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SOME EXACT VALUES OF THE HARBORTH CONSTANT AND

ITS PLUS-MINUS WEIGHTED ANALOGUE

LUZ E. MARCHAN, OSCAR ORDAZ, DENNYS RAMOS, AND WOLFGANG A. SCHMID

Abstract. The Harborth constant of a finite abelian group is the smallest
integer ℓ such that each subset of G of cardinality ℓ has a subset of cardinality
equal to the exponent of the group whose elements sum to the neutral element
of the group. The plus-minus weighted analogue of this constant is defined in
the same way except that instead of considering the sum of all elements of the
subset one can choose to add either the element or its inverse. We determine
these constants for certain groups, mainly groups that are the direct sum of a
cyclic group and a group of order 2. Moreover, we contrast these results with
existing results and conjectures on these problems.

1. Introduction

We investigate a certain zero-sum constant of finite abelian groups, introduced
by Harborth [10], and one of its weighted analogues. For a finite abelian group G,
denoted additively, a zero-sum constant of G can be defined as the smallest integer
ℓ such that each set (or sequence, resp.) of elements of G of cardinality (or length,
resp.) ℓ has a subset (or subsequence, resp.) whose elements sum to 0, the neutral
element of the group, and that possibly fulfills some additional condition (typically
on its size). We refer to the survey article [7] for an overview.

Motivated by a problem on lattice points Harborth considered the constants that
arise, for sequences and for sets, when the additional condition on the substructure
is that its size is equal to the exponent of the group. For cyclic groups and in
the case of sequences this problem had been considered by Erdős, Ginzburg, and
Ziv [6] and the resulting constant is thus sometimes called the Erdős–Ginzburg-Ziv
constant of G; see, e.g., [4] for a recent contribution to this problem.

In the present paper we focus on the constant introduced by Harborth for sets,
which we thus call the Harborth constant of G; we preserve the classical notation
g(G). The constant g(G), that is the smallest ℓ such that each subset of G of
cardinality ℓ has a subset of cardinality equal to the exponent of the group whose
terms sums to 0, is only known for very few types of groups. Even in the case of
elementary 3-groups where the problem is particularly popular as it is equivalent
to several other well-investigated problems (cap-sets and sets without 3-term arith-
metic progressions) the precise value is only known for rank up to 6 (see [5] for
a detailed overview and [12] for the more recent result for rank 6). Kemnitz [11]

2010 Mathematics Subject Classification. 11B30, 11B75, 20K01.
Key words and phrases. finite abelian group, weighted subsum, zero-sum problem.
The research of O. Ordaz is supported by the Postgrado de la Facultad de Ciencias de la

U.C.V., the CDCH project number 03-8018-2011-1, and the Banco Central de Venezuela; the
one of W.A. Schmid by the PHC Amadeus 2012 project number 27155TH and the ANR project
Caesar, project number ANR-12-BS01-0011.

1



2 LUZ E. MARCHAN, OSCAR ORDAZ, DENNYS RAMOS, AND WOLFGANG A. SCHMID

established general bounds for homocyclic groups, from which the exact value for
cyclic group follows, namely g(Cn) equals n or n + 1, according to n odd or even;
note that the constant being n+1 in case of even n means that there is no set with
the desired property at all, yet for ℓ > n the statement is vacuously true. More
generally, it is known (see [7, Lemma 10.1]) that g(G) = |G|+ 1 if and only if G is
an elementary 2-group or a cyclic group of even order.

Moreover, Kemnitz showed g(C2
p) = 2p− 1 for p ∈ {3, 5, 7}. More recently Gao

and Thangadurai [9] showed g(C2
p ) = 2p−1 for prime p ≥ 67 (this was later refined

to p ≥ 47, see [8]) and g(C2
4 ) = 9. They then conjectured that g(C2

n) equals 2n− 1
or 2n + 1, according to n odd or even, which are the lower bounds obtained by
Kemnitz.

Thus, one notices a direct dependence on the parity of the exponent n both for
Cn and C2

n, in the latter case at least conjecturally; also the bounds of Kemnitz
depend on the parity of the exponent. One of our results is the exact value of
g(C2 ⊕ C2n) for all n.

Theorem 1.1. Let n ∈ N. We have

g(C2 ⊕ C2n) =

{

2n+ 3 for n odd

2n+ 2 for n even
.

Again, one observes a direct dependence on the parity of n. However, it should
be noted that it is of a somewhat different flavor as the exponent of the group, 2n,
is even, regardless.

In addition to these investigations, we also investigate the plus-minus weighted
analogue of the Harborth constant. There are several ways to introduce weights in
zero-sum problems. The one we consider here was introduced by Adhikari et al.
(see [1, 2]). Instead of requiring the existence of a zero-sum subsequence or subset
one requires only the existence of a plus-minus weighted zero-subsum, that is for
each element of the subsequence or subset one is free to choose to add either the
element or its inverse (see Section 2 for a more formal and general definition). For
a recent investigation of the plus-minus weighted analogue of the Erdős–Ginzburg–
Ziv constant see [3].

We determine the plus-minus weighted Harborth constant, denoted g±(G), for
cyclic groups and groups of the form C2 ⊕ C2n. More specifically we obtain the
following results.

Theorem 1.2. Let n ∈ N. Then

g±(Cn) =

{

n+ 1 for n ≡ 2 (mod 4)

n otherwise
.

Theorem 1.3. Let n ∈ N. For n ≥ 3 we have

g±(C2 ⊕ C2n) = 2n+ 2.

Moreover, g±(C2 ⊕ C4) = g±(C2 ⊕ C2) = 5.

For cyclic groups one has again a certain dependence on parity, yet somewhat
surprisingly this phenomenon does not appear for C2 ⊕C2n, and the result (albeit
not its proof) is independent of n, except for the expected and known exception
for n = 1 and the phenomenon that for n = 2 the value is smaller by one than
one might expect. In addition, we establish an analogue of [7, Lemma 10.1] in the
presence of plus-minus weights (see Corollary 4.1).
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2. Preliminaries and notation

We collect some definitions and notations we use frequently. By N and N0 we
denote the set of positive and non-negative integers, respectively. For reals a, b we
denote by [a, b] = {x ∈ Z : a ≤ x ≤ b}.

Let G be a finite abelian group; we use additive notation. We denote by Cn a
cyclic group of order n. There are uniquely determined 1 < n1 | · · · | nr such that
G ∼= Cn1

⊕ · · · ⊕Cnr
. We call nr the exponent of G, denoted exp(G); the exponent

of a group of order 1 is 1. We call r the rank of G; the rank of a group of order 1
is 0. The p-rank of G, for p a prime, is the number of i such that p | ni.

For G = ⊕s
i=1Gi, by the projection πi : G → Gi we mean the group homomor-

phism g1 + · · · + gs 7→ gi; this depends on the direct sum decomposition not just
the groups G and Gi, yet at least implicitly it will be clear which decompositions
we mean.

A sequence over G is an element of the free abelian monoid over G, which we
denote multiplicatively. In other words, for each sequence S over G there exist up
to ordering uniquely determined g1, . . . , gℓ ∈ G (possibly some of them equal) such
that S = g1 . . . gℓ; moreover, there exist unique vg ∈ N0 such that S =

∏

g∈G gvg .
The neutral element of this monoid, the empty sequence, is denoted by 1. We denote

by |S| = ℓ the length of S and by σ(S) =
∑ℓ

i=1 gi its sum. The set {g1, . . . , gℓ}
is called the support of S, denoted supp(S). The sequence S is called square-free
if all the gi are distinct. We say that T is a subsequence of S, if T divides S
in the monoid of sequences that is T =

∏

i∈I gi for some I ⊂ [1, ℓ]. For T | S
a subsequence we denote by ST−1 the sequence fulfilling T (ST−1) = S, in other
words ST−1 =

∏

i∈[1,ℓ]\I gi if T =
∏

i∈I gi.

There is an immediate correspondence between squarefree sequences over G and
subsets of G, in other words we could identify S with supp(S). While in this
paper we are mainly interested in squarefree sequences, that is sets, we still use
the formalism and language of sequences rather than that of sets. On the one
hand, we do so for consistency with other work, yet on the other hand regarding
certain aspects there is an actual difference regarding the meaning of standard
constructions (see below).

For W ⊂ Z, we call
∑ℓ

i=1 wigi with wi ∈ W a W -weighted sum of S; when
arising in this context we refer to W as the set of weights. Moreover, we denote by

σW (S) = {
∑ℓ

i=1 wigi : wi ∈ W} the set of all W -weighted sums of S.
In addition, we need the following notations:

ΣW (S) =

{

∑

i∈I

wigi : wi ∈ W, ∅ 6= I ⊂ [1, ℓ]

}

=
⋃

16=T |S

σW (T )

the set of all W -weighted subsums of S as well as the variant

Σ0
W (S) =

{

∑

i∈I

wigi : wi ∈ W, I ⊂ [1, ℓ]

}

=
⋃

T |S

σW (T )

where the empty subsum is also permitted. Note that we always have that Σ0
W (S) =

ΣW (S) ∪ {0}, yet not always Σ0
W (S) \ {0} = ΣW (S).
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Moreover, we denote

ΣW,k(S) =

{

∑

i∈I

wigi : wi ∈ W, ∅ 6= I ⊂ [1, ℓ], |I| = k

}

=
⋃

16=T |S, |T |=k

σW (T )

the set of all W -weighted subsums of S of length k.
For W = {1}, one recovers the usual notions in the non-weighted case, and we

drop the subscript W in this case, except for the fact that strictly speaking σ{1}(S)
is not σ(S) but rather the set containing σ(S). We continue to consider σ(S) as
an element of G rather than as a singleton set containing this element. Moreover,
we use the symbol ± instead of W for W = {+1,−1} and speak of plus-minus
weighted sums.

For a map ϕ : G → G′, where G′ denotes an abelian group, there is a unique
continuation of ϕ to a monoid homomorphism from the monoid of sequences over
G to the monoid of sequences over G′, which we continue to denote by ϕ. More
explicitly, ϕ(S) = ϕ(g1) . . . ϕ(gℓ). We point out that if ϕ is not injective, then the
image under ϕ of a squarefree sequence might not be a squarefree sequence, yet we
always have |S| = |ϕ(S)|. Here, the situation would be different if we consider S
as a set, and this is a main reason why we prefer to work with sequences. If ϕ is
not only a map, but in fact a group homomorphism, then ϕ(σ(S)) = σ(ϕ(S)), and
likewise for σW , Σ0

W , ΣW and ΣW,k.
Let A,B ⊂ G then A + B = {a + b : a ∈ A, b ∈ B} denotes the sum of the

sets A and B, and A+̂B = {a + b : a ∈ A, b ∈ B, a 6= b} the restricted sum of A
and B. For g ∈ G, we write g + A instead of {g} + A. For k ∈ Z, we denote by
k ·A = {ka : a ∈ A} the dilation of A by k, not the k-fold sum of A with itself. We
write −A instead of (−1) ·A. Also, for S = g1 . . . gℓ a sequence we use the notations
g + S to denote the sequence (g + g1) . . . (g + gℓ) and −S to denote the sequence
(−g1) . . . (−gℓ).

3. Main definitions and auxiliary results

The focus of this paper is the investigation of the Harborth constant and its
plus-minus weighted analogue. We recall its definition, for arbitrary set of weights,
as well as related definitions in a formal way.

Definition 3.1. Let G be a finite abelian group. Let W ⊂ Z. The W -weighted
Harborth constant of G, denoted by gW (G), is the smallest ℓ ∈ N such that for
each squarefree sequence over G with |S| ≥ ℓ we have 0 ∈ ΣW,exp(G)(S).

The (classical) Harborth constant is the special case W = {1}, i.e., with-
out weights; the plus-minus weighted Harborth constant is the special case W =
{+1,−1}; we denote them by g(G) and g±(G), respectively.

We also use the W -weighted Olson constant, defined in the same way, except
that the condition is 0 ∈ ΣW (S), that is we do not impose any condition on the
length of the weighted zero-subsum (except for it being non-empty).

While we do not use them in this paper, but as we mentioned them in the
Introduction, we recall that theW -weighted Erdős–Ginzburg–Ziv constant, denoted
sW (G), is the constant one gets when replacing ‘squarefree sequence’ by ‘sequence’
in the definition of the W -weighted Harborth constant. Likewise, the analogue for
sequence of the W -weighted Olson constant is the W -weighted Davenport constant.
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Observe that in case {+1,−1} ⊂ W , the W -weighted Olson constant and the W -
weighted Davenport constant are equal. Yet, this is in general not true for gW (G)
and sW (G).

We start by establishing a simple general lemma on the behavior of the W -
weighted Harborth constant with respect to direct sum decompositions of the group.

Lemma 3.2. Let G be a finite abelian group. Let W ⊂ Z be a set of weights. If

G = H ⊕K with exp(H) | exp(K), then gW (G) ≥ OW (H) + gW (K)− 1.

Proof. Let B be a square-free sequence over K of length gW (K) − 1 that does
not contain a W -weighted zero-subsum of length exp(K). Furthermore, let A be a
square-free sequence overH of length OW (H)−1 that does not contain a nonempty
W -weighted zero-subsum. Since exp(H) | exp(K), we have exp(K) = exp(G). We
assert that the sequence AB cannot have a zero-subsum of length exp(G). On the
one hand, such a subsum cannot contain an elements from A, since those would
yield a nonempty W -weighted zero-subsum of A. On the other hand, it cannot
contain no element of A, since then it would yield a W -weighted zero-subsum of
B of length exp(G) = exp(K). Therefore, it AB cannot have such a subsum and
g±W (G) > |AB| = (OW (H)− 1) + (gW (K)− 1), establishing the claim. �

We need the following (well-known) lemma; for lack of a suitable reference for
the second part, we include the short proof.

Lemma 3.3. Let G be a finite abelian group, and let t denote the 2-rank of G. Let

A,B ⊂ G nonempty subsets.

(1) Suppose |A|+ |B| ≥ |G|+ 1. Then A+B = G.

(2) Suppose |A|+ |B| ≥ |G|+ 1 + 2t. Then A+̂B = G.

Proof. 1. Let g ∈ G. Since |A| + |B| ≥ |G| + 1 and |g − A| = |A|, it follows that
(g − A) ∩B is nonempty. That is there are a ∈ A and b ∈ B such that g − a = b,
that is g = a+ b, so g ∈ A+B. Since g was arbitrary, we have A+B = G.
2. Let g ∈ G. Since |A|+ |B| ≥ |G|+ 1+ 2t, it follows that |(g −A) ∩B| ≥ 1 + 2t.
Thus there are (distinct) ai ∈ A and (distinct) bi ∈ B for i ∈ [1, 2t + 1] such that
g − ai = bi. If for some i we have ai 6= bi, then we get as above g ∈ A+̂B and the
claim. So, assume for each i, we have ai = bi, which implies g = 2ai. However,
for fixed g the solutions of the equation g = 2X , in other words the pre-image of g
under the group endomorphism ‘multiplication by 2’, are contained in a co-set to
the subgroup of G formed by the elements of order at most 2. Yet, this subgroups
and thus the coset has cardinality 2t. So, it is impossible that ai = bi and thus
g = 2ai holds true for each ai, establishing the claim. �

We give a way to express, for W = {+1,−1}, the set of W -weighted sums of a
sequence in terms of notions not involving weights.

Lemma 3.4. Let G be a finite abelian group and let S be a sequence over G. Then

σ±(S) = −σ(S) + 2 · Σ0(S). In particular, if |G| is odd, then |σ±(S)| = |Σ0(S)| ≥
1 + | supp(S) \ {0}|.

Proof. Let S = g1 . . . gk. We have that g ∈ σ±(S) if and only if g =
∑k

i=1 εigi with

εi ∈ {+1,−1}. This is equivalent to g = −
∑k

i=1 gi +
∑k

i=1 δigi with δi ∈ {0, 2}.

Now, h =
∑k

i=1 δigi with δi ∈ {0, 2} is just another way of saying h ∈ 2 · Σ0(S).
The claim is established. �
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For the clarity of the exposition we stated this lemma for plus-minus weighted
sequences only, however the exact same argument allows to show that for distinct
v, w ∈ Z one has σ{v,w}(S) = vσ(S)+ (w− v) ·Σ0(S), and the additional assertions
with the condition |G| odd replaced by w − v co-prime to |G|.

4. Cyclic groups

In this section we proof our results for cyclic groups. As mentioned in the
Introduction, the value of g(Cn) is known for cyclic groups, more precisely, for
n ∈ N, we have

(4.1) g(Cn) =

{

n+ 1 for n even

n for n odd
.

Now, we proceed to prove Theorem 1.2, showing that in the presence of weights
the situation is somewhat different, yet there is still a direct dependence on the
‘parity’ of n, or to be precise on a congruence condition modulo 4.

Proof of Theorem 1.2. We need to show that, for n ∈ N, g±(Cn) is equal to n+ 1
for n ≡ 2 (mod 4) and equal to n otherwise.

In both cases we have g±(Cn) ≥ n. For n odd, the claim follows by noting that
g±(Cn) ≤ g(Cn) = n, the last equality by (4.1).

Suppose n is even. Let Cn = 〈e〉 and let T =
∏n−1

i=0 (ie), which is the only
squarefree sequence over Cn of length n. Now, we note that

n/2
∑

i=0

i−
n−1
∑

i=n/2+1

i = 0 +
n

2
+

n/2−1
∑

i=1

i−
(

i+
n

2

)

=
n

2
−
(n

2
− 1

) n

2
= n

(

1−
n

4

)

.

Thus, for n ≡ 0 (mod 4), we have that the sum above is congruent to 0 modulo n.
Consequently, 0 ∈ σ±(T ). We have thus shown that for n ≡ 0 (mod 4), one has
g±(Cn) ≤ n.

It remains to show that 0 /∈ σ±(T ) for n ≡ 2 (mod 4). We note that −σ(T ) =
−(n/2)(n − 1)e = (n/2)e. By Lemma 3.4 we have σ±(T ) = −σ(T ) + 2 · Σ0(T ).
Since by assumption n/2 is odd, of course, (n− 2)/2 is even, and thus

−σ(T ) + 2 · Σ0(T ) =

(

e+
n− 2

4
2e

)

+ 2 · Σ0(T ) ⊂ e+ 2 · 〈e〉.

Since 2 · 〈e〉 = 〈2e〉 is a proper subgroup of 〈e〉, it follows that 0 /∈ σ±(T ). �

Next, we determine all groups for which g±(G) > |G|. The argument uses the
preceding result as well as the analogous result in the classical case, which we
recalled in the Introduction.

Corollary 4.1. Let G be a finite abelian group. Then g±(G) = |G|+1 if and only

if G is an elementary 2-group or a cyclic group of order congruent 2 modulo 4.

Proof. We recall from the Introduction that it is known that g(G) = |G| + 1 if
and only if G is an elementary 2-group or a cyclic group of even order. Since
g±(G) ≤ g(G), we thus have that g±(G) ≤ |G|, for all other groups. For G an
elementary 2-group it is clear that g±(G) = g(G), and g±(G) = |G|+1. It remains
to consider the case that G is a cyclic group of even order. In this case Theorem
1.2 gives that g±(G) is equal to |G| for |G| congruent to 0 modulo 4 and to |G|+1
for |G| congruent to 2 modulo 4. This completes the argument. �
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5. Groups of the form C2 ⊕ C2n

In this section we determine g(C2 ⊕ C2n) and g±(C2 ⊕ C2n) for each n. We
first make explicit the lower bounds that follow from the results for cyclic groups
established in the preceding section in combination with Lemma 3.2. We have, for
n ∈ N,

(5.1) g(C2 ⊕ C2n) ≥ 2n+ 2 and

(5.2) g±(C2 ⊕ C2n) ≥

{

2n+ 2 for n odd

2n+ 1 for n even
.

This follows directly by (4.1), Theorem 1.2, and Lemma 3.2, using the simple fact
that O(C2) = O±(C2) = 2.

As can be seen by comparing these bounds with Theorems 1.1 and 1.3 we show
that sometimes but not always these bounds are sharp. We start by showing that
for the plus-minus weighted version one in fact has g±(C2 ⊕C2n) ≥ 2n+2 for each
n ≥ 3 not just for odd ones.

Lemma 5.1. Let n ∈ N with n ≥ 3. Then g±(C2 ⊕ C2n) ≥ 2n+ 2.

Proof. If n is odd, this is just (5.2). Thus assume n is even. Let C2 ⊕ C2n =
〈e1〉 ⊕ 〈e2〉 with ord(e1) = 2 and ord(e2) = 2n. We consider the sequence S = TR

with T =
∏2n−2

i=1 (ie2) and R = e1(e1 + 2e2)(e1 + 4e2).
Since n ≥ 3 we have 2n ≥ 4 and R is square-free, and also S is square-free and

a sequence of length 2n + 1. It thus suffices to show that 0 is not a plus-minus
weighted subsum of length 2n of S. We observe that

σ(T ) =
(2n− 2)(2n− 1)

2
e2 = (n+ 1)e2.

It follows that σ±(T ) = −σ(T ) + 2 · Σ0(T ) ⊂ e2 + 〈2e2〉; note that n is even by
assumption and thus ne ∈ 〈2e2〉.

Let S′ | S be a subsequence of length 2n. It is clear that S′ cannot be a subse-
quence of T , since |T | = 2n− 2. Moreover, if 0 ∈ σ±(S

′), then R′ the subsequence
of elements in S′ from R has to have even length, otherwise the projection to 〈e1〉
of a weighted sum of S′ cannot be 0. Consequently, |R′| = 2, since it is non-
zero, even and at most 3. Therefore, S′ = R′T . However, σ±(R

′) ⊂ 〈2e2〉 while
σ±(T ) ⊂ e2 + 〈2e2〉, so 0 /∈ σ±(R

′) + σ±(T ) = σ±(R
′T ). �

We now establish an improvement for the lower bound for g(C2⊕C2n) for n odd.

Lemma 5.2. Let n ∈ N odd. Then g(C2 ⊕ C2n) ≥ 2n+ 3.

Proof. First, we observe that the result holds for n = 1 as then the group is an
elementary 2-group (see the Introduction). Thus, assume n 6= 1. Since n is odd, we
have C2 ⊕ C2n = 〈f1〉 ⊕ 〈f2〉 ⊕ 〈e〉 with ord(fi) = 2 and ord(e) = n. Let π1 denote
the projection to 〈f1〉 ⊕ 〈f2〉 and let π2 denote the one to 〈e〉.

We construct a squarefree sequence A of length 2n+ 2 without zero-sum subse-

quence of length 2n. Let B = 0
∏(n−1)/2

i=1 (ie) and let

A = B(f1 + f2 +B)(f1 −B)(f2 −B).

Then |A| = 4(n + 1)/2 = 2n + 2 and A is squarefree. Moreover, σ(A) = 0, which
can be seen directly by considering π1(A) and π2(A). Suppose A has a zero-sum
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subsequence S of length 2n. Then AS−1 is also a zero-sum subsequence of A, and
it has length two. Yet, A cannot have a zero-sum subsequence of length two, since
there are no two elements gh | A such that g + h = 0. �

Next, we establish the upper bound for g(C2 ⊕ C2n) for even n. This result is
also used in the proof of Theorem 1.3, thus we formulate it separately.

Proposition 5.3. Let n ∈ N even. Then g(C2 ⊕ C2n) ≤ 2n+ 2.

Proof. Let C2 ⊕ C2n = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = 2 and ord(e2) = 2n; let π1 and
π2 denote the projections on 〈e1〉 and 〈e2〉, respectively.

Let A be a square-free sequence overC2⊕C2n of length 2n+2 and writeA = A0A1

where π1(g) is 0 and e1 for g | A0 and g | A1, respectively. We distinguish the two
cases π1(σ(A)) 6= 0 and π1(σ(A)) = 0.

Assume π1(σ(A)) 6= 0, that is π1(σ(A)) = e1. Since π2(Ai) is squarefree and
since we have |π2(A0)| + |π2(A1)| = |A| = 2n + 2 > 2n, it follows by Lemma 3.3
that supp(π2(A0)) + supp(π2(A1)) = 〈e2〉, that is each element of 〈e2〉 is the sum
of an element appearing in π2(A0) and an element appearing in π2(A1). Thus,
let gi | Ai such that π2(g0) + π2(g1) = π2(σ(A)). Set S = A(g0g1)

−1. Then
π2(σ(S)) = π2(σ(A)) − (π2(g0) + π2(g1)) = 0. Moreover, π1(σ(S)) = π1(σ(A)) −
(π1(g0)+ π1(g1)) = e1 − e1 = 0. Thus σ(S) = 0. Since |S| = (2n+2)− 2 = 2n, the
argument is complete in this case.

Assume π1(σ(A)) = 0. Let {x, y} = {0, 1} such that |Ax| ≥ |Ay |. We have
|Ax| ≥ (2n+2)/2 = n+1. Yet, note that if |Ax| = n+1, then also |Ay| = n+1, so
|A1| = n+1; this contradicts π1(σ(A)) = 0 since π1(σ(A)) = |A1|e1 and n+1 is odd
as n is even by assumption (this is the only place where we use this assumption).
Consequently, |Ax| ≥ n+ 2.

By Lemma 3.3 we have supp(π2(Ax))+̂ supp(π2(Ax)) = 〈e2〉. Let gh | Ax such
that π2(g) + π2(h) = π2(σ(A)), which exist by the just made observation. Set
S = A(gh)−1. Then π2(σ(S)) = π2(σ(A)) − (π2(g) + π2(h)) = 0. Moreover,
π1(σ(S)) = π1(σ(A)) − (π1(g) + π1(h)) = 0− (e1 + e1) = 0. Thus σ(S) = 0. Since
|S| = (2n+ 2)− 2 = 2n, the argument is again complete in this case. �

The following technical result is used in the proofs of both Theorem 1.1 and
Theorem 1.3. We only need it for n odd, when the group is isomorphic to C2⊕C2n,
yet as it does not cause any complication we state it for general n.

Proposition 5.4. Let n ∈ N. Let π1 : C2 ⊕ C2 ⊕ Cn → C2 ⊕ C2. Let A be a

squarefree sequence over C2 ⊕ C2 ⊕ Cn of length 2n+ 2. If σ(π1(A)) 6= 0, then A
has a zero-sum subsequence of length 2n.

Proof. For n = 1, the claim is vacuously true as the only squarefree sequence of
length 4 over C2 ⊕ C2 ⊕ C1 has sum 0. Thus assume n 6= 1.

We write C2 ⊕ C2 ⊕ Cn = 〈f1〉 ⊕ 〈f2〉 ⊕ 〈e〉 with ord(fi) = 2 and ord(e) = n. In
addition to π1, let π2 denote the projection C2 ⊕ C2 ⊕ Cn → 〈e〉. We denote the
elements of 〈f1〉 ⊕ 〈f2〉 by {0, a, b, c} where 0 is of course the neutral element; note
that in any case b + c = a. Now we write A = A0AaAbAc where π1(g) = x for
g | Ax. As in the claim of the result, suppose σ(π1(A)) 6= 0, say, σ(π1(A)) = a.

Let (B1, B2) equal (A0, Aa) or (Ab, Ac) such that |B1| + |B2| = max{|A0| +
|Aa|, |Ab| + |Ac|}. Then |B1| + |B2| ≥ (2n + 2)/2 = n + 1. Thus by Lemma
3.3 supp(π2(B1)) + supp(π2(B1)) = 〈e〉; note that π2(Bi) is squarefree and thus
| supp(π2(Bi))| = |Bi|. Let gi | Bi such that π2(g1) + π2(g2) = π2(σ(A)). Then



HARBORTH CONSTANT AND ITS WEIGHTED ANALOGUE 9

π2(σ(A(g1g2)
−1)) = 0 and π1(σ(A(g1g2)

−1)) also equals 0 as (π1(g1), π1(g1)) equals
(0, a) or (b, c). Thus we have a zero-sum subsequence of A of length 2n. �

Before proceeding to prove the main results, we consider a special case.

Lemma 5.5. g±(C2 ⊕ C4) = 5.

Proof. We have g±(C2 ⊕ C2n) ≥ 5 by (5.2). We establish that 5 is also an upper
bound. Let C2 ⊕ C4 = 〈e1〉 ⊕ 〈e2〉 with ord(e1) = 2 and ord(e2) = 4; let π1 and π2

denote the projections on 〈e1〉 and 〈e2〉, respectively.
Let A be a square-free sequence over C2 ⊕ C4 of length 5 and write A = A0A1

where π1(g) is 0 and e1 for g | A0 and g | A1, respectively. Let {x, y} = {0, 1} such
that |Ax| ≥ |Ay|. If we have |Ax| ≥ 4, then by Theorem 1.2 we get that π2(Ax),
which is a squarefree sequence over C4, has a plus-minus weighted zero-subsum of
length 4. Since for each plus-minus weighted subsum of length 4 of Ax the value
under π1 is 0 as it is always 4x = 0 the choice of sign being irrelevant for an element
of order 2, the plus-minus weighted zero-subsum of lengths 4 of π2(Ax), yields in
fact a plus-minus weighted zero-subsum of length 4 of Ax.

Thus, it remains to consider |Ax| = 3 and |Ay| = 2. We note that σ±(Ay)
contains a non-zero element of 〈e2〉. Yet Σ±,2(Ax) contains 〈e2〉 \ {0}, which can
for example be seen by considering the four possible cases. Thus, we get a plus-
minus weighted zero-subsum of length 4. �

Now, we give the proofs of the two main results Theorem 1.3 and Theorem 1.1.

Proof of Theorem 1.3. For n = 1 we have g±(C2 ⊕ C2) = 5 by Corollary 4.1,
and for n = 2, we have g±(C2 ⊕ C2n) = 5 by Lemma 5.5. For n ≥ 3, we have
g±(C2 ⊕C2n) ≥ 2n+ 2 by Lemma 5.1. It remains to show g±(C2 ⊕C2n) ≤ 2n+ 2
for n ≥ 3. For even n this follows by Proposition 5.3 as g±(C2⊕C2n) ≤ g(C2⊕C2n).
Thus, suppose n ≥ 3 is odd.

Since n is odd, we have C2 ⊕ C2n = 〈f1〉 ⊕ 〈f2〉 ⊕ 〈e〉 with ord(fi) = 2 and
ord(e) = n. Let π1 denote the projection to 〈f1〉 ⊕ 〈f2〉 and let π2 denote the one
to 〈e〉. Let A be a square-free sequence over C2 ⊕ C2n of length 2n + 2. Denote
〈f1〉 ⊕ 〈f2〉 = {0, a, b, c}; note that b + c = a. Now we write A = A0AaAbAc where
π1(g) = x for g | Ax. We distinguish the two cases π1(σ(A)) 6= 0 and π1(σ(A)) = 0.

Assume π1(σ(A)) 6= 0. The existence of a zero-sum subsequence, and thus in
particular a plus-minus weighted zero-subsum, follows directly by Proposition 5.4.

Assume π1(σ(A)) = 0. Let x ∈ {0, a, b, c} such that |Ax| is maximal. Then
|Ax| ≥ (2n+2)/4 = (n+1)/2. Suppose there exist gh|Ax such that π2(g)+π2(h) =
π2(σ(A)). Then, as π1(g) = π1(h), we get that A(gh)−1 is a zero-sum sequence of
length 2n, and we are done.

Thus assume such gh does not exist. By Lemma 3.3 this implies that |Ax| =
(n+1)/2, and thus |Ay | = (n+1)/2 for each y ∈ {0, a, b, c}. Let now gh|A0 arbitrary.
We note that π1(σ±(A(gh)

−1)) = {0}. To complete the proof it thus suffices to
show that 0 ∈ π2(σ±(A(gh)

−1)). In fact, we now show π2(σ±(A(gh)
−1)) = 〈f〉.

We observe |σ±(π2(A(gh)
−1))| ≥ |σ±(π2(AaAb))| = |σ±(π2(Aa))+σ±(π2(Ab))|. We

have |σ±(π2(Aa))| = |Σ0(π2(Aa))| ≥ |π2(Aa)| = |Aa| = (n + 1)/2, where we used
Lemma 3.4 for the first equality; and the same for b instead of a. Thus, by Lemma
3.3 σ±(π2(Aa)) + σ±(π2(Ab)) = 〈f〉 and thus |σ±(π2(A(gh)

−1))| = n establishing
the claim. �
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Proof of Theorem 1.1. First, we observe that the result holds for n = 1, since the
group is an elementary 2-group (see the Introduction). Thus, assume n 6= 1. For
even n, we have g(C2 ⊕ C2n) ≥ 2n + 2 by (5.1) and g(C2 ⊕ C2n) ≤ 2n + 2 by
Proposition 5.3.

Now, assume n is odd. We have g(C2⊕C2n) ≥ 2n+3 by Lemma 5.2. It remains
to show g(C2⊕C2n) ≤ 2n+3. Since n is odd, we have C2⊕C2n = 〈f1〉⊕ 〈f2〉⊕ 〈e〉
with ord(fi) = 2 and ord(e) = n. Let π1 denote the projection to 〈f1〉 ⊕ 〈f2〉 and
let π2 denote the one to 〈e〉. Let A be a square-free sequence over C2 ⊕ C2n of
length 2n + 3. We have to show that it has a zero-sum subsequence of length 2n.
Let g | A such that π1(g) 6= π1(σ(A)); note such an element exists since at most n
of the elements of A, and in fact C2 ⊕ C2n, can have the same value under π1.

Let A′ = Ag−1; this is a subsequence of A of length 2n+2. We have π1(σ(A
′)) =

π1(σ(A)) − π1(g) 6= 0. Thus, by Proposition 5.4 we know that A′ has a zero-
sum subsequence of length 2n, and thus also A has this zero-sum subsequence,
completing the argument. �
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