
HAL Id: hal-00851477
https://hal.science/hal-00851477v1

Submitted on 26 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Describing Dynamism in Service Dependencies:
Industrial Experience and Feedbacks
Clément Escoffier, Pierre Bourret, Philippe Lalanda

To cite this version:
Clément Escoffier, Pierre Bourret, Philippe Lalanda. Describing Dynamism in Service Dependencies:
Industrial Experience and Feedbacks. SCC 2013 - International Conference on Services Computing,
Jun 2013, Santa Clara, CA, United States. pp.328-335, �10.1109/SCC.2013.82�. �hal-00851477�

https://hal.science/hal-00851477v1
https://hal.archives-ouvertes.fr

Describing dynamism in service dependencies

Industrial experience and feedbacks

Clement Escoffier

Dynamis-technologies and Grenoble University

Grenoble, France

clement.escoffier@dynamis-technologies.com

Pierre Bourret

Grenoble University

Grenoble, France

pierre.bourret@imag.fr

Philippe Lalanda

Grenoble University

Grenoble, France

philippe.lalanda@imag.fr

Abstract—The rise of dynamic applications is coming with new

development challenges. Indeed, dynamism is a complex

concern, difficult to perceive and manage by developers. In the

context of a large industrial project dealing with fleet

management, we had to deal with important environmental

and evolutionary dynamism. To make it easier for the

development team, we have used and extended the iPOJO

service component model. This paper presents how the

dynamism is described in component metadata and how it is

managed at runtime. The extensions have been integrated into

the Apache Felix iPOJO source code.

Keywords-service; dynamism; service dependencies; service

component model.

I. INTRODUCTION

Dealing with dynamism has been a long-standing
challenge in software engineering [1][2]. However, it was
rarely a stringent requirement in industrial projects. This
situation has dramatically evolved in the past years. More
and more, applications have to handle dynamism. Pervasive
applications need to manage the availability of devices, web
applications must handle failures and disruptions of remote
services on which they rely, and continuously delivered
systems have to handle the transient situation where a part of
their system is updated.

Applications are now commonly developed using

software components [3]. By using such approach, software
systems are divided into independent islands. This
modularization has improved the management of software
project development, throughout software lifecycle. First, at
development time, teams can develop components in parallel
with reduced risks when it comes to the integration step. At
runtime, components can evolve separately, which makes
monitoring, failures detection and replacements much easier.
Finally, during maintenance, each component can be updated
rather independently. Several well-known component
frameworks are used today such as .NET, Spring and EJBs.
However those frameworks lack flexibility to integrate
dynamism easily.

To handle dynamism, traditional component frameworks
need to be extended with a more flexible component binding
mechanism. Service-orientation defines a loose-coupled way
to integrate components [4]. The binding process can be
delayed until run time, paving the road to dynamism
management. Based on a publication-discovery-binding
approach, service-orientation provides the required flexibility
to develop dynamic systems. Several component models
have adopted service-orientation to handle dynamism such as
OSGi[5], iPOJO[6] or even Android[7].

One of the main differences between traditional

component models and service-oriented component models
lies in the dependency description. In traditional component
models, bindings between components are statically defined
at development time [8]. In service-oriented components, by
contrast, developers merely specify service dependencies,
which are resolved at runtime through service bindings.
There are several implementations of service-oriented
component models such as Spring Dynamic Modules and
OSGi Blueprint. However, their dynamism management is
too limited to cover the whole dynamism spectrum. The
uncovered dynamism behavior is delegated to developers
rarely used to such paradigm.

This paper analyses service dependencies in service-

oriented component models and their reification at runtime.
It also proposes new approaches to dependencies
specification and reification. We focus more specifically on
the way dynamism can be described and on the different
policies that can be used to manage dynamism at runtime.
This paper also explains how we extended the iPOJO service
dependency model to handle sophisticated dynamic
applications. Technical details such as proxies, consistency
and lessons learned during development are also presented.

Those results come from the development of a large fleet

management infrastructure handling 10 000 vehicles that we
conducted with akquinet A.G. (http://akquinet.de). This
system is deployed and in production since one year and is
under intensive use.

II. FROM COMPONENTIZATION

TO SERVICE-ORIENTATION

Developing software applications has always been
challenging. This complexity has reached unexpected levels
in the past years. This is not only due to the complexity of
the business logic, but essentially to the need to integrate
third-party libraries, components and services [9]. Today’s
software is more heterogeneous and more dynamic than a
few years earlier [10].

A major evolution in the software industry has been the

emergence of component-based frameworks. Since the 90's,
most of the applications are developed using component
models and frameworks. COM, Corba, and more recently
JavaEE and .NET promote the division of applications into
software components. Using components not only turns the
code into a more modular and understandable abstraction,
but it also makes the assembly of more complex applications
possible [11].

Components interact using pre-defined interfaces,

containing mostly syntactic metadata (typing information).
Loose coupling allows the substitution of components by
other components, granted that they provide the same
interface. The connection between components is either
defined during the development phase, or made at runtime
using reflexive frameworks for instance [12].
Reconfiguration and substitution processes are difficult to
support efficiently. Indeed, a system must be protected
against state corruption and the reconfiguration process
needs to reduce the service disruption. This trade-off is often
hard to reach. Approaches like quiescence [13] can protect
the system against inconsistencies, but the involved
interruption of service is not acceptable by numerous
systems. Approaches such as tranquility [14] tries to reduce
the duration of the service disruption by identifying the
updated parts of the system. However, such detection
requires lots of data, not necessary available, about the
system. In web and enterprise applications, a combination
between replication and routing (i.e. load balancing) is often
used to reduce disruption, but this technique is not applicable
on all systems. Some applications such as those involving
physical devices cannot be easily replicated.

More recently, service-oriented computing has emerged.

Service-orientation is an architectural style where computing
elements interact through a publication-lookup-binding
mechanism. Service providers advertise their services on a
discovery channel (often a service registry). Consumers look
up for the required service in that channel, and use the
matching publishers. Such approach relies on two main
principles. First, only the service specification is shared
between the provider and the consumer. Depending on the
technology, the content and the format of the specification
differ. However, most of specifications rely on syntactical
information. This loose coupling eases service provider
substitution. Second, the bindings between providers and
consumers are woven at runtime. Service-orientation can be

extended with dynamism by supporting the notifications of
service provider’s arrivals and departures. Consumers can
listen to these notifications and react accordingly. For
example, a consumer can decide to choose a better provider,
or to switch to another provider when the one currently used
is not available anymore. Dynamic service-orientation offers
the features required to build dynamic applications. But such
development remains challenging. The service lookup
mechanism and dynamism management need to be handled
inside the component implementation. Such code is
particularly error-prone and complex as it involves
concurrency and state management.

To lower complexity, dynamic service-oriented

component models have proposed to infuse dynamic service-
orientation within component models [15]. Dynamism is
thus handled by the component framework, reducing the
complexity of the component code. In such approaches, the
framework is given the description of the provided services
and service dependencies. Most of the frameworks allow
describing the service dependencies in term of the
specification, the cardinality and optionality and let use a
filter to select providers such as service component
architecture (SCA), or Spring Dynamic Modules.

However a number of features are required to handle

more complex scenarios, such as the reaction to dynamism
and the selection of the adequate / better service provider.
The impact on the development model is also a stringent
requirement as developers are not used to dynamism and are
often stumped when dealing with it. Aspects such a
concurrency and consistency are primordial to successfully
conduct dynamism management at runtime.

III. SERVICE DEPENDENCY DESCRIPTION AND

MANAGEMENT AT RUNTIME

We have developed a fleet management infrastructure for
an industrial customer. The main goal of the project was the
monitoring of the vehicles and their reconfiguration, which
includes, for instance, naming the drivers allowed to drive or
deciding on maintenance time. In this project, dynamism was
a real challenge for the communication platform. This
gateway, deployed in warehouses, is responsible of the
communication between the fleet and the backend
infrastructure (figure 1).

Figure 1. Global overview of the fleet management infrastructure

We had to address different forms of dynamism. The

vehicles come and leave the area where the interactions are
done. As this communication relies on Bluetooth, the
vehicles must be close to the communication platform. Then,
the communication platform must be running 24/7. So
updating components on the platform without disrupting the
service is a must-have feature.

!"##$%&'()&"%*

+,()-".#*

/('01%2*

&%-.(3).$')$.1*

The fleet management system was developed using the
iPOJO service-oriented component model. iPOJO provides a
simple development model hiding most of the complexity of
the dynamism management. Configuring iPOJO is done
using Java annotations, avoiding writing external descriptors
and the burden of keeping them synchronized. The team was
composed of Java developers, familiar with JavaEE
development and injection mechanisms, such as CDI [16],
but unfamiliar with dynamism. As the project was intended
to reach an important size (today, the system includes more
than one million of lines of code), the simplicity of the model
was important. In addition, the learning curve was an
important aspect, as the turnover of the team is unavoidable.

The iPOJO component model did not support all the

dynamic scenarios encountered in the project. In this
section, we describe the service dependency attribute offered
by and introduced into the iPOJO component model. We
focus especially on the runtime management regarding
dynamism. For the reason given above the simplicity of the
development model was also important.

As depicted by figure 2, on the implementation level,

components contain metadata expressing service
dependencies. At runtime, this information is used by the
component framework to generate the service bindings and
manage the dynamism. The dynamic behavior is constrained
and controlled by the characteristics of the service
dependency such as the selection of service providers, the
resilience of the dependency to dynamism, and the reaction
to service unavailability. This section explores those aspects.

Figure 2. Service dependencies and service bindings

A. Selection and Filtering

As promoted by the service-orientation, service
dependencies target a service specification in order to
enforce the loose coupling and allow substitution. However
this may lead to a large set of providers. To reduce the set of
services, filters using a set of properties published by the
service providers are set up. Languages for filter differ in the
various service-oriented technologies. OSGi-based
component models, such as iPOJO, use the LDAP syntax to
express filters. Web services stacks generally use XPath.

At runtime, the framework must not only track the

arrivals and the departures of services, but also track these

modifications and translate those events into arrivals,
departures or status quo. Updating the filter at runtime is
often required during a human-driven dynamic
reconfiguration. In such case, the set of matching providers
must be recomputed.

Figure 3. Filtered service dependencies and bindings

Handling filtering correctly and efficiently is a stringent

requirement. In the fleet management system we have
developed, vehicles are reified as services. However,
vehicles may be published as services, but not ready yet. To
reflect those states, a service property is published (figure 3).
The fleet manager is only bound to 'ready' vehicles. As this
state is volatile, tracking the changes must be done carefully.
From the fleet manager point of view, only the fluctuation of
the set of ready vehicles is important. On the picture, the
third vehicles will become ‘ready’ as soon as the
authentication process will be completed. The fleet manager
will be bound to this third vehicle as soon as the new state is
published. On the opposite, once a vehicle becomes ‘busy’
(i.e. a new configuration is pushed and processed), the
binding between the fleet manager and the vehicle service is
removed.

Although service-orientation promotes substitution and

implementation abstraction, in some case, components need
to be bound to specific, already known, providers. To
implement this without violating the interaction pattern of
the service-orientation, we use a strong filter targeting the
specific provider. This type of binding is close to traditional
component bindings, where composition is defined at design
time. Even if this may be controversial, and removes the
substitution ability, it supports the update of the provider in a
transparent way.

In the fleet management context, such feature is used to
create strong coupling between the vehicle service
(representing the vehicle) and the service used to
communicate with the real device (driver). As this
communication stack is specific to a particular device
version (vendor, product, model, series), we must forbid
substitutions with any other implementation (figure 4).

!"#$%&'()

*#$+,#-')

)
.!"&/"#'#+)

/%012-)-1,$$)!"#$%&'()3)

))

)).4'5%2('$6"/+2"#,17+(%'8)
))/(29,+'):'(92-')&;:9-<)

)

))==>>>)

?)

@("92A'()

*#$+,#-')

:'(92-'))

B'/'#A'#-;)

:'(92-'))

C2#A2#D)

!"#$%"%&'('!)&*

+,&'!"%*

!"##$%

&'(')#*%

+(,$'(-#%

%
./0120(#($%

234"5-%-"',,%!"##$&'(')#*%6%

%%

%%.7#835*#,9:5"$#*;<9,$'$#;*#'=>?@?%
%%2*5A'$#%B5,$C!0*D"5:$E%A#F5-"#,G%

%

%%HHIII%

J%

K#F5-"#%

+(,$'(-#%

K#F5-"#%

+(,$'(-#%

K#F5-"#%

+(,$'(-#%
6,$'$#;'3$F#($5-'$5()J%

6,$'$#;*#'=>J%

6,$'$#;*#'=>J%

Nevertheless, the driver can be updated to a higher version
dynamically.

Figure 4. Bindings targeting specific a service provider

B. Aggregation and Optionality

The previous attributes describe to whom a component is
bound. Optionality and aggregation define the cardinality of
the service dependency. Dependencies can be resolved as
0..n service bindings according to those characteristics.

Aggregate dependencies are mapped to multiple

bindings: one per matching provider. Aggregate
dependencies are used as an extensibility mechanism where
the set of extension is modified at run time. In such case, the
framework has to track all providers and manage the
modification of the set. Concerns such as sorting and
iterations over the (dynamic) set also have to be handled.

In the fleet management platform, the fleet manager is

bound to all ready vehicles. As depicted on figure 4, the
dependency between the fleet manager and the vehicles is
aggregate

1
. At runtime, this dependency is reified under a set

of service bindings.

Figure 5. Defensive access involved by optional dependencies

Optional dependencies impact directly the code of the

component. Indeed, the component code must be aware that
the service may not be available when it uses it. Dealing with
such dependencies is a trade-off between reducing the
complexity of the code by trying to mock the missing service
and giving enough flexibility to the developer to handle this

1
 Even if it is possible to set the dependency as aggregate

specifically, the framework can analyze the type of the

dependency to infer this aspect. In this case, using a list implies
being aggregated.

case. Injecting null references transfers the responsibility to
developers. However, all accesses to the service must be
done defensively, and even such defensive accesses can be
wrong in dynamic environment (figure 5). The printer
service provider could leave between the check and the
usage.

Figure 6. Difference between nullable and default-implementation

To reduce the burden of this approach, fake objects can

be injected such as a Nullable object [17] or a default
implementation. Nullable objects are mocks returning default
values. Such objects avoid defensive accesses, and so make
the code cleaner. But objects returned by the methods are
useless. Default-implementations are created by developers,
letting them define a default behavior. For instance, a
nullable log service would ignore calls, while a default-
implementation can print messages on the standard output
stream (figure 6). For aggregate dependencies, injecting an
empty collection gives the best efficiency during
development.

Those policies are used only when no service providers

are available, but would be injected with the right service
object as soon as one matching provider is available.

C. Service binding policies

The dynamism offered by the dynamic service-
orientation handles most of the case where dynamism is
required. But the default dynamism management does not
address all cases, and other binding policies are proposed
exhibiting different degree of dynamism. We have identified
three policies determining when substitution occurs: the
dynamic policy (the most used), the static binding policy for
stateful communication, and the dynamic-priority binding
policy for comparable providers. In all policies, the binding
is delayed until the first use is detected.

This dynamic binding policy tracks service providers,

and handles the dynamism lazily. According to this policy,
substitution happens only if the used provider is not available
anymore. This policy exhibits too much dynamism in some
case.

For stateful or conversational interactions, a provider

cannot be substituted during the interaction and the consumer
state must be reverted if the set of bound services is changed.

!
"#$%&$'(')!

"*+$,-.(/!

&012-3!324//!5$+62-7)889::;<=9!!-%&2(%(')/!5$+62-7)!>!

!!"?(@0-+(/A7+$%BC!!"#$%&"'D!
!!&+-,4)(!#$%%0'-34)-$'E)436!.+-,(+F!

!

!!GGHHH!

I!

J(K-32(!

L'/)4'3(!

J(K-32(!

L'/)4'3(!

J(K-32(!

L'/)4'3(!

M+-,(+!

L'/)4'3(!

!!"#$%&"(

M+-,(+!

L'/)4'3(!

!!"#)"*+#(

!
!

"#$%&$'(')!

&*+,-.!.,/00!1(&$2)(2!3!

!!
!!"1(4*-2(05$&)-$'/,6)2*(7!

!!&2-8/)(!92-')(2!&2-')(2:!

!!;;<!

!!!

!!&*+,-.!8$-=!&2-')57!3!

!!!!->!5&2-')(2!?6!'*,,7!3!!
!!!!!!&2-')(2@&2-')5=$.*%(')77:!!

!!!!A!!!

!!A!!

A!

B(>('0-8(!

/..(00!

!
!

"#$%&$'(')!

&*+,-.!.,/00!1(&$2)(2!3!

!!
!!"1(4*-2(05$&)-$'/,6)2*(7!'*,,/+,(6)2*(8!

!!&2-9/)(!:$;<(29-.(!,$;=>!

!

!!"1(4*-2(05$&)-$'/,6)2*(7!

!!!!?(@/*,)A%&,(%(')/)-$'6B*):$;C.,/008!

!!&2-9/)(!:$;<(29-.(!,$;D>!!!
!!

!&*+,-.!9$-?!,$;5<)2-';!%0;8!3!

!,$;=C,$;5:$;<(29-.(CAEFB7!%0;8>!

!!

!
!

!,$;DC,$;5:$;<(29-.(CAEFB7!%0;8>!

!G!!

G!

H$(0!'$)I-';!

J2-')0!)I(!

%(00/;(!$'!)I(!

0)/'?/2?!$*)&*)!

0)2(/%!!

The behavior of the static policy is closed to a transaction. It
freezes the provider set once the transaction begins. If this
set is modified by a departure or a mismatching
modification, the consumer state must be rolled back. This
binding policy also ignores new providers once the used set
is determined (figure 7).

Figure 7. The static binding policy involves

 freezing the provider set during a transaction

In the fleet manager, statistics are computed on a set of

vehicles. Such computation is directly impacted by the
considered set of vehicles, and would be invalid if this set
changes during the computation. In this case, the
computation is restarted if the set of available vehicles
changes during the process. For such service dependencies,
the static binding policy is used.

The last policy, called dynamic-priority, exhibits a higher

degree of dynamism. With these dependencies, the
framework substitutes providers if a better provider becomes
available. On aggregate dependencies, it sorts the set of
providers. The difference with the dynamic policy comes
from those substitutions. In the dynamic policy, the provider
is not replaced until it becomes unavailable, while the
dynamic-priority policy triggers the substitution
immediately.

Using the dynamic-priority policy requires the ability to

compare providers. This comparison can be based on service
properties or on a monitoring service tracking the quality of
service of the different providers.

This binding policy is also used in the fleet manager on

the UI layer. This UI is composed by a set of tabs published
as services. As the order of the tabs is a relevant aspect of
usability, the tab services are bound to the host, ordered
using the dynamic-priority binding policy.

D. Invalidation and timeout

The binding policies define when providers are
substituted, however they do not deal with service
unavailability. When no provider matches a dependency
anymore, several actions are conceivable:

• Invalidating the component, protecting it from
any use until the dependency is satisfied again

• Blocking all accesses to the service until a
specific timeout expires

Choosing between the two policies depends on the use of

the component and the dynamism of the requested services.

Invalidation is used for component offering services that

cannot be satisfied if the service dependencies are not
fulfilled. When one of the mandatory dependencies cannot
be reified as binding at runtime, the framework removes the
service from the service registry, and by this way stops all
usages of the component. The service is published again
when all dependencies are fulfilled.

If the service is known to be temporally unavailable

because of an update of the provider, then a timeout policy
can be used. During the unavailability period, all calls are
blocked. If no provider matches the dependency before the
timeout, then an exception is thrown. In such cases, the
unavailability was unexpected and the error must be
propagated.

As depicted on figure 8, the dependency between the user

manager and the authentication service uses a timeout. The
authentication service is a core service that must always be
published, expect during its own update. Such update is
expected to take less than 10 seconds. If the user manager
accesses the authentication service during the update, the call
is blocked until the service is published again. If the update
takes more than 10 seconds, an exception is thrown, and the
application is stopped (to avoid misuse).

Figure 8. Service dependency with timeout

E. Conclusion

This section has presented a set of characteristics to
describe the dynamic behavior of service dependencies. This
description is used at runtime by the framework to reify and
control the bindings between components. We paid a special
attention to the simplicity of use of these characteristics. At
the same time, we aimed to cover the whole set of dynamic
behavior we encountered in the fleet management project.

Naturally, service dependencies can filter and select

service providers. Even if the selection of specific providers
does not follow the service-orientation philosophy, it covers
tight bindings between components without avoiding

!
"#$%&$'(')!

&*+,-.!.,/00!1)/)#$,,(.)$2!3!

!!"4(5*-2(06&$,-.7890)/)-.:;!<-,)(28960)/)(82(/=7>:>!

!!&2-?/)(!@-0)AB$2C,-<)D!?(E-.,(0F!
!

!!GGHHH!

I!

1)/)!

#$,,(.)$2!

J'0)/'.(!

K(E-.,(!

J'0)/'.(!

K(E-.,(!

J'0)/'.(!

K(E-.,(!

J'0)/'.(!
30)/)(82(/=7I!

30)/)(82(/=7I!

30)/)(82(/=7I!

L22-?(=!/<)(2!)E(!

+(M-''-'M!$<!)E(!

)2/'0/.)-$'!

B2$N('!0()!

!"#$%

&'(')#$%

*("+'(,#%

%
-./01/(#(+%

-2$/345#"%

16784,%,8'""%!"#$&'(')#$*018%4018#0#(+"%!"#$&'(')#$%

9%
%%

%%-:#;64$#"<+40#/6+=>?@AB%

%%1$43'+#%C6+D#(+4,'+4/(E#$34,#%'6+DF%

%

%%GGHHH%

I%

C6+DH%

*("+'(,#%
!"#$%

individual evolution. This characteristic was added to the
iPOJO component model. Optional dependencies were
particularly challenging because of the impact on the
development model. Several strategies were integrated to the
iPOJO framework to give more freedom to the developers.
As stated below, those strategies are heavily used in the
project.

In numerous cases, dynamism needs to be controlled

carefully. For such purpose, dependencies can specify the
resilience of the service bindings to dynamic arrivals and
departures. Optimizations of the static policy and the
definition of the dynamic-priority policy were contributed to
the iPOJO component model.

Finally, the reaction behavior to service unavailability

can be configured in the service dependency. We extended
the iPOJO dependency model with the timeout management,
as this case is often required in the project.

IV. IMPLEMENTATION AND VALIDATION

The attributes presented in this paper allow describing
the dynamism management to cover the situation we
encountered in industrial projects such as the fleet
management infrastructure. This section presents technical
details about the iPOJO component model and its extensions.

A. Apache Felix iPOJO overview

iPOJO
2
 is a Java-based, dynamic component framework,

based on the OSGi™ dynamic service platform. One of the
main goals of iPOJO is to make developing dynamic
applications as simple as possible. To this end, the overall
approach is to keep a component as close to a “plain old Java
object” (POJO) as possible. The code of a component should
focus on business logic, not on mechanisms for dynamism or
other non-functional requirements. iPOJO provides an
extensible component container that manages all issues
regarding dynamism and can be extended to support other
non-functional concerns, such as configuration, persistence,
and security. iPOJO also defines a composition model to
describe an architectural view of dynamic service
assemblies.

Component development is greatly simplified since it

does not contain component model specific code. The POJO
component is connected to iPOJO by configuring the
component instance container, which consists of declaring
component type meta-data (using Java annotations) that will
be used by the container for run-time management. The
iPOJO framework relies on a bytecode modification of the
POJO class. This instrumentation intercepts constructors,
fields and methods accesses and let the container handles the
dynamism.

iPOJO containers are not monolithic, but are composed

of handlers (figure 6). Each handler manages non-functional

2
 http://ipojo.org

concerns. Handlers are plugged into the component instance
container at run time. Only the required handlers are plugged
into the container. The resulting container manages the
interaction between the POJO and its execution context.
Custom handlers can be developed for iPOJO, allowing
developers to handle other non-functional properties.

Figure 9. An iPOJO component instance and its container

A number of companies use iPOJO today, in diverse

industrial projects. Its simplicity and flexibility makes using
iPOJO possible in a lot of contexts from M2M
infrastructures, to JavaEE application servers, and mobile
applications.

B. Releasing references and performances

Handling injected reference on service objects is an
important aspect of OSGi-based systems. OSGi™ defines a
centralized service platform supporting the dynamic loading
and unloading of modules (i.e. unit of code), and so updates
of those modules. Unfortunately, such feature impacts the
development of application: code can be unloaded only if all
references on its objects are released. In other words, when a
service leaves, we must ensure that nobody is keeping
references on the leaving component. This would block the
updating process. Debugging stale references is a time-
consuming task requiring a deep expertise in the OSGi™
platform [18].

To address this issue, using proxies is a common

technique. However, using proxies must be done carefully
regarding the involved performance cost. At the beginning of
the development of the fleet manager, the iPOJO component
model supported only direct references or Java dynamic
proxies. The direct references were too dangerous to be used
in regards of the skills of the team. On the other side, the cost
of dynamic proxies is too big and is limited to Java
interfaces. For this reason, we have implemented a third
proxy strategy using bytecode generation. The performance
benchmark (table 1) shows that this strategy has a reasonable
cost in term of performance while protecting against stale
references. This strategy is now the default strategy of the
iPOJO component model. Notice that the smart proxy is
generated once on the first demand. This time is not shown
on the table but is negligible.

TABLE I. PROXY STRATEGY INVOCATION OVERHEAD

Strategy Average time

for 1 000 000 calls

Ratio against direct

invocation

Direct invocation 3 ms 1
Dynamic Proxies 15 ms 5

iPOJO Smart Proxies 5 ms 1,6

!"#"$

%&'()*+$

%&'()*+$

%
&
'
(
)
*
+
$

%
&
'
(
)
*
+
$

,-'.&/'*+$
0&'()*+$1&'&2/'2$

3*+4/,*$(*5*'(*',/*36$

&'($(7'&1/31$

0&'()*+$1&'&2/'2$

3*+4/,*$5+-4/(/'2$

C. Dynamism & Consistency

Even with proxies, dynamism impacts the development
model. One of the biggest issues is to not being sure of the
availability of the service after the first use. Worse, this
service could have been substituted between two uses.

To avoid this situation, we have implemented a

consistency model in iPOJO. Once a method accesses
objects from a service binding, we keep this set consistent
for the whole method including all nested method
invocations.

Figure 10. Transaction boundaries used to ensure service consistency

By combining the iPOJO interception mechanism and a

local Java Thread, we can track the accesses and the
boundaries of the transaction (figure 10). Within this
transaction, the set of service objects is kept consistent. With
such mechanism we reduce the need of defensive
programming when accessing services and ensure the safety
of iterations over a set of service objects. This protection
mechanism is now part of the iPOJO framework and is used
by default.

D. Statistics about service dependencies usage

In the fleet management project, we have developed 736
components, for a total of 2954 service dependencies. A
large majority of the dependencies are using the default
behavior: not-filtered, scalar, mandatory, dynamic binding
policy, and an invalidation strategy. The following table
present statistics on the service dependencies.

TABLE II. STATISTICS ABOUT ATTRIBUTE USAGE

Attribute Number Percent

Not-filtered

Filtered

Specific provider

2471
468
15

84%
15%
1%

Scalar

Aggregate
1804
1150

61%
39%

Mandatory

Optional
1092
1862

37%
63%

Dynamic

Static

Dynamic-priority

2731/
210
13

92%
7%
1%

Invalidation

Timeout
2392
562

81%
19%

The amount of optional dependencies is due to the
options given for its injection. There is an equal repartition
of the usage of null injection, nullable object and default
implementation.

The static and dynamic-priority are used only when

required. A large majority of the dependencies are using the
default binding policy.

From those statistics, we have a heuristic about the usage

of service dependencies. The project is under development
and maintenance since 2010. We have covered all the
dynamic behavior we encountered. Thanks to the usage of
iPOJO and our extensions, the robustness regarding vehicle
dynamism and updates has drastically improved. Since the
deployment in production, the platform has coped with
numerous updates without introducing stale references.

V. CONCLUSION & LESSON LEARNED

The development of dynamic systems is far from simple.
Service-orientation fits well to represent the dynamism at
runtime. However the dynamism impacts the development
model, and as a consequence makes it hard to master.

During the development of the fleet management

infrastructure, we realized that expressing the dynamism
outside of the code is crucial to keep under control the
technical debt. In-code dynamism management is
particularly error-prone as it involves concurrency, and so a
risk of deadlocks and stale references. Only senior or expert
developers are able to handle this complexity. In our project,
we could not guarantee the availability of those developers
and so had to choose a framework managing this aspect.

Choosing a technology that lets you express the whole

spectrum of dynamic behavior is important. Even with the
large set of features provided by iPOJO, we had to extend it.
Such extensions are now part of the framework.

Describing dynamism needs to be carefully done against

several dimensions: the provider selection, the number of
bound providers, the substitution policy, and the
unavailability behavior. The set of attributes we have
presented covers all the cases we encountered in the project.
We have foreseen a couple of features required in the near
future.

First, the service bindings are decided by the component

itself. However more global knowledge would help
determining the best bindings. We are working on letting
components collaborating with an autonomic manager to
select the optimal set of providers.

Dynamism is not only difficult to handle right, it’s also

complex to debug. Being able to introspect the state of our
components and their bindings is crucial. iPOJO comes with
a minimal introspection tool. But efficient debugging would
require a runtime model of the architecture.

!
!

"#$%&$'(')!

&*+,-.!.,/00!1(&$2)(2!3!

!!
!!"1(4*-2(05$&)-$'/,6)2*(7!'*,,/+,(6)2*(8!

!!&2-9/)(!:2-')(2!&2-')(2;!

!!<<=!

!!!

!!&*+,-.!9$->!&2-')58!3!

!!!!!!!?@@@A!
!

!B$+!C$+!6!&2-')(2@&2-')5>$.*%(')88;!

!!!!!!!?@@@A!

!!!!!!!.D(.EB$+F)/)*05&2-')(27!C$+8;!

!!!!!!!?@@@A!
!!G!!!

G!

H2/'0/.)-$'!

+$*'>/2-(0!

As a consequence of the project specifications, we often
had to change the filter of service dependencies at runtime.
Even if the iPOJO component model offers this feature,
implementing such change is not easy. We would like to
extend the filter syntax of iPOJO to allow the use of
contextual and configuration variables. In addition, the
LDAP-syntax does not offer a good readability on long
filters. We believe that a more typed language would help
writing and maintaining those filters.

Finally, the iPOJO component model focuses on the

service-orientation, but we also needed data-based
interactions. Integrating this new type of dependencies would
definitely ease the development of the project. We believe
that the characteristics presented by this paper could be
applied on event-based dependencies.

REFERENCES

[1] R. S. Fabry, “How to design a system in which modules can be

changed on the fly,” in 2nd International Conference on Software
Engineering, 1976, pp. 470–476.

[2] P. Oreizy, N. Medvidovic, and R. N. Taylor, “Architecture-based

runtime software evolution,” in 20th International Conference on
Software Engineering, 1998, vol. 1998, pp. 177–186.

[3] C. Szyperski, Component Software: Beyond Object-Oriented

Programming, vol. 1743. Addison-Wesley, 2002.

[4] M. P. Papazoglou, “Service-Oriented Computing!: Concepts ,

Characteristics and Directions,” Information Systems Journal, vol. 3,
no. 10–12 Dec. 2003, pp. 3–12, 2003.

[5] OSGi Alliance, “OSGi Service Platform Core Specification Release

4,” IOS Press, Inc., 2007.

[6] C. Escoffier, R. S. Hall, and P. Lalanda, “iPOJO: an Extensible
Service-Oriented Component Framework,” in IEEE International

Conference on Services Computing, 2007, vol. 0, no. Scc, pp. 474–
481.

[7] M. Butler, “Android Changing the Mobile Landscape,” IEEE

Pervasive Computing, vol. 10, no. 1, pp. 4–7, 2011.

[8] K.-K. Lau and Z. Wang, “Software Component Models,” IEEE

Transactions on Software Engineering, vol. 33, no. 10, pp. 709–724,
2007.

[9] S. Vinoski, “Integration with Web services,” IEEE Internet

Computing, vol. 7, no. 6, pp. 75–77, 2003.

[10] B. Fitzgerald, “Software Crisis 2.0,” Computer, vol. 45, no. 4, pp. 89–
91, Apr. 2012.

[11] I. Crnkovic, J. Stafford, and C. Szyperski, “Software Components

beyond Programming: From Routines to Services,” IEEE Software,
vol. 28, no. 3, pp. 22–26, 2011.

[12] J. Dowling and V. Cahill, “The K-Component Architecture Meta-

Model for Self-Adaptive Software,” in 3rd International Conference
on Metalevel Architectures and Separation of Crosscutting Concerns

(Reflection’2001), 2001, vol. 3, pp. 81–88.

[13] J. Kramer and J. Magee, “The evolving philosophers problem:
dynamic change management,” IEEE Transactions on Software

Engineering, vol. 16, no. 11, pp. 1293–1306, 1990.

[14] Y. Vandewoude, P. Ebraert, Y. Berbers, and T. D’Hondt,

“Tranquility: A Low Disruptive Alternative to Quiescence for
Ensuring Safe Dynamic Updates,” IEEE Transactions on Software

Engineering, vol. 33, no. 12, pp. 856–868, 2007.

[15] H. Cervantes and R. S. Hall, “Autonomous adaptation to dynamic
availability using a service-oriented component model,” in 26th

International Conference on Software Engineering, 2004, vol. 3, pp.
614–623.

[16] Gavin King, “Contexts and Dependency Injection in Java EE 6,”

Contexts and Dependency Injection in Java EE 6, 2009. [Online].
Available: http://jcp.org/en/jsr/detail?id=299.

[17] B. Woolf, “The null object pattern,” in Pattern Languages of

Programs, 1996.

[18] K. Gama and D. Donsez, “A Practical Approach for Finding Stale
References in a Dynamic Service Platform,” in Component Based

Software Engineering, 2008, vol. 5282 LNCS, pp. 246–261.

