[
(X

(1)ᵀ
S X

(1)
S )−1 + (X

(2)ᵀ
S X

(2)
S )−1

]
X

(2)ᵀ
S .

8.2. Calibrations

Proof of Proposition 2.3. By definition of the p-values Q̃i,|S|, we have under H0 for each
S ∈ S and each i ∈ {1, 2, 3}

PH0

[
Q̃i,|S| (FS,i|XS}) ≤ αi,S |XS

]
≤ αi,S .
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Applying a union bound and integrating with respect to X allows us to control the type I
error:

PH0
[TBŜ = 1] = E

∑
S∈Ŝ

3∑
i=1

P
[
Q̃i,|S| (FS,i|XS}) < αi,S

]
≤

∑
S∈S

3∑
i=1

P
[
Q̃i,|S| (FS,i|XS}) < αi,S

]
≤

∑
S∈S

3∑
i=1

EXS

[
P
[
Q̃i,|S| (FS,i|XS}) < αi,S

]]
≤
∑
S∈S

αi,S ≤ α ,

where we have upper bounded the sum over the random collection S by the sum over
S.

Proof of Proposition 2.4. Consider i ∈ {1, 2, 3}. Under H0, the distributions of

min
S∈Ŝπ

{
Q̃1,|S| (FS,1(π)|Xπ

S)

(
p

|S|

)}
,

min
S∈Ŝπ

{(
Q̃2,|S| (FS,2(π)|Xπ

S)
∧
Q̃3,|S| (FS,3(π)|Xπ

S)
)( p

|S|

)}
are invariant with respect to the permutation π. Hence, we derive

PH0

[
min
S∈Ŝ

Q1,|S| (FS,1|XS)

(
p

|S|

)
≤ Ĉ1

∣∣∣∣XS

]
= α/2 ,

PH0

[
min
S∈Ŝπ

{(
Q̃2,|S| (FS,2(π)|Xπ

S)
∧
Q̃3,|S| (FS,3(π)|Xπ

S)
)( p

|S|

)}
≤ Ĉ2

∣∣∣∣XS

]
= α/2 .

Applying a union bound and integrating with respect to X allows us to conclude.

8.3. Proof of Theorem 5.1

The objective is to exhibit a subset for which the power of TBS is larger than 1− δ. This
subset is such that the distance between the two sample-specific distributions is large
enough that we can actually reject the null hypothesis with large probability. As exposed
in Theorem 5.1, we rely on the semi-distances K1(S) +K2(S) for S ∈ S:

2(K1(S) +K2(S)) =

(
σ

(1)
S

σ
(2)
S

)2

+

(
σ

(2)
S

σ
(1)
S

)2

− 2 +
‖β(2)

S − β
(1)
S ‖2Σ(2)

(σ
(2)
S )2

+
‖β(2)

S − β
(1)
S ‖2Σ(1)

(σ
(1)
S )2

.

(32)

The proof is split into five main lemmas. First, we upper bound Q̃−1
1,|S|(x|XS), Q̃−1

2,|S|(x|XS),

and Q̃−1
3,|S|(x|XS) in Lemmas 8.1, 8.2 and 8.3. Then, we control the deviations of FS,1, FS,2,

and FS,3 under H1,S in Lemmas 8.4 and 8.5. In the sequel, we call S′ the subcollection of
S made of subsets S satisfying |S| ≤ (n1 ∧ n2)/2 and

log(12/δ) < L•1(n1 ∧ n2), log(1/αS) ≤ L•2(n1 ∧ n2) , |S| ≤ L•3 (33)

where the numerical constants L•1, L•2, and L•3 only depend on L∗2 in (40) and on the
constants introduced in Lemmas 8.1–8.5. These conditions allow us to fix the constants
in the statement (19) of Theorem 5.1.



Charbonnier et al./Homogeneity tests 30

Lemma 8.1 (Upper-bound of Q̃−1
1,|S|(x|XS) ). There exists a positive universal constant

L such that the following holds. Consider some 0 < x < 1 such that 16 log(2/x) ≤ n1∧n2 .
For any subset S of size smaller than (n1 ∧ n2)/2, we have

Q̃−1
1,|S|(x|XS) ≤ L

{(
|S|(n1 − n2)

n1n2

)2

+ log(2/x)

(
1

n1
+

1

n2

)}
. (34)

We recall that a = (a1, . . . , a|S|) denotes the positive eigenvalues of

n1

n2(n1 − |S|)
X

(2)
S

[
(X

(1)ᵀ
S X

(1)
S )−1 + (X

(2)ᵀ
S X

(2)
S )−1

]
X

(2)ᵀ
S .

Lemma 8.2 (Upper-bound of Q̃−1
2,|S|(x|XS) ). There exist two positive universal constants

L1 and L2 such that the following holds. If |a|1 < u ≤ (n1 − |S|)|a|∞ and if |S| ≤ L1n1,

log
[
Q̃2,|S|(u|XS)

]
≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
+

(u− |a|1)u3

2(n1 − |S|) [|a|∞(u− |a|1) + ‖a‖2]
2 .

For any 0 < x < 1, satisfying

L2 log(1/x) ≤ n1 − |S| , (35)

we have the following upper bound

Q̃−1
2,|S|(x|XS) ≤ |a|∞

[
2|S|+ 2

√
2|S| log(1/x) + 8 log(1/x)

]
. (36)

Lemma 8.3 (Upper-bound of |a|∞). There exist two positive universal constants L1 and
L2 such that the following holds. Consider δ a positive number sastifying L1 log(4/δ) <
n1 ∧ n2. With probability larger than 1− δ/2, we have

|a|∞ ≤ L2

 1

n2
+

ϕmax

{√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S

}
n1

 .

Lemma 8.4 (Deviations of FS,1). There exist three positive universal constants L1, L2

and L3 such that the following holds. Assume that L1 log(1/δ) ≤ n1∧n2. With probability
larger than 1− δ, we have

FS,1 ≥ L2

(
(σ

(1)
S )2 − (σ

(2)
S )2

σ
(1)
S σ

(2)
S

)2

− L3

[
|S|2

(
1

n2
1

+
1

n2
2

)
+ log

(
1

δ

)(
1

n1
+

1

n2

)]
. (37)

Lemma 8.5 (Deviations of FS,2). There exist two positive universal constants L1 and L2

such that the following holds. Assume that

L1 log(12/δ) < n1 ∧ n2 . (38)

With probability larger than 1− δ/2, we have

FS,2 ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

8(σ
(1)
S )2

− log (6/δ)L2

[
1

n2

(σ
(2)
S )2

(σ
(1)
S )2

+
ϕS
n1

]
, (39)

where ϕS is defined in (18).
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Consider some S ∈ S′. Combining Lemmas 8.1 and 8.4, we derive that Q̃1,|S|(FS,1|XS) ≤
αS holds with probability larger than 1− δ if[

(σ
(1)
S )2 − (σ

(2)
S )2

]2
(σ

(1)
S )2(σ

(2)
S )2

≥ L
[
|S|2

(
1

n2
1

+
1

n2
2

)
+ log[1/(αSδ)]

(
1

n1
+

1

n2

)]
.

Similarly, combining Lemmas 8.2, 8.3, and 8.5, we derive that Q̃2,|S|(FS,2|XS) ≤ αS with
probability larger than 1− δ if

‖β(2)
S − β

(1)
S ‖2Σ(2)

(σ
(1)
S )2

≥L′1 (ϕS + 1)

(
1

n1
+

1

n2

)[
|S|+ log

(
6

δαS

)]
+
L′2
n2

(
σ

(2)
S

σ
(1)
S

)2

log

(
6

δ

)
.

A symmetric result holds for Q̃3,|S|(FS,3|XS).

Consequently, Q̃1,|S|(FS,1|XS) ∧ Q̃2,|S|(FS,2|XS) ∧ Q̃3,|S|(FS,3|XS) ≤ αS with proba-
bility larger than 1− δ if

K1(S) +K2(S) ≥ L∗1ϕS

(
1

n1
+

1

n2

)[
|S|+ log

(
6

αSδ

)]

+L∗2 log(6/δ)

(
1

n1
+

1

n2

)(σ(2)
S

σ
(1)
S

)2

+

(
σ

(1)
S

σ
(2)
S

)2
 . (40)

Since we assume that 4L∗2 log(6/δ) ≤ n1 ∧ n2 in (33), the last condition is fulfilled if

K1(S) +K2(S) ≥ L∗ϕS
(

1

n1
+

1

n2

)
[|S|+ log{6/(αSδ)}] .

We now proceed to the proof of the five previous lemmas.

Proof of Lemma 8.1. Let u ∈ (0, 1) and F̄−1
D,N (u) be the 1−u quantile of a Fisher random

variable with D and N degrees of freedom. According to [5], we have

F̄−1
D,N (u) ≤ 1 + 2

√(
1

D
+

1

N

)
log

(
1

u

)
+

(
N

2D
+ 1

)[
exp

(
4

N
log

(
1

u

))
− 1

]
.

Let us assume that 8/N log(1/u) ≤ 1. By convexity of the exponential function it holds
that

F̄−1
D,N (u) ≤ 1 + 2

√(
1

D
+

1

N

)
log

(
1

u

)
+

(
4

D
+

8

N

)
log

(
1

u

)
.

Recall T1 and T2 defined in (31). Under hypothesis H0,

T1

T2
∼ Fisher(n1 − |S|, n2 − |S|) .

Consider some x > 0 such that [8/(n1 − |S|) ∨ 8/(n2 − |S|)] log(2/x) ≤ 1. Then, with
probability larger than 1− x/2 we have,

T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

≤
(

1 +
|S|(n1 − n2)

n1(n2 − |S|)

)(
1 + 8

√
log(2/x)

n1 − |S|
+ 8

√
log(2/x)

n2 − |S|

)

≤
(

1 +
|S|(n1 − n2)

n1(n2 − |S|)

)1 + 12

√
log(2/x)

n1
+ 12

√
log(2/x)

n2

 ≤ L ,
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since |S| ≤ (n1 ∧ n2)/2. Similarly, with probability at least 1− x/2, we have

T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

≤

(1 +
|S|(n2 − n1)

n2(n1 − |S|)

)1 + 12

√
log(2/x)

n1
+ 12

√
log(2/x)

n2

 ∧ L . (41)

Depending on the sign of T1

T2

n2(n1−|S|)
n1(n2−|S|) − 1, we apply one the two following identities:

T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

− 2 =

(
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

− 1

)2
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

,

T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

− 2 =

(
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

− 1

)2
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

.

Combining the different bounds, we conclude that with probability larger than 1− x,

FS,1 :=
T1

T2

n2(n1 − |S|)
n1(n2 − |S|)

+
T2

T1

n1(n2 − |S|)
n2(n1 − |S|)

− 2

≤ L

[(
|S|(n1 − n2)

n1n2

)2

+ log(2/x)
n1 + n2

n1n2

]
.

Proof of Lemma 8.2. As in the proof of Proposition 2.2, we note N = n1 − |S|. Re-

call that Q̃2,|S|(u|XS) is defined as expψu(λ?) (see Definition 7.2). We start by upper-
bounding ψu(λ?), which proves the first upper-bound of the logarithm of the tail proba-

bility log Q̃2,|S|(u|XS). We then exhibit a value ux such that ψux(λ?) ≤ log x.

Upper-bound of the tail probability. Since Equation (30) is increasing with respect
to λ and with respect to N , λ∗ decreases with N . Consequently,

λ∗ ≤ λ+ :=
u− |a|1

2 [|a|∞(u− |a|1) + ‖a‖2]
.

By convexity, 1 −
√

1− x ≥ x/2 for any 0 ≤ x ≤ 1. Applying this inequality, we upper
bound

√
∆ and derive that

λ∗ ≥ λ− :=
u− |a|1

2
[
|a|∞(u− |a|1) + ‖a‖2 + |a|1u

N

] .
Since u ≤ N |a|∞, 2λ∗u ≤ N . Observing that − log(1 − 2x)/2 ≤ x + x2/(1 − 2x) for

any 0 < x < 1/2 and that log(1 + x) ≥ x− x2 for any x > 0, we derive

ψu(λ∗) ≤ |a|1λ+ +
λ2

+‖a‖2

1− 2|a|∞λ+
− λ∗u+ 2

(λ∗)2u2

N

≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
+

2λ2
+u

2

N
+ (λ+ − λ−)u

≤ − (u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
+

(u− |a|1)u3

2N [|a|∞(u− |a|1) + ‖a‖2]
2 . (42)
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Upper-bound of the quantile. Let us turn to the upper bound of Q̃−1
2,|S|(x|XS).

Consider ux the solution larger than |a|1 of the equation

(u− |a|1)2

4 [|a|∞(u− |a|1) + ‖a‖2]
= 2 log(1/x) ,

and observe that

2‖a‖
√

log(1/x) ≤ ux − |a|1 ≤ 2
√

2‖a‖
√

log(1/x) + 8|a|∞ log(1/x) .

Choosing L1 and L2 large enough in the condition |S| ≤ L1n1 and in condition (35)
leads us to ux ≤ N |a|∞. We now prove that ψux∨2|a|1(λ∗) ≤ log x. If ux ≥ 2|a|1, then
u3
x ≤ 8(ux − |a|1)3 and it follows from (42) that

ψux(λ∗) ≤ log(1/x)

[
−2 +

28 log(1/x)

N

]
≤ − log(1/x)

if we take L2 large enough in Condition (35). If ux ≤ 2|a|1, then |a|21/(|a|∞|a|1 + ‖a‖2) ≥
8 log(1/x) and

ψux∨2|a|1(λ∗) ≤ − |a|21
4 [|a|∞|a|1 + ‖a‖2]

[
1− 24|a|21

N [|a|∞|a|1 + ‖a‖2]

]
≤ − log(1/x) ,

if we take L1 and L2 large enough in the two aforementionned condition. since |S| ≤ 2−6n1.
Thus, we conclude that

Q̃−1
2,|S|(x|XS) ≤ ux ∨ 2|a|1 ≤ |a|1 +

[
2
√

2‖a‖
√

log(1/x) + 8|a|∞ log(1/x)
]
∨ |a|1 .

Proof of Lemma 8.3. Upon defining Z
(1)
S = X

(1)
S

(
Σ

(1)
S

)−1/2

and Z
(2)
S = X

(2)
S

(
Σ

(2)
S

)−1/2

,

it follows that Z
(1)
S and Z

(2)
S follow standard Gaussian distributions.

|a|∞ ≤ n1

n2(n1 − |S|)

[
1 + ϕmax

{
Z

(2)
S

√
Σ

(2)
S (Σ

(1)
S )−1

(
Z

(1)ᵀ
S Z

(1)
S

)−1
√

(Σ
(1)
S )−1Σ

(2)
S Z

(2)ᵀ
S

}]
≤ 2

n2
+ 2

ϕmax[Z
(2)ᵀ
S Z

(2)
S ]

n2ϕmax[Z
(1)ᵀ
S Z

(1)
S ]

ϕmax

[√
Σ

(2)
S (Σ

(1)
S )−1

√
Σ

(2)
S

]
.

In order to conclude, we control the largest and the smallest eigenvalues of Standard
Wishart matrices applying Lemma 8.12.

Proof of Lemma 8.4. By symmetry, we can assume that σ
(1)
S /σ

(2)
S ≥ 1. Recall the defini-

tion of T1 and T2 in the proof of Proposition 2.1

CASE 1. Suppose that T1/T2 ≥ 1.

−2 +
(σ

(1)
S )2

(σ
(2)
S )2

T1

T2
+

(σ
(2)
S )2

(σ
(1)
S )2

T2

T1
≥

[(σ
(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

+
(σ

(1)
S )2

(σ
(2)
S )2

(
T1

T2
− 1

)
+

(σ
(2)
S )2

(σ
(1)
S )2

(
T2

T1
− 1

)

≥
[(σ

(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

. (43)
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CASE 2. Suppose that T1/T2 ≤ 1.

−2 +
(σ

(1)
S )2

(σ
(2)
S )2

T1

T2
+

(σ
(2)
S )2

(σ
(1)
S )2

T2

T1
=

(
(σ

(1)
S )2

(σ
(2)
S )2

− T2

T1

)2
(σ

(2)
S )2

(σ
(1)
S )2

T1

T2

≥ T1

T2

[(σ
(1)
S )2 − (σ

(2)
S )2]2

4(σ
(1)
S )2(σ

(2)
S )2

1
(σ

(1)
S

)2

(σ
(2)
S

)2
−1≥2

(
T2
T1
−1
) .

We need to control the deviations of T2/T1. Using bound (41), we get

T2

T1
≤
(

1 +
|S|(n2 − n1)

n2(n1 − |S|)

)1 + 12

√
log(1/δ)

n1
+ 12

√
log(1/δ)

n2

 ,

with probability larger than 1− δ. Since |S| ≤ (n1 ∧ n2)/2, we derive that

T2

T1
− 1 ≤ 2|S|

n1
+ 24

√
log(1/δ)

n1
+ 24

√
log(1/δ)

n2
≤ 3 ,

for L1 large enough in the statement of the lemma. In conclusion, we have

−2 +
(σ

(1)
S )2

(σ
(2)
S )2

T1

T2
+

(σ
(2)
S )2

(σ
(1)
S )2

T2

T1
≥

[(σ
(1)
S )2 − (σ

(2)
S )2]2

16(σ
(1)
S )2(σ

(2)
S )2

, (44)

with probability larger than 1− δ, as long as

[(σ
(1)
S )2 − (σ

(2)
S )2]2

(σ
(1)
S )2(σ

(2)
S )2

≥ L
[
|S|2

n2
1

+
|S|2

n2
2

+ log(1/δ)

(
1

n1
+

1

n2

)]
. (45)

Combining (43), (44), and (45), we derive

−2 +
(σ

(1)
S )2

(σ
(2)
S )2

T1

T2
+

(σ
(2)
S )2

(σ
(1)
S )2

T2

T1
≥

[(σ
(1)
S )2 − (σ

(2)
S )2]2

16(σ
(1)
S )2(σ

(2)
S )2

− L
[
|S|2

n2
1

+
|S|2

n2
2

+ log(1/δ)

(
1

n1
+

1

n2

)]
,

with probability larger than 1− δ.

Proof of Lemma 8.5. We want to lower bound the random variable FS,2 = Rn1

(σ
(1)
S )2T1(n1−|S|)

where R is defined by

R := ‖X(2)
S (β

(2)
S − β

(1)
S ) + Π

(2)
S ε

(2)
S −X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(1)ᵀ
S ε

(1)
S ‖

2/n2 .

Let us first work conditionally to X
(1)
S and X

(2)
S . Upon defining the Gaussian vector W

by

W ∼ N
[
0, (σ

(2)
S )2Π

(2)
S + (σ

(1)
S )2X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S

]
,

we get R = ‖X(2)
S (β

(2)
S − β

(1)
S ) +W‖2/n2. We have the following lower bound:

R ≥

(
‖X(2)

S (β
(2)
S − β

(1)
S )‖+

〈
W,

X
(2)
S (β

(2)
S − β

(1)
S )

‖X(2)
S (β

(2)
S − β

(1)
S )‖

〉)2

/n2

≥
‖X(2)

S (β
(2)
S − β

(1)
S )‖2

2n2
− 1

n2

〈
W,

X
(2)
S (β

(2)
S − β

(1)
S )

‖X(2)
S (β

(2)
S − β

(1)
S )‖

〉2
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The random variable ‖X(2)
S (β

(2)
S − β

(1)
S )‖2/‖β(2)

S − β
(1)
S ‖2Σ(2) follows a χ2 distribution with

n2 degrees of freedom. Given (X
(1)
S ,X

(2)
S ),

〈
W,

X
(2)
S (β

(2)
S −β

(1)
S )

‖X(2)
S (β

(2)
S −β

(1)
S )‖

〉2

is proportional to a χ2

distributed random variable with one degree of freedom and its variance is smaller than

(σ
(2)
S )2 + ϕmax[X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S ](σ

(1)
S )2. Applying Lemma 8.11, we derive that

with probability larger than 1− x/6,

R ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

2

1− 2

√
log(12/x)

n2


− 4

log (12/x)

n2

[
(σ

(2)
S )2 + (σ

(1)
S )2ϕmax{X(2)

S (X
(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S }

]
.

Using the upper bound |S| ≤ (n1 ∧ n2)/2 and Lemma 8.12, we control the last term

ϕmax

[
X

(2)
S (X

(1)ᵀ
S X

(1)
S )(−1)X

(2)ᵀ
S

]
≤ LϕS

n2

n1
,

with probability larger than 1 − 2 exp[−(n1 ∧ n2)L′]. If we take the constant L1 large
enough in condition (38), then we get

R ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

4
− log (12/δ)L

[
(σ

(2)
S )2

n2
+

(σ
(1)
S )2

n1
ϕS

]
, (46)

with probability larger than 1− δ/3.

Let us now upper bound the random variable T1(n1−|S|)/n1. Since (n1−S)T1 follows
a χ2 distribution with n1 − |S| degrees of freedom, we derive from Lemma 8.11 that

T1(n1 − |S|)/n1 ≤ 1 + 2

√
log(6/δ)

n1
+

2

n1
log(6/δ) ≤ 2 , (47)

with probability larger than 1− δ/6. Gathering (46) and (47), we conclude that

FS,2 ≥
‖β(2)

S − β
(1)
S ‖2Σ(2)

8(σ
(1)
S )2

− log (6/δ)L

( σ
(2)
S

1
n2
σ

(1)
S

)2

+
ϕS
n1

 ,

with probability larger than 1− δ/2.

8.4. Proof of Theorem 3.1: Power of TB
S≤k

This proposition is a straightforward corollary of Theorem 5.1. Consider the subsets S∪
and S∆ of {1, . . . , p} such that S∪ is the union of the support of β(1) and β(2) and S∆ is
the supports of β(2) − β(1). Assume first that S∪ and S∆ are non empty. By Definition
(9) of the weights, we have

log

(
1

αi,S∪

)
≤ log(4k) + log(1/α) + |S∪| log(p) ≤ 2|S|∪ log(p) + log(1/α) .

A similar upper bound holds for log(1/αi,S∆
). If we choose the numerical constants large

enough in Conditions A.1 and A.2, then the sets S∪ and S∆ follow the conditions of
Theorem 5.1.
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Applying Theorem 5.1, we derive that TBS≤k rejects H0 with probability larger than
1− δ when

K1(S∪) +K2(S∪) ≥ ϕS∪
(

1

n1
+

1

n2

)[
|S∪|+ log

(
1

αS∪

)]
.

Observing that ϕS∪ ≤ ϕΣ(1),Σ(2) , K1(S∪) = K1, K2(S∪) = K2 and that |S∪| ≤ |β(1)|0 +

|β(2)|0 allows to prove the first result. Let us turn to the second result. According to
Theorem 5.1, TBS≤k rejects H0 with probability larger than 1− δ when

K1(S∆) +K2(S∆) ≥ ϕS∆

(
1

n1
+

1

n2

)[
|S∆|+ log

(
1

αS∆

)]
.

Since K1(S∆)+K2(S∆) ≥ ‖β(1)−β(2)‖2Σ
2[Var(Y (1))∧Var(Y (2))]

and since |S∆| = |β(1)−β(2)|0, the second

result follows.
If S∪ = ∅, then we can consider any subset of size 1 to prove the first result. If S∆ = ∅,

then β(1) = β(2) and the second result does not tell us anything.

8.5. Proof of Proposition 5.2

For simplicity, we assume in the sequel that β(1) 6= 0 or β(2) 6= 0, the case β(1) = β(2) = 0
being handled by any set S ∈ S1 ⊂ ŜLasso.

This proof is divided into two main steps. First, we prove that with large probability
the collection ŜLasso contains some set Ŝλ close to the union S∪ of the supports of β(1)

and β(2). Then, we show that the statistics (FŜλ,1, FŜλ,2, FŜλ,3) allow to reject H0 with
large probability.

Recall that the collection ŜLasso is based on the Lasso regularization path of the fol-
lowing heteroscedastic Gaussian linear model,[

Y(1)

Y(2)

]
=

[
X(1) X(1)

X(2) −X(2)

] [
θ

(1)
∗

θ
(2)
∗

]
+

[
ε(1)

ε(2)

]
(48)

which we denote for short Y = Wθ∗ + ε. Given a tuning parameter λ, θ̂λ refers to the
Lasso estimator of θ:

θ̂λ = arg inf
θ∈R2p

‖Y −Wθ‖2 + λ|θ|1 .

In order to analyze the Lasso solution θ̂λ, we need to control how W acts on sparse
vectors.

Lemma 8.6 (Control of the design W). If we take the constants L∗, L∗1, and L∗2 in
Proposition 5.2 small enough then the following holds. The event

A :=

{
∀θ s.t. |θ|0 ≤ k∗, 1/2 ≤ ‖X

(1)θ‖2

n1‖θ‖2Σ(1)

≤ 2 and 1/2 ≤ ‖X
(2)θ‖2

n2‖θ‖2Σ(2)

≤ 2

}
⋂κ

[
6, |β(1)|0 + |β(2)|0,X(1)/

√
n1

]
κ
[
6, |β(1)|0 + |β(2)|0,

√
Σ(1)

] ∧ κ
[
6, |θ∗|0,X(2)/

√
n1

]
κ
[
6, |θ∗|0,

√
Σ(2)

] ≥ 2−3


has probability larger than 1− δ/4. Furthermore, on the event A,

Φk,+(W) ≤ 4(n1 + n2)
[
Φk,+(

√
Σ(1)) ∨ Φk,+(

√
Σ(2))

]
,

Φk,−(W) ≥ (n1 ∧ n2)
[
Φk,−(

√
Σ(1)) ∧ Φk,−(

√
Σ(2))

]
,
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for any k ≤ k∗.

The following property is a slight variation of Lemma 11.2 in [38] and Lemma 3.2 in
[16].

Lemma 8.7 (Behavior of the Lasso estimator θ̂λ). If we take L∗2 in Proposition 5.2 small
enough then the following holds. The event

B =

{
|WT ε|∞ ≤ 2(σ(1) ∨ σ(2))

√
2Φ1,+(W) log(p)

}
occurs with probability larger than 1− 1/p. Assume that

λ ≥ 8(σ(1) ∨ σ(2))
√

2Φ1,+(W) log(p) .

Then, on the event A ∩ B we have

‖W(θ̂λ − θ∗)‖2 ≤ L1
λ2/(n1 ∧ n2)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0 , (49)

|θ̂λ|0 ≤ L2
n1 ∨ n2

n1 ∧ n2

Φk∗,+(
√

Σ(1)) ∨ Φk∗,+(
√

Σ(2))

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0 ≤ k∗/2 . (50)

In the sequel, we fix

λ = 16(σ(1) ∨ σ(2))

√
2(n1 + n2)

[
Φ1,+(

√
Σ(1)) ∨ Φ1,+(

√
Σ(2))

]
log(p) .

and we consider the set Ŝλ defined by the union of the support of θ̂
(1)
λ and θ̂

(2)
λ . On the

event A∩B, Lemma 8.7 tells us that |Ŝλ| ≤ k∗. Thus, Ŝλ belongs to the collection ŜLasso.
We shall prove that

min
i∈{1,2,3}

Q̃i,|Ŝλ|

(
FŜλ,i

∣∣∣XŜλ

)
< αi,Ŝλ

with probability larger than 1−δ/2. In the following lemma, we compare K1(Ŝλ)+K2(Ŝλ)

to K1 +K2. Note RΣ(1),Σ(2) =
∨
i=1,2 Φk∗,+(

√
Σ(i))∧

i=1,2 Φk∗,−(
√

Σ(i))

∨
i=1,2 Φ1,+(

√
Σ(i))∧

i=1,2 κ
2[6,|θ∗|0,

√
Σ(i)]

.

Lemma 8.8. On the event A ∩ B, we have

L
[
K1(Ŝλ) +K2(Ŝλ)

]
≥ 1 ∧

[
K1 +K2 − L′RΣ(1),Σ(2)

|S∪|(n1 ∨ n2)

(n1 ∧ n2)2
log(p)

]
.

Then, we closely follow the arguments of Theorem 5.1 to state that TB
ŜLasso

rejects H0

with large probability as long as K1(Ŝλ) +K2(Ŝλ) is large enough.

Lemma 8.9. If on the event A ∩ B, we have

K1(Ŝλ) +K2(Ŝλ) ≥ LϕŜλ

(
1

n1
+

1

n2

)[
|Ŝλ| log(p) + log

(
1

αδ

)
+ log(p)

]
,

then, mini∈{1,2,3} Q̃i,|Ŝλ|(FŜλ,i|XŜλ
) < αi,Ŝλ with probability larger than 1− δ/2.
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We derive from (50) that on the event A ∩ B,

|Ŝλ| ≤ L′
n1 ∨ n2

n1 ∧ n2

∨
i=1,2 Φk∗,+(

√
Σ(i))∧

i=1,2 κ
2[6, |θ∗|0,

√
Σ(i)]

|S∪| .

Since |S∪| ≤ |β(1)|0 + |β(2)|0, it follows from Condition (25) that |Ŝλ| ≤ k∗. Gathering
Lemmas 8.8 and 8.9 allows us to conclude if we take L∗3 in Proposition 5.2 large enough.

Proof of Lemma 8.6. In order to bound P(A), we apply Lemma 8.12 to simultaneously

control ϕmax(X
(1)ᵀ
S X

(1)
S ), ϕmax(X

(2)ᵀ
S X

(2)
S ), ϕmin(X

(1)ᵀ
S X

(1)
S ), and ϕmin(X

(2)ᵀ
S X

(2)
S ) for all

sets S of size k∗. Combining a union bound with Conditions (23) and (24) allows us to
prove that

P
[{
∀θ s.t. |θ|0 ≤ k∗, 1/2 ≤ ‖X

(1)θ‖2

n1‖θ‖2Σ(1)

≤ 2 and 1/2 ≤ ‖X
(2)θ‖2

n2‖θ‖2Σ(2)

≤ 2

}]
≥ 1− δ/8

Applying Corollary 1 in [30], we derive that there exist three positive constant c1, c2 and
c3 such that the following holds. With probability larger than 1 − c1 exp[−c2(n1 ∧ n2)],
we have ∧

i=1,2

κ
[
6, |θ∗|0,X(i)/

√
ni
]

κ
[
6, |θ∗|0,

√
Σ(i)

] ≥ 2−3 ,

if |θ∗|0 log(p) < c3
∨i=1,2Φ1,+(

√
Σ(i))

∧i=1,2κ2[6,|θ∗|0,
√

Σ(i)]
(n1 ∧ n2). Hence, we conclude that P [A] ≥ 1− δ/4.

Consider an integer k ≤ k∗ and a k-sparse vector θ =

(
θ(1)

θ(2)

)
in R2p. Under event

A, we have

‖Wθ‖2 = ‖X(1)(θ(1) + θ(2))‖2 + ‖X(2)(θ(1) − θ(2))‖2

≤ 2n1‖θ(1) + θ(2)‖2Σ(1) + 2n2‖θ(1) − θ(2)‖2Σ(2)

≤ 4(n1 + n2)
[
Φk,+(

√
Σ(1)) ∨ Φk,+(

√
Σ(2))

]
‖θ‖2

‖Wθ‖2 ≥ 1

2

[
n1‖(θ(1) + θ(2)‖2Σ(1) + n2‖θ(1) − θ(2)‖2Σ(2)

]
≥ (n1 ∧ n2)

[
Φk,−(

√
Σ(1)) ∧ Φk,−(

√
Σ(2))

]
‖θ‖2 .

Proof of Lemma 8.7. Observe that the variance of [Wᵀε]i given W is smaller than Φ1,+(W)(σ(1)∨
σ(2))2. Using a union bound and the deviations of the Gaussian distribution, it follows
that P(B) ≥ 1− 1/p.

Recall the definition of η[., .] in (22). A slight variation of Lemma 11.2 in [38] ensures
that

‖W(θ̂λ − θ∗)‖2 ≤ L
λ2

η2[3, |θ∗|0,W]
|θ∗|0 (51)

on event B. Fix k = |θ∗|0 and consider some θ =

(
θ(1)

θ(2)

)
∈ C (3, T ) with |T | = k. Define

T ′ ⊂ {1, . . . , p} by i ∈ T ′ if i ∈ T or i+ p ∈ T . We have

|(θ(1) + θ(2))T ′c |1 ∨ |(θ(1) − θ(2))T ′c |1 ≤ |θ(1)
T ′c |1 + |θ(2)

T ′c |1 ≤ |θT c |1 ≤ 3|θT |1
≤ 3

[
|θ(1)
T ′ |1 + |θ(2)

T ′ |1
]

≤ 6
[
|(θ(1) + θ(2))T ′ |1 ∨ |(θ(1) − θ(2))T ′ |1

]
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It follows that θ(1) + θ(2) ∈ C(6, T ′) or θ(1) − θ(2) ∈ C(6, T ′). By symmetry, we assume
that |(θ(1) + θ(2))T ′ |1 ≥ |(θ(1) − θ(2))T ′ |1. Let us lower bound the l1 norm of θ(1) + θ(2) in
terms of θ.

2|θ(1) + θ(2)|1 ≥
[∣∣∣(θ(1) + θ(2)

)
T ′

∣∣∣
1

+
∣∣∣(θ(1) − θ(2)

)
T ′

∣∣∣
1

]
≥ |θT |1 ≥

|θ|1
4

,

since θ belongs to C(3, T ). Thus, we derive the lower bound

k‖Wθ‖2

|θ|21
≥ k‖X(1)(θ(2) + θ(1))‖2

|θ|21
+
k‖X(2)(θ(2) − θ(1))‖2

|θ|21

≥ (n1 ∧ n2)|θ(2) + θ(1)|21
|θ|21

 ∧
i=1,2

η2
(

6, k,X(i)/
√
ni

)
≥ L(n1 ∧ n2)

 ∧
i=1,2

κ2
(

6, k,X(i)/
√
ni

)
≥ L(n1 ∧ n2)

[
κ2
(

6, k,
√

Σ(1)
)
∧ κ2

(
6, k,

√
Σ(2)

)]
,

where the last inequality proceeds from Lemma 8.6. We conclude that

L′κ2[3, |θ∗|0,W] ≥ (n1 ∧ n2)
[
κ2
(

6, k,
√

Σ(1)
)
∧ κ2

(
6, k,

√
Σ(2)

)]
.

Gathering this bound with (51), it follows that

‖W(θ̂λ − θ∗)‖2 ≤
L′λ2/(n1 ∧ n2)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0 ,

which allows us to prove (49). Lemma 3.1 in [16] tells us that on event B,

λ2|θ̂λ|0 ≤ 16Φ|θ̂λ|0,+(W)‖W(θ̂λ − θ∗)‖2 .

Gathering the last two bounds and Lemma 8.6, we obtain

|θ̂λ|0 ≤ L
Φ|θ̂λ|0,+(W)

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0. (52)

Recall that |θ∗|0 ≤ |β(1)|0+|β(2)|0. The upper-bound Φ|θ̂λ|0,+(W) ≤ (1+|θ̂λ|0/k∗)Φk∗,+(W)

and Lemma 8.6 enforce

|θ̂λ|0 ≤ L
n1 ∨ n2

n1 ∧ n2

Φk∗,+(
√

Σ(1)) ∨ Φk∗,+(
√

Σ(2))

κ2[6, |θ∗|0,
√

Σ(1)] ∧ κ2[6, |θ∗|0,
√

Σ(2)]
|θ∗|0

[
1 +
|θ̂λ|0
k∗

]
≤

(
k∗ + |θ̂λ|0

)
/2 ,

where the last inequality holds if we take L∗2 in (25) small enough. Hence, |θ̂λ|0 ≤ k∗.
Coming back to (52), we prove (50).

Proof of Lemma 8.8. Given the Lasso estimator θ̂λ of θ∗ in model (48), we define β̂
(1)
λ

and β̂
(2)
λ by

β̂
(1)
λ = θ̂

(1)
λ + θ̂

(2)
λ , β̂

(2)
λ = θ̂

(1)
λ − θ̂

(2)
λ .
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On event A ∩ B, we upper bound the difference between (β(1), β(2)) and (β̂
(1)
λ , β̂

(2)
λ ).

‖β(1) − β̂(1)
λ ‖

2
Σ(1) + ‖β(2) − β̂(2)

λ ‖
2
Σ(2)

≤ 2

[
‖X

(1)

√
n1

(β(1) − β̂(1)
λ )‖2 + ‖X

(2)

√
n2

(β(2) − β̂(2)
λ )‖2

]
≤ 2

n1 ∧ n2
‖W(θ∗ − θ̂λ)‖2

≤ L

∨
i=1,2 Φ1,+(

√
Σ(i))∧

i=1,2 κ
2[6, |θ∗|0,

√
Σ(i)]

|S∪|(n1 ∨ n2)

(n1 ∧ n2)2
log(p)(σ(1) ∨ σ(2))2 ,

where the last inequality follows from Lemma 8.7. Let us now lower bound the Kullback
discrepancy 2[K1(Ŝλ) +K2(Ŝλ)] which equalsσ(1)

Ŝλ

σ
(2)

Ŝλ

2

+

σ(1)

Ŝλ

σ
(2)

Ŝλ

2

− 2 +
‖β(2)

Ŝλ
− β(1)

Ŝλ
‖2

Σ(2)

(σ
(1)

Ŝλ
)2

+
‖β(2)

Ŝλ
− β(1)

Ŝλ
‖2

Σ(1)

(σ
(2)

Ŝλ
)2

.

CASE 1: σ(1)∨σ(2)

σ(1)∧σ(2) ≥
√

2. By symmetry, we can assume that σ(1) > σ(2).

(σ
(1)

Ŝλ
)2 = (σ(1))2 + ‖β(1) − β(1)

Ŝλ
‖2Σ(1) ≥ (σ(1))2

(σ
(2)

Ŝλ
)2 = (σ(2))2 + ‖β(2) − β(2)

Ŝλ
‖2Σ(2) ≤ (σ(2))2 + ‖β(2) − β̂(2)

λ ‖
2
Σ(2)

≤ (σ(2))2 + L

∨
i=1,2 Φ1,+(

√
Σ(i))∧

i=1,2 κ
2[6, |θ∗|0,

√
Σ(i)]

|S∪|(n1 ∨ n2)

(n1 ∧ n2)2
log(p)(σ(1))2 (53)

≤ (σ(2))2 +
(σ(1))2

4
,

where we used conditions (23) and (25) in the last inequality assuming that we have taken
L∗ and L∗2 small enough in these two conditions. This enforces

2
[
K1

(
Ŝλ

)
+K2

(
Ŝλ

)]
≥ 1

12
.

CASE 2: σ(1)∨σ(2)

σ(1)∧σ(2) ≤
√

2. Let us note

A = 2L

∨
i=1,2 Φ1,+(

√
Σ(i))∧

i=1,2 κ
2[6, |θ∗|0,

√
Σ(i)]

|S∪|(n1 ∨ n2)

(n1 ∧ n2)2
log(p) ,

with L as in (53). Arguing as in Case 1, we derive that

(σ
(1)

Ŝλ
)2 ≤ (σ(1))2 [1 +A] ≤ 2(σ(1))2 ,

(σ
(1)

Ŝλ
)2 ≤ (σ(2))2 [1 +A] ≤ 2(σ(2))2 .

Let us lower bound K1(Ŝλ) +K2(Ŝλ) in terms of K1 +K2. First, we consider the ratio of
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the variances

(σ
(1)

Ŝλ
)2

(σ
(2)

Ŝλ
)2

+
(σ

(2)

Ŝλ
)2

(σ
(1)

Ŝλ
)2
− 2 ≥

[
(σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2

]
/(1 +A)− 2

≥ (σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2
− 2− A

1 +A

[
(σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2

]
≥ (σ(1))2

(σ(2))2
+

(σ(2))2

(σ(1))2
− 2− 3A . (54)

Let us now lower bound the remaining part of K1(Ŝλ)+K2(Ŝλ). For i = 1, 2, |β(i)−β̂(i)
λ |0 ≤

|θ∗|0 + |θ̂λ|0 ≤ k∗ by Lemma 8.7 and Condition (25).

‖β(1) − β(2)‖2
Σ(2)

(σ(1))2
+
‖β(1) − β(2)‖2

Σ(1)

(σ(2))2

≤ 3

(σ(1))2 ∧ (σ(2))2

2∑
i=1

[
‖β(1) − β(1)

Ŝλ
‖2Σ(i) + ‖β(2) − β(2)

Ŝλ
‖2Σ(i) + ‖β(1)

Ŝλ
− β(2)

Ŝλ
‖2Σ(i)

]

≤ L1

‖β(1)

Ŝλ
− β(2)

Ŝλ
‖2

Σ(1)

(σ(2))2
+
‖β(1)

Ŝλ
− β(2)

Ŝλ
‖2

Σ(2)

(σ(1))2


+

L2

(σ(1) ∧ σ(2))2

∨
i=1,2 Φk∗,+(

√
Σ(i))∧

i=1,2 Φk∗,−(
√

Σ(i))

[
2∑
i=1

‖β(i) − β̂(i)
λ ‖

2
Σ(i)

]

≤ L1

‖β(1)

Ŝλ
− β(2)

Ŝλ
‖2

Σ(1)

(σ(2))2
+
‖β(1)

Ŝλ
− β(2)

Ŝλ
‖2

Σ(2)

(σ(1))2

+ L2

∨
i=1,2 Φk∗,+(

√
Σ(i))∧

i=1,2 Φk∗,−(
√

Σ(i))
A

Gathering the last inequality with (54) yields

K1(Ŝλ) +K2(Ŝλ) ≥ L1 [K1 +K2]− L2

∨
i=1,2 Φk∗,+(

√
Σ(i))∧

i=1,2 Φk∗,−(
√

Σ(i))
A .

Proof of Lemma 8.9. For any non empty set S of size smaller or equal to k∗, define δS =

δ
(

2
(|S|
p

)
k∗

)−1

. If we take L∗ and L∗1 in (23-24) small enough, then 1+log[1/(αSδS)]/(n1∧
n2) is smaller than some constant L small enough so that we can apply Theorem 5.1.
Arguing as in the proof of this Theorem, we derive that

P
[

min
i∈{1,2,3}

Q̃i,S(FS,i|XS) < αS

]
≥ 1− δS

if

K1(S) +K2(S) ≥ LϕS
(

1

n1
+

1

n2

)[
|S| log(p) + log

(
1

αδ

)
+ log(p)

]
.

Applying a union bound over all sets S of size smaller or equal to k∗ allows us to prove

P
[

min
i∈{1,2,3}

Q̃i,Ŝλ(FŜλ,i|XŜλ
) < αŜλ

]
≥ 1− δ .
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8.6. Proof of Proposition 5.3

This proof follows the same steps as above. Taking L̃∗ small enough, we can assume that
n1 ∨ n2 ≤ 2(n1 ∧ n2). Rewrite the linear regression model Y = Wθ∗ + ε as follows:

Y = W(1)θ
(1)
∗ + W(2)θ

(2)
∗ + ε .

From the definition of the Lasso estimator θ̂λ =

(
θ̂

(1)
λ

θ̂
(2)
λ

)
, we derive that θ̂

(2)
λ is the

solution of the following minimization problem:

arg min
θ∈Rp

‖ε+ W(2)θ
(2)
∗ + W(1)

(
θ

(1)
∗ − θ̂(1)

λ

)
−W(2)θ‖+ λ|θ′|1 . (55)

We fix

λ = 16(σ(1) ∨ σ(2))

√
2(n1 + n2)Φ1,+(

√
Σ) log(p) .

and we suppose that event A ∩ B (defined in the last proof) holds. Recall that P[A ∩
B] ≥ 1 − δ/4 − 1/p. We consider the set Ŝ

(2)
λ defined as the support of θ̂

(2)
λ . Note that

Ŝ
(2)
λ ∈ Ŝ(2)

L ⊂ ŜLasso.

Lemma 8.10. If we take constants L̃∗ and L∗2 in Proposition 5.3 small enough, then
the following holds. There exists an C of probability larger than 1− 1/p such that, under
A ∩ B ∩ C, we have

|W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ

)
|∞ ≤ λ/8 (56)

It follows that on A ∩ B ∩ C:∣∣∣W(2)ᵀ
[
ε+ W(1)

(
θ

(1)
∗ − θ̂(1)

λ

)]∣∣∣
∞
≤ λ/4

Arguing as in the proof of Lemma 8.7 and taking L∗2 small enough, we derive that under
A ∩ B,

‖W(2)(θ
(2)
∗ − θ̂(2)

λ )‖2 ≤ L1
λ2/(n1 ∧ n2)

κ2[6, k̃∗,
√

Σ]
|θ(2)
∗ |0 , (57)

|θ̂(2)
λ |0 ≤ L2

Φk∗,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
|θ(2)
∗ |0 ≤ k̃∗/2 ≤ k∗/2 . (58)

This allows us to upper bound ‖θ(2)
∗ − θ̂(2)

λ ‖2Σ under event A.

‖θ(2)
∗ − θ̂(2)

λ ‖
2
Σ ≤ L

n1 ∧ n2

[
‖X(1)(θ

(2)
∗ − θ̂(2)

λ )‖2 + ‖X(2)(θ
(2)
∗ − θ̂(2)

λ )‖2
]

≤ L

n1 ∧ n2
‖W(2)(θ

(2)
∗ − θ̂(2)

λ )‖2 .

Pythagorean inequality then gives

‖β(1) − β(2)‖2Σ = ‖β(1)

Ŝ
(2)
λ

− β(2)

Ŝ
(2)
λ

‖2Σ + ‖β(1) − β(2) − β(1)

Ŝ
(2)
λ

+ β
(2)

Ŝ
(2)
λ

‖2Σ

≤ ‖β(1)

Ŝ
(2)
λ

− β(2)

Ŝ
(2)
λ

‖2Σ + ‖θ(2)
∗ − θ̂(2)

λ ‖
2
Σ

≤ ‖β(1)

Ŝ
(2)
λ

− β(2)

Ŝ
(2)
λ

‖2Σ + L
|θ(2)
∗ |0 log(p)

n1 ∧ n2

Φ1,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
(σ(1) ∨ σ(2))2 ,
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where we use the two previous upper bounds in the last line. Consequently, we obtain

K1(Ŝ
(2)
λ ) +K2(Ŝ

(2)
λ ) ≥ L

‖β(1) − β(2)‖2Σ
Var(Y (1)) ∨Var(Y (2))

− L′ |θ
(2)
∗ |0 log(p)

n1 ∧ n2

Φ1,+(
√

Σ)

κ2[6, k̃∗,
√

Σ]
.

Applying Lemma 8.9 to Ŝ
(2)
λ , using (58) and taking L∗3 large enough then allows us to

conclude.

Proof of Lemma 8.10. Given any matrix A, we define the norm ‖A‖∞ = maxi,j |Ai,j |.
Suppose that we are under events A ∩ B defined previously. Arguing as in the proof of
Lemma 8.7, we derive that |θ∗|0 + |θ̂λ|0 ≤ k̃∗ and

‖W(θ̂λ − θ∗)‖2 ≤ L1
λ2

κ2[6, |θ∗|0,
√

Σ](n1 ∧ n2)
k̃∗ . (59)

Thus, |θ(1)
∗ − θ̂(1)

λ |0 ≤ k̃∗ and we derive∣∣∣W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ

)∣∣∣
∞

=
∣∣∣(X(1)ᵀX(1) −X(2)ᵀX(2)

)(
θ

(1)
∗ − θ̂(1)

λ

)∣∣∣
∞

≤ ‖θ(1)
∗ − θ̂(1)

λ ‖
√
k̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞

≤ ‖W(θ∗ − θ̂)‖√
Φk∗,−(W)

√
k̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞

≤ L
λk̃∗‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞√
n1 ∧ n2κ[6, |θ∗|0,

√
Σ]
√

Φk∗,−(W)
, (60)

where we used (59) in the last line.
Combining deviations inequality for χ2 distributions (Lemma 8.11) and for Gaussian

distributions and a union bound, we derive that

‖X(1)ᵀX(1) −X(2)ᵀX(2)‖∞ ≤ Φ1,+(
√

Σ)
[
|n1 − n2|+ L

√
(n1 ∨ n2) log(p)

]
, (61)

with probability larger than 1 − 1/p. Consider some θ with |θ|0 ≤ k∗. When event A
defined in Lemma 8.6 holds, we have

‖Wθ‖2

‖θ‖2
=
‖X(1)(θ(1) + θ(2))‖2

‖θ‖2
+
‖X(2)(θ(1) − θ(2))‖2

‖θ‖2

≥ Φk∗,−(
√

Σ)

2

n1‖θ(1) + θ(2)‖2 + n2‖θ(1) − θ(2)‖2

‖θ‖2

≥ Φk∗,−(
√

Σ)(n1 ∧ n2) .

Let us note TΣ =
Φ1,+(

√
Σ)

κ[6,k∗,
√

Σ]Φ
1/2
k∗,−

(
√

Σ)
. Gathering the last upper bound with (60) and (61),

we get

∣∣∣W(2)ᵀW(1)
(
θ

(1)
∗ − θ̂(1)

λ

)∣∣∣
∞
≤ Lλk̃∗

 |n1 − n2|
n1 ∧ n2

+

√
log(p)

n1 ∧ n2

TΣ ,

since n1 ∨ n2 ≤ 2(n1 ∧ n2). Taking L̃∗ small enough in definition (26) of k̃∗ allows us to
conclude.
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8.7. Proof of Proposition 3.2

By symmetry, we can assume that n1 ≤ n2. Let us fix β(2) = 0 and σ(2) = 1. Fix some
positive integer s ≤ p1/2−γ and fix r ∈ (0, 1/

√
2).

We consider the test of hypotheses H0 : β(1) = 0, σ(1) = 1 against H1 : |β(1)|0 = s,
‖β(1)‖ = r2, and σ(1) =

√
1− r2. Note that for this problem, the data (Y(2),X(2)) do not

bring any information on the hypotheses. This one-sample testing problem is a specific
case of the two-sample testing problem considered in the proposition. Thus, a minimax
lower bound for the one-sample problem provides us a minimax lower bound for the
two-sample problem.

According to Theorem 4.3 in [41], no level α test has power larger than 1− δ if

r2

1− r2
≤ s

2n1
log

(
1 +

p

s2
+

√
2p

s2

)
Since s ≤ p1/2−γ , no level α test has power larger than 1− δ if

r2

1− r2
≤ γ |s|

n1
log(p) . (62)

By Assumption (A.2), one may assume that that the right-hand side term is smaller than
1/2. Observe that

2(K1 +K2) =
2r2

1− r2
and

‖β(1) − β(2)‖2Ip
Var[Y (1)] ∧Var[Y (2)]

= r2 ≥ 1

2

r2

1− r2
,

for r ≤
√

2. The result follows.

8.8. Technical lemmas

In this section, some useful deviation inequalities for χ2 random variables [22] and for
Wishart matrices [13] are reminded.

Lemma 8.11. For any integer d > 0 and any positive number x,

P
(
χ2(d) ≤ d− 2

√
dx
)
≤ exp(−x) ,

P
(
χ2(d) ≥ d+ 2

√
dx+ 2x

)
≤ exp(−x) .

Lemma 8.12. Let ZᵀZ be a standard Wishart matrix of parameters (n, d) with n > d.
For any positive number x,

P

{
ϕmin (ZᵀZ) ≥ n

({
1−

√
d

n
− x

}
∨ 0

)}
≤ exp(−nx2/2) ,

and

P

ϕmax (ZᵀZ) ≤ n

(
1 +

√
d

n
+ x

)2
 ≤ exp(−nx2/2) .
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