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Abstract. We prove that the effective nonlinearities (ergodic constants) obtained in the
stochastic homogenization of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear
uniformly elliptic pde are approximated by the analogous quantities of appropriate “pe-
riodizations” of the equations. We also obtain an error estimate, when there is a rate of
convergence for the stochastic homogenization.

1. Introduction

In this note we prove that the effective nonlinearities arising in the stochastic homogeniza-
tion of Hamilton-Jacobi, “viscous” Hamilton-Jacobi and nonlinear uniformly elliptic pde
can be approximated almost surely by the effective nonlinearities of appropriately chosen
“periodizations” of the equations. We also establish an error estimate in settings for which
a rate of convergence is known for the stochastic homogenization.

To facilitate the exposition, state (informally) our results in the introduction and put ev-
erything in context, we begin by recalling the basic stochastic homogenization results for
the class of equations we are considering here. The linear uniformly elliptic problem was
settled long ago by Papanicolaou and Varadhan [31, 32] and Kozlov [19], while general vari-
ational problems were studied by Dal Maso and Modica [16, 17] (see also Zhikov, Kozlov,
and Olĕınik [36]). Nonlinear problems were considered only relatively recently. Souganidis
[34] and Rezakhanlou and Tarver [33] considered the stochastic homogenization of convex
and coercive Hamilton-Jacobi equations. The homogenization of viscous Hamilton-Jacobi
equations with convex and coercive nonlinearities was established by Lions and Souganidis
[25, 26] and Kosygina, Rezakhanlou, and Varadhan [20]. These equations in spatio-temporal
media were studied by Kosygina and Varadhan [21] and Schwab [35]. A new proof for
the homogenization yielding convergence in probability was found by Lions and Sougani-
dis [27], and the argument was extended to almost sure by Armstrong and Souganidis [5]
who also considered unbounded environments satisfying general mixing assumptions. Later
Armstrong and Souganidis [6] put forward a new argument based on the so-called metric
problem. The convergence rate for these problems was considered, first in the framework
of Hamilton-Jacobi equations by Armstrong, Cardaliaguet and Souganidis [1] and later ex-
tended to the viscous Hamilton-Jacobi case by Armstrong and Cardaliaguet [2], while Matic
and Nolen [28] obtained variance estimates for first order problems. All the above results
assume that the Hamiltonians are convex and coercive. The only known result for stochastic
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homogenization of non coercive Hamilton-Jacobi equations was obtained by Cardaliaguet
and Souganidis [14] for the so-called G-equation (also see Nolen and Novikov [29] who consid-
ered the same in dimension d = 2 and under additional structure conditions). The stochastic
homogenization of fully nonlinear uniformly elliptic second-order equations was established
by Caffarelli, Souganidis and Wang [12] and Caffarelli and Souganidis [10] obtained a rate
of convergence in strongly mixing environments. Armstrong and Smart extended in [3] the
homogenization result of [12] to the non uniformly elliptic setting and, recently, improved
the convergence rate in [4]. The results of [12, 10] were extended to spatio-temporal setting
by Lin [23].

The problem considered in this paper—approximation of the homogenized effective quan-
tities by the effective quantities for periodic problems—is a classical one. Approximation
by periodic problems as a way to prove random homogenization was used first in [32] for
linear uniformly elliptic problems and later in the context of random walks in random envi-
ronments by, for example, Lawler [22] and Guo and Zeitouni [18]. The approach of [32] can
be seen as a particular case of the “principle of periodic localization” of Zhikov, Kozlov,
and Olĕınik [36] for linear, elliptic problems. Bourgeat and Piatnitski [8] gave the first
convergence estimates for this approximation, while Owhadi [30] proved the convergence
for the effective conductivity. As far as we know the results in this paper are the first for
nonlinear problems and provide a complete answer to this very natural question.

We continue with an informal discussion of our results. Since the statements and arguments
for the Hamilton-Jacobi and viscous Hamilton-Jacobi equations are similar here as well as
for the rest of the paper we combine them under the heading viscous Hamilton-Jacobi-
Bellman equations, for short viscous HJB. Hence our presentation consists of two parts, one
for viscous HJB and one for fully nonlinear second-order uniformly elliptic problems. We
begin with the former and continue with the latter.

Viscous Hamilton-Jacobi-Bellman equations: We consider viscous HJB equations of the
form

−εtr
(
A(xε , ω)D

2uε
)
+H(Duε, xε , ω) = 0, (1.1)

with the possibly degenerate elliptic matrix A = A(y, ω) and the HamiltonianH = H(p, y, ω)
stationary ergodic with respect to ω and, moreover, H convex and coercive in p and A the
“square” of a Lipschitz matrix. Precise assumptions are given in Section 2. Under these
conditions, Lions and Souganidis [26] proved that almost sure homogenization holds. This
means that there exists a convex and coercive Hamiltonian H, which we call the ergodic
constant, such that the solution uε = uε(x, ω) of (1.1), subject to appropriate initial and
boundary conditions, converge, as ε → 0, locally uniformly and almost surely to the solution
u of the deterministic equation, with the same initial and boundary conditions, H(Du) = 0.

A very useful way to identify the effective Hamiltonian H(p) is to consider the auxiliary
problem

δvδ − tr(A(x, ω)D2vδ) +H(Dvδ + p, x, ω) = 0 in R
d, (1.2)

which admits a unique stationary solution vδ(·, ω), often refer to as an “approximate cor-
rector”. It was shown in [25] that, for each p ∈ R

d, c > 0 and almost surely in ω, as
δ → 0,

sup
y∈Bc/δ

|δvδ(·, ω) +H(p)| → 0. (1.3)
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If A and H in (1.1) are replaced by L−periodic in y maps AL(·, ω) and HL(·, ·, ω), the
effective Hamiltonian HL(·, ω) is, for any (p, ω) ∈ R

d×Ω, the unique constant HL(p, ω) for
which the problem

−tr
(
AL(x, ω)D

2χ
)
+HL(Dχ+ p, x, ω) = HL(p, ω) in R

d, (1.4)

has a continuous, L−periodic solution χ. In the context of periodic homogenization, (1.4)
and χ are called respectively the corrector equation and corrector. Without any periodicity,
for the constant in (1.4) to be unique, it is necessary for χ to be strictly sublinear at infinity.
As it was shown by Lions and Souganidis [25], in general it is not possible to find such
solutions. The nonexistence of correctors is the main difference between the periodic and
the stationary ergodic settings, a fact which leads to several technical difficulties as well as
new qualitative behaviors.

The very natural question is whether it is possible to come up with AL and HL such that, as
L → ∞, HL(·, ω) converges locally uniformly in p and almost surely in ω to H. For this it is
necessary to choose AL and HL carefully. The intuitive idea, and this was done in the linear
uniformly elliptic setting [8, 30, 36], is to take AL = A and HL = H in [−L/2, L/2)d and
then to extend them periodically in R

d. Unfortunately, such natural as well as simple choice
cannot work for viscous HJB equations for two reasons. The first one is that (1.4), with the
appropriate boundary/initial conditions, does not have a solution unless AL and HL are at
least continuous, a property that is not satisfied by the simple choice described above. The
second one, which is more subtle, is intrinsically related to the convexity and the coercivity
of the Hamiltonian. Indeed it turns out that viscous HJB equations are very sensitive to
large values of the Hamiltonian. As a consequence, the HL’s must be substantially smaller
than H at places where H and HL differ.

To illustrate the need to come up with suitable periodizations, we discuss the elementary
case when A ≡ 0 and H(p, x, ω) = |p|2−V (x, ω) with V stationary, bounded and uniformly
continuous. This is one of the very few examples for which the homogenized Hamilton-
ian is explicitly known for some values of p. Indeed H(0) = infx∈Rd V (x, ω), a quantity
which is independent on ω in view of the stationarity of V and the assumed ergodicity. If
HL(p, x, ω) = |p|2 − VL(x, ω), with VL is L−periodic, then HL(0, ω) = infx∈Rd VL(x, ω). It
follows that VL cannot just be any regularized truncation of V (·, ω), since it must satisfy,
in addition, the condition infx∈Rd VL(x, ω) → infx∈Rd V (x, ω) as L → ∞.

Here we show that it is possible to choose periodic AL and HL so that the ergodic constant
HL(p, ω) converges, as L → +∞ to H(p) locally uniformly in p and almost surely in ω.
One direction of the convergence is based on the homogenization, while the other relies on
the construction of subcorrectors (i.e., subsolutions) to (1.4) using approximate correctors
for the original system. We also provide an error estimate for the convergence provided a
rate is known for the homogenization, which is the case for “i.i.d. environments” [1, 2].

Fully nonlinear, uniformly elliptic equations: We consider fully nonlinear uniformly elliptic
equations of the form

F
(
D2uε,

x

ε
, ω
)
= 0, (1.5)

Following Caffarelli, Souganidis and Wang [12], it turns out that there exists a uniformly
elliptic F , which we call again the ergodic constant of the homogenization, such that the
solution of (1.5)—complemented with suitable boundary conditions—converges, as ε → 0,
to the solution of F

(
D2u

)
= 0.
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Although technically involved, this setting is closer to the linear elliptic one. Indeed we show
that the effective equation FL of any (suitably regularized) uniformly elliptic (with constants
independent of L) periodization of F converges almost surely to F . The proof relies on a
combination of homogenization and the Alexandroff-Bakelman-Pucci (ABP) estimate. We
also give an error estimate for the difference |FL(P, ω) − F (P )|, again provided we know
rates for the stochastic homogenization like the one’s established in [10] and [4].

Organization of the paper. In the remainder of the introduction we introduce the no-
tations and some of the terminology needed for the rest of the paper, discuss the general
random setting and record the properties of an auxiliary cut-off function we will be using
to ensure the regularity of the approximations. The next two sections are devoted to the
viscous HJB equations. In section 2 we introduce the basic assumptions and state and prove
the approximation result. Section 3 is about the rate of convergence. The last two sections
are about the elliptic problem. In section 4 we discuss the assumptions and state and prove
the approximation result. The rate of convergence is the topic of the last section of the
paper.

Notation and conventions. The symbols C and c denote positive constants which may
vary from line to line and, unless otherwise indicated, depend only on the assumptions for
A, H and other appropriate parameters. We denote the d-dimensional Euclidean space by
R
d, N is the set of natural numbers, Sd is the space of d×d real valued symmetric matrices,

and Id is the d×d identity matrix . For each y = (y1, . . . , yd) ∈ R
d, |y| denotes the Euclidean

length of y, |y|∞ = maxi |yi| its l
∞−length, ‖X‖ is the usual L2-norm of X ∈ Sd and 〈·, ·〉

is the standard inner product in R
d. If E ⊆ R

d, then |E| is the Lebesgue measure of E and
Int(E), E and convE are respectively the interior, the closure and the closure of the convex
hull of E. We abbreviate almost everywhere to a.e.. We use ♯(K) for the number of points
of a finite set K. For r > 0, we set B(y, r) := {x ∈ R

d : |x− y| < r} and Br := B(0, r). For
each z ∈ R

d and R > 0, QR(z) := z + [−R/2, R/2)d in R
d and QR := QR(0). We say that

a map is 1−periodic, if it is periodic in Q1. The distance between two subsets U, V ⊆ R
d is

dist(U, V ) = inf{|x− y| : x ∈ U, y ∈ V }. If f : E → R then oscE f := supE f − infE f . The
sets of functions on a set U ⊆ R

d which are Lipschitz, have Lipschitz continuous derivatives
and are smooth functions are written respectively as C0,1(U), C1,1(U) and C∞(U). The set
of α−Hölder continuous functions on R

d is C0,α and ‖u‖ and [uL]0,α denote respectively the
usual sup-norm and α-Hölder seminorm. When we need to denote the dependence of these
last quantities on a particular domain U we write ‖u‖U and [uL]0,α;U . The Borel σ-field

on a metric space M is B(M). If M = R
d, then B = B(Rd). Given a probability space

(Ω,F,P), we write a.s. or P-a.s. to abbreviate almost surely.
Throughout the paper, all differential inequalities are taken to hold in the viscosity sense.
Readers not familiar with the fundamentals of the theory of viscosity solutions may consult
standard references such as [7, 15].

The general probability setting. Let (Ω,F,P) be a probability space endowed with a
group (τy)y∈Rd of F-measurable, measure-preserving transformations τy : Ω → Ω. That is,

we assume that, for every x, y ∈ R
d and A ∈ F,

P[τy(A)] = P[A] and τx+y = τx ◦ τy. (1.6)
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Unless we discuss error estimates we take the group (τy)y∈Rd to be ergodic. That is, we
assume that, if for A ∈ F,

τy(A) = A for all y ∈ R
d, then either P[A] = 0 or P[A] = 1. (1.7)

A map f : M × R
d × Ω → R, with M either Rd or Sd, which is measurable with respect to

B(M)⊗B⊗ F is called stationary if for every m ∈ M,y, z ∈ R
d and ω ∈ Ω,

f(m, y, τzω) = f(m, y + z, ω).

Given a random variable f : M ×R
d×Ω → R, for each E ∈ B, let G(E) be the σ-field on Ω

generated by the f(m,x, ·) for x ∈ E and m ∈ M . We say that the environment is “i.i.d.”,
if there exists D > 0 such that, for all V,W ∈ B,

if dist(V,W ) ≥ D then G(V ) and G(W ) are independent. (1.8)

We say that the environment is strongy mixing with rate φ : [0,∞) → [0,∞), if limr→∞ φ(r) =
0 and

if dist(V,W ) ≥ r then sup
A∈G(V ),B∈G(W )

|P[A ∩B]− P[A]P[B]| ≤ φ(r). (1.9)

An auxiliary function. To avoid repetition we summarize here the properties of an aux-
iliary cut-off function we use in all sections to construct the periodic approximations. We
fix η ∈ (0, 1/4) and choose a 1− periodic smooth ζ : Rd → [0, 1] so that

ζ = 0 in Q1−2η , ζ = 1 in Q1\Q1−η , ‖Dζ‖ ≤ c/η and ‖D2ζ‖ ≤ c/η2. (1.10)

To simplify the notation we omit the dependence of ζ on η.

2. Approximations for viscous HJB equations

We introduce the hypotheses and we state and prove the approximation result.

The hypotheses. The Hamiltonian H : Rd×R
d×Ω → R is assumed to be measurable with

respect to B⊗ B⊗ F. We write H = H(p, y, ω) and we require that, for every p, y, z ∈ R
d

and ω ∈ Ω,
H(p, y, τzω) = H(p, y + z, ω). (2.1)

We continue with the structural hypotheses on H. We assume that H is, uniformly in
(y, ω), coercive in p, that is there exists constants C1 > 0 and γ > 1 such that

C1
−1|p|γ − C1 ≤ H(p, x, ω) ≤ C1|p|

γ + C1, (2.2)

and, for all (y, ω),
the map p → H(p, y, ω) is convex. (2.3)

The last assumption can be relaxed to level-set convexity at the expense of some technical-
ities but we are not pursuing this here.

The required regularity of H is that, for all x, y, p, q ∈ Rd and ω ∈ Ω,

|H(p, x, ω) −H(p, y, ω)| ≤ C1(|p|
γ + 1)|x− y| (2.4)

and
|H(p, x, ω)−H(q, x, ω)| ≤ C1(|p|

γ−1 + |q|γ−1 + 1)|p − q|. (2.5)

Next we discuss the hypotheses on A : Rd × Ω → Sd. We assume that, for each (y, ω) ∈
R
d × Ω, there exists a d× k matrix Σ = Σ(y, ω) such that

A(y, ω) = Σ(y, ω)ΣT (y, ω). (2.6)
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The matrix Σ is supposed to be measurable with respect to B ⊗ F and stationary, that is
for any y, z ∈ R

d and ω ∈ Ω,

Σ(y, τzω) = Σ(y + z, ω). (2.7)

It is clear that (2.6) and (2.7) yield that A is degenerate elliptic and stationary.

We also assume that Σ is Lipschitz continuous with respect to the space variable, i.e., for
all x, y ∈ R

d and ω ∈ Ω,

|Σ(x, ω)− Σ(y, ω)| ≤ C1|x− y|. (2.8)

To simplify statements, we write

(2.1), (2.2), (2.3), (2.4) and (2.5) hold, (2.9)

and

(2.6), (2.7) and (2.8) hold. (2.10)

We denote by H = H(p) the averaged Hamiltonian corresponding to the homogenization
problem for H and A. We recall from the discussion in the introduction that H(p) is the
a.s. limit, as δ → 0, of −δvδ(0, ω), where vδ is the solution to (1.2). Note (see [26]) that, in
view of (2.3), H is convex. Moreover (2.2) yields (again see [26])

C−1
1 |p|γ − C1 ≤ H(p) ≤ C1|p|

γ + C1 . (2.11)

The periodic approximation. Let ζ be smooth cut-off function satisfying (1.10).

For (p, x, ω) ∈ R
d ×QL × Ω we set

AL(x, ω) = (1− ζ(
x

L
))A(x, ω)

and

HL(p, x, ω) = (1− ζ(
x

L
))H(p, x, ω) + ζ(

x

L
)H0(p),

where, for a constant C2 > 0 to be defined below,

H0(p) = C2
−1|p|γ − C2,

Then we extend AL and HL to R
d × R

d × Ω by periodicity, i.e., for all (x, p) ∈ R
d, ω ∈ Ω

and ξ ∈ Z
d,

HL(p, x+ Lξ, ω) = HL(p, x, ω) and AL(x+ Lξ, ω) = AL(x, ω).

To define C2, let us recall (see [26]) that (2.9) yields a constant C3 ≥ 1 such that, for any
ω ∈ Ω, p ∈ R

d and δ ∈ (0, 1), the solution vδ of (1.2) satisfies ‖Dvδ + p‖∞ ≤ C3(|p| + 1).
Then we choose C2 so large that, for all p ∈ R

d,

C−1
2 (C3(|p|+ 1))γ − C2 ≤ C1

−1|p|γ − C1.

In view of (2.2), (2.11) and the previous discussion on vδ, we have

H0(Dvδ + p) ≤ H(p) and H0(p) ≤ H(p). (2.12)

and, in addition, uniformly in (y, ω),

HL(p, y, ω) is coercive in p with a constant that depends only on C1. (2.13)
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The approximation result. Let HL = HL(p, ω) be the averaged Hamiltonian corre-
sponding to the homogenization problem for HL and AL. We claim that, as L → +∞, HL

is a good a.s. approximation of H.

Theorem 2.1. Assume (1.7), (2.9) and (2.10). There exists a constant C > 0 such that,
for all p and a.s.,

lim sup
L→+∞

HL(p, ω) ≤ H(p) ≤ lim inf
L→+∞

HL(p, ω) + C(|p|γ + 1)η.

Note that, in view of the dependence of ζ on η, HL(p, ω) also depends on η and, hence,
it is not possible to let η → 0 in the above statement. However, it is a simple application
of the discussion of Section 3, that under suitable assumptions on the random media, it is
possible to choose η = ηn and Ln → +∞ in such a way that

lim
n→+∞

HLn(p) = H(p).

The proof of Theorem 2.1. The proof is divided into two parts which are stated as two
separate lemmata. The first is the upper bound, which relies on homogenization and only
uses the fact that H = HL in QL(1−2η). The second is the lower bound. Here the specific
construction of HL plays a key role.

Lemma 2.2. (The upper bound) Assume (1.7), (2.9) and (2.10). There exists C > 0 that
depends only on C1 such that, for all p ∈ R

d and a.s.,

H(p) ≤ lim inf
L→+∞

HL(p, ω) +C(|p|γ + 1)η.

Proof. Choose ω ∈ Ω for which homogenization holds (recall that this is the case for almost
all ω) and fix p ∈ R

d. Let χp
L be a corrector for the L−periodic problem, i.e., a continuous,

L−periodic solution of (1.4). Without loss of generality we assume that χp
L(0, ω) = 0.

Moreover, since HL is coercive, there exists (see [26]) a constant C3, which depends only on
C1, such that ‖Dχp

L + p‖∞ ≤ C3(|p|+ 1).

Define Φp
L(x, ω) := L−1χp

L(Lx, ω). It follows that the Φ
p
L’s are 1−periodic, Lipschitz contin-

uous uniformly in L, since‖DΦp
L + p‖∞ ≤ C3(|p| + 1), and uniformly bounded in R

d, since
Φp
L(0, ω) = 0. Moreover,

−L−1tr
(
AL(Lx, ω)D

2Φp
)
+HL(DΦp

L + p, Lx, ω) = HL(p, ω) in R
d .

Since HL = H and AL = A in QL(1−2η), we also have

−L−1tr
(
A(Lx, ω)D2Φp

L

)
+H(DΦp

L + p, Lx, ω) = HL(p, ω) in Int(Q1−2η) .

Let Ln → +∞ be such that HLn(p, ω) → lim inf
L→+∞

HL(p, ω). The equicontinuity and equi-

boundedness of the Φp
L’s yield a further subsequence, which for notational simplicity we

still denote by Ln, such that the Φp
Ln

’s converge uniformly in R
d to a Lipschitz continuous,

1-periodic map Φp : Rd → R. Note that, by periodicity
ˆ

Q1

DΦp = 0. (2.14)

Since homogenization holds for the ω at hand, by the choice of the subsequence, we have
both in the viscosity and a.e. sense that

H(DΦp + p) = lim inf
L→+∞

HL(p, ω) in Int(Q1−2η). (2.15)
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It then follows from (2.14), the convexity of H and Jensen’s inequality that

H(p) ≤

ˆ

Q1

H(DΦp + p).

Using the bound on ‖DΦp‖ together with (2.11) and (2.15), we get
ˆ

Q1

H(DΦp + p) ≤

ˆ

Q1−2η

H(DΦp + p) +C1(‖DΦp + p‖γ∞ + 1) |Q1\Q1−2η |

≤ (1− 2η)d lim inf
L→+∞

HL(p, ω) + C(|p|γ + 1)η,

and, after employing (2.11) once more,

H(p) ≤ lim inf
L→+∞

HL(p, ω) + C(|p|γ + 1)η .

�

To state the next lemma recall that, for any δ > 0 and p ∈ R
d, vδ(·, ω; p) solves (1.2).

Lemma 2.3. (The lower bound) Assume (2.9) and (2.10). For any K > 0, there exists
C > 0 such that, for all p ∈ BK , L = 1/δ ≥ 1 and ε > 0,

{ω ∈ Ω : sup
y∈Q1/δ

|δvδ(y, ω; p) +H(p)| ≤ ε} ⊂ {ω ∈ Ω : HL(p, ω)−H(p) ≤
Cε

η
}.

Proof. Fix ω ∈ Ω such that

sup
y∈Q1/δ

|δvδ(y, ω; p) +H(p)| ≤ ε, (2.16)

and let ξ : Rd → R be a smooth 1−periodic map such that

ξ = 1 in Q1−η, ξ = 0 in Q1\Q1−η/2, ‖Dξ‖∞ ≤ Cη−1 and ‖D2ξ‖∞ ≤ Cη−2.

Recall that L = 1/δ, define

ΨL(x, ω) := ξ(
x

L
)vδ(x, ω; p)− (1− ξ(

x

L
))
H(p)

δ
in QL

and extend ΨL(·, ω) periodically (with period L) over Rd.

The goal is to estimate the quantity −tr(AL(x, ω)D
2ΨL) +HL(DΨL + p, x, ω). In what

follows we argue as if ΨL were smooth, the computation being actually correct in the
viscosity sense.

Observe that, if x ∈ Q1/δ , then

DΨL(x, ω) = ξ(
x

L
)Dvδ(x, ω; p) +

1

L
Dξ(

x

L
)(vδ(x, ω; p) +

H(p)

δ
).

Hence, in view of (2.16),

|DΨL(x, ω)− ξ(
x

L
)Dvδ(x, ω; p)| ≤

Cε

ηLδ
=

Cε

η
. (2.17)



PERIODIC APPROXIMATIONS OF THE EFFECTIVE EQUATIONS 9

Note that ΨL = vδ in QL(1−η) while ζ(·/L) = 1 in QL\QL(1−η). It then follows from the
definition of AL and HL that, when x ∈ QL,

−tr(AL(x, ω)D
2ΨL) +HL(DΨL + p, x, ω)

= (1− ζ(
x

L
))
[
−tr(A(x, ω)D2ΨL) +H(DΨL + p, x, ω)

]
+ ζ(

x

L
)H0(DΨL + p)

= (1− ζ(
x

L
))[−tr(A(x, ω)D2vδ) +H(Dvδ + p, x, ω)] + ζ(

x

L
)H0(DΨL + p).

(2.18)

We now estimate each term in the right-hand side of (2.18) separately. For the first, in view
of (1.2) and (2.16), we have

−tr(A(x, ω)D2vδ) +H(Dvδ + p, x, ω) = −δvδ(x, ω) ≤ H(p) + ε,

while for the second we use (2.17), the convexity of H0 and the Lipschitz bound on vδ to
find

H0(DΨL + p) ≤ H0(ξ(
x

L
)Dvδ + p) +

Cε

η

≤ ξ(
x

L
)H0(Dvδ + p) + (1− ξ(

x

L
))H0(p) +

Cε

η
,

and, in view of (2.12), deduce that

H0(DΨL + p) ≤ H(p) +
Cε

η
.

Combining the above estimates we find (recall that η ∈ (0, 1))

−tr(AL(x, ω)D
2ΨL) +HL(DΨL + p, x, ω) ≤ H(p) +

Cε

η
. (2.19)

Since ΨL is L−periodic subsolution for the corrector equation associated to AL and HL,
the classical comparison of viscosity solutions ([7]) yields

HL(p, ω) ≤ H(p) + Cε/η.

�

We are now ready to present the

Proof of Theorem 2.1. In view of Lemma 2.2, we only have to show that

lim sup
L→+∞

HL(p, ω) ≤ H(p). (2.20)

Fix p ∈ R
d, let vδ be the solution to (1.2), and recall that the δvδ ’s converge a.s. to −H(p)

uniformly in cubes of radius 1/δ, that is, a.s. in ω ∈ Ω, for any ε > 0, there exists δ = δ(ω)
such that, if δ ∈ (0, δ),

sup
y∈Q1/δ

|δvδ(y, ω; p) +H(p)| ≤ ε.

For such an ω, Lemma 2.3 implies that, for L = 1/δ,

HL(p, ω) ≤ H(p) + Cε/η.

Letting first L → +∞ and then ε → 0 yields (2.20). �
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3. Error estimate for viscous HJB equations

Here we show that it is possible to quantify the convergence of HL(·, ω) to H. For this we
assume that we have an algebraic rate of convergence for the solution vδ = vδ(x, ω; p) of
(1.2) towards the ergodic constant H(p), that is we suppose that there exists a ∈ (0, 1) and,

for each K > 0 and m > 0, a map δ → c1
K,m(δ) with limδ→0 c

K,m
1 (δ) = 0 such that

P[ sup
(y,p)∈Qδ−m×BK

|δvδ(y, ·; p) +H(p)| > δa] ≤ cK,m
1 (δ); (3.1)

notice that (3.1) implies that the convergence of δvδ(y, ·; p) in balls of radius δ−m is not
slower than δa.

A rate of convergence like (3.1) is shown to hold for Hamilton-Jacobi equations in [1] and
for viscous HJB in [2] under some additional assumptions on H and the environment. The
first assumption, which is about the shape of the level sets of H, is that, for every p, y ∈ R

d

and ω ∈ Ω

H(p, y, ω) ≥ H(0, 0, ω) and ess sup
ω∈Ω

H(0, 0, ω) = 0.

As explained in [1], from the point of view of control theory, the fact that there is a common
p0 for all ω at whichH(·, 0, ω) has a minimum provides “some controllability”. No generality
is lost by assuming p0 = 0 and ess supω∈ΩH(0, 0, ω) = 0.

As far as the environment is concerned, (3.1) is known to hold for “i.i.d.” environments and
under an additional suitable condition on H at p = 0 or, more precisely, for p’s in the flat
spot of H. What is an “i.i.d.” environment was explained in the introduction. Here for each
E ∈ B, G(E) is the σ-field on Ω generated by the random variables A(x, ·) and H(p, x, ·) for
x ∈ E and p ∈ R

d. It was shown in [1] that the δvδ ’s may converge arbitrarily slow for p’s
such that H(p) = 0. For Hamilton-Jacobi equations, i.e., when A ≡ 0, a sufficient condition
for (3.1) is the existence of constants θ > 0 and c > 0 such that

P [H(0, 0, ·) > −λ] ≥ cλθ.

It is shown in [2] that for viscous HJB equations the above condition has to be strengthened
in the following way: there exist θ > 0 and c > 0 such that, for (p, x, ω) ∈ R

d ×R
d ×Ω and

p ∈ B1,

H(p, x, ω) ≥ c|p|θ.

In both cases, the function cK,m
1 is of the form

cK,m
1 (δ) = Cδ−r exp(−Cδ−b),

where r, C and b are positive constants depending on A, H, K and m.
The periodic approximation AL and HL is the same as in the previous section except that
now η → 0 as L → +∞. The rate at which η → 0 depends on the assumption on the
medium. As before the smooth 1−periodic ζ satisfies (1.10).

We choose ηL → 0 and, to simplify the notation, we write

ζL(x) := ζηL(
x

L
).

Note that ζL is now L−periodic.

The result is:
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Theorem 3.1. Assume (2.9), (2.10) and (3.1) and set ηL = L
− a

4(a+1) . For any K > 0,
there exists a constant C > 0 such that, for L ≥ 1,

P[ sup
|p|≤K

∣∣H (p)−HL(p, ·)
∣∣ > CL

− a
4(a+1) ] ≤ 2c

C,2(a+1)
1 (L

− 1
2(a+1) ).

The main idea of the proof, which is reminiscent to the approach of Capuzzo Dolcetta and
Ishii [13] and [1], is that

∣∣H (p)−HL(p, ·)
∣∣ can be controlled by

∣∣δvδ(z, ω; p′) +H(p′)
∣∣. The

later one is estimated by the convergence rate assumption (3.1). As in the proof of Theorem
2.1 it is important to obtain estimates for the lower and upper bounds. Since the former is
a straightforward application of Lemma 2.3, here we only present the details for the latter.

Estimate for the upper bound. We state the upper bound in the following proposition.

Proposition 3.2. For any K > 0, there exists C > 0 such that, for any L ≥ 1, λ ∈ (0, 1]
and δ > 0,

{ω ∈ Ω : sup
p∈BK

[H (p)−HL(p, ω)] > λ+ C(ηL + L− 1
4 δ−

1
2 )}

⊂ {ω ∈ Ω : inf
(z,p′)∈QL×BC

[−δvδ(z, ω; p′)−H(p′)] < −λ}.

Proof. Fix p ∈ BK and let χp
L be a continuous, L−periodic solution of the corrector equation

(1.4); recall that χp
L is Lipschitz continuous with Lipschitz constant L = L(K).

Set ε = 1/L and consider wε(x) := εχL(
x
ε ) which solves

−εtr
(
AL(

x

ε
, ω)D2wε

)
+HL(Dwε + p,

x

ε
, ω) = HL(p, ω) in R

d .

Note that wε is 1−periodic and Lipschitz continuous with constant L. Moreover, in view
of the definition of AL and HL,

−εtr
(
A(

x

ε
, ω)D2wε

)
+H(Dwε + p,

x

ε
, ω) = HL(p, ω) in Q1−2ηL . (3.2)

Fix γ > 0 to be chosen later and consider the sup-convolution wε,γ of wε, which is given by

wε,γ(x, ω) := sup
y∈Rd

(wε(y, ω)−
1

2γ
|y − x|2).

Note that wε,γ is also 1−periodic and, by the standard properties of the sup-convolution
([7], [15]), ‖Dwε,γ‖∞ ≤ ‖Dwε‖∞ ≤ L.

The main step of the proof is the following lemma which we prove after the end of the
ongoing proof.

Lemma 3.3. There exists a sufficiently large constant C > 0 with the property that, for
any κ > 0 and any ω ∈ Ω, if

inf
(z,p′)∈QL×B2L

[−δvδ(z, ω; p′)−H(p′)] ≥ −λ, (3.3)

then, for a.e. x ∈ Qr with r = 1− 2ηL − (C + L)(γ +
(

ε
δκ

) 1
2 ),

H (Dwε,γ(x) + p) ≤ HL(p, ω) + λ+ C(
1

γ
+ κ)(ε+ (

ε

δκ
)
1
2 ). (3.4)
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We complete the ongoing proof. Jensen’s inequality yields, after integrating (3.4) over Qr,

H

(
r−d

ˆ

Qr

Dwε,γ(x)dx+ p

)
≤ r−d

ˆ

Qr

H (Dwε,γ(x)dx+ p) ≤

HL(p, ω) + λ+ C(
1

γ
+ κ)(ε + (

ε

δκ
)
1
2 ).

The 1−periodicity of wε,γ yields

ˆ

Q1

Dwε,γ = 0, therefore

∣∣∣∣
1

rd

ˆ

Qr

Dwε,γ

∣∣∣∣ ≤
1

rd
(|

ˆ

Q1

Dwε,γ |+ ‖Dwε,γ‖∞ |Q1\Qr|)

≤ C(1− r) = C(ηL + γ + (
ε

δκ
)
1
2 ),

with the last equality following from the choice of r. Hence

H (p) ≤ HL(p, ω) + λ+ C(ηL + γ +
ε

γ
+ κε+ (

ε

δκ
)
1
2 (

1

γ
+ κ+ 1)).

Choosing κ = (εδ)−
1
3 γ−

2
3 and γ = ε

1
4 δ−

1
2 , and recalling that ε = L−1, we find

H (p) ≤ HL(p, ω) + λ+ C(ηL + L− 1
4 δ−

1
2 ). (3.5)

The claim now follows.
�

We present next the

Proof of Lemma 3.3: Let x ∈ Int(Qr) be a differentiability point of wε,γ . Recall that wε,γ is
Lipschitz continuous with Lipschitz constant L and, hence, a.e. differentiable. Then there
exists a unique y ∈ R

d such that

y → wε(y, ω)−
1

2γ
|y − x|2 has a maximum at y (3.6)

and

Dwε,γ(x) =
y − x

γ
and |y − x| ≤ Lγ. (3.7)

Recall that κ > 0 is fixed. For σ > 0 small, consider the map Φ : Rd × R
d × Ω → R

Φ(y, z, ω) := wε(y, ω)− εvδ
(
z

ε
, ω ;

y − x

γ
+ p

)
−

|y − x|2

2γ
−

κ

2
|y − y|2 −

|y − z|2

2σ

and fix a maximum point (yσ, zσ) of Φ.

Note that wε,γ as well as all the special points chosen above depend on ω. Since this plays
no role in what follows, to keep the notation simple we omit this dependence.

Next we derive some estimates on |yσ − zσ| and |yσ − y|. The Lipschitz continuity of

vδ(·, ω ;
y − x

γ
+ p) yields

|yσ − zσ| ≤ Cσ. (3.8)
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Using this last observation as well as the fact that (yσ, zσ) is a maximum point of Φ and
‖vδ‖∞ ≤ C/δ, we get

wε(y, ω)−C
ε

δ
−

|y − x|2

2γ
≤ Φ(y, y) ≤ Φ(yσ, zσ) ≤ wε(yσ, ω) +C

ε

δ
−

|yσ − x|2

2γ
−

κ

2
|yσ − y|2,

while, in view of (3.6), we also have

wε(yσ, ω)−
|yσ − x|2

2γ
≤ wε(y, ω)−

|y − x|2

2γ
.

Putting together the above inequalities yields

|yσ − y| ≤ C
( ε

δκ

) 1
2
. (3.9)

In particular, (3.7), the choice of r and the fact that x ∈ Int(Qr) imply that

y ∈ Int(Q
1−2ηL−C( ε

δκ)
1
2
) and yσ ∈ Q1−2ηL .

At this point, for the convenience of the reader, it is necessary to recall some basic nota-
tion and terminology from the theory of viscosity solutions (see [15]). Given a viscosity
upper semicontinuous (resp. lower semicontinuous) sub-solution (resp. super-solution )
u of F (D2u,Du, u, x) = 0 in some open subset U of Rd, the lower-jet (resp. upper-jet)

J
2,+

u(x) (resp. J
2,−

u(x)) at some x ∈ U consists of (X, p) ∈ Sd × R
d that can be used to

evaluate the equation with the appropriate inequality. For example if u is a sub-solution of

F (D2u,Du, u, x) = 0 in U and (X, p) ∈ J
2,+

u(x), then F (X, p, u(x), x) ≤ 0.

Now we use the maximum principle for semicontinuous functions (see [15]). Since (yσ, zσ)
is a maximum point of Φ, for any η > 0, there exist Yσ,η, Zσ,η ∈ Sd such that

(Yσ,η,
yσ − x

γ
+

yσ − zσ
σ

+ κ(yσ − y)) ∈ J
2,+

wε(yσ, ω), (Zσ,η,
yσ − zσ

σ
) ∈ J

2,−
vδ(

zσ
ε
, ω),

and (
Yσ 0
0 1

εZσ,η

)
≤ Mσ,η + ηM2

σ,η, (3.10)

where

Mσ,η =

(
1
σId − 1

σId
− 1

σ Id
1
σ Id

)
+

(
( 1γ + κ)Id 0

0 0

)
. (3.11)

Evaluating the equations for wε and vδ at yσ ∈ Q1−2ηL and zσ ∈ R
d respectively we find

−εtr(A(
yσ
ε
, ω)Yσ,η) +H(

yσ − x

γ
+

yσ − zσ
σ

+ κ(yσ − y) + p,
yσ
ε
, ω) ≤ HL(p, ω) (3.12)

and

δvδ(
zσ
ε
, ω;

y − x

γ
+ p)− tr

(
A(

zσ
ε
, ω
)
Zσ,η) +H(

yσ − zσ
σ

+
y − x

γ
+ p,

zσ
ε
, ω) ≥ 0. (3.13)

Multiplying (3.10) by the positive matrix
(

Σ
(yσ

ε , ω
)

Σ
(
zσ
ε , ω

)
)(

Σ
(yσ

ε , ω
)

Σ
(
zσ
ε , ω

)
)T

,
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and taking the trace, in view of (3.11), we obtain

tr(A(
yσ
ε
, ω)Yσ,η)−

1

ε
tr(A(

zσ
ε
, ω)Zσ,η)

≤
1

σ
‖Σ(

yσ
ε
, ω)− Σ(

zσ
ε
, ω)‖2 + (

1

γ
+ κ)‖Σ

(yσ
ε
, ω
)
‖2

+ ηtr

(
M2

σ,η

(
Σ
(yσ

ε , ω
)

Σ
(
zσ
ε , ω

)
)(

Σ
(yσ

ε , ω
)

Σ
(
zσ
ε , ω

)
)T
)
.

Recalling that Σ satisfies (2.8) and using (3.8), we get

tr(A(
yσ
ε
, ω)Xσ,η)−

1

ε
tr(A(

zσ
ε
, ω)Yσ,η)

≤
C

σε2
|yσ − zσ|

2 + C(
1

γ
+ κ) + ηC(σ) ≤ C(

σ

ε2
+

1

γ
+ κ) + ηC(σ). (3.14)

Note that the C(σ) actually depends also on all the other parameters of the problem but,
and this is important, is independent of η.

Next we use that H satisfies (2.4), (2.5). From (3.8) and (3.9) it follows

H(
yσ − x

γ
+

yσ − zσ
σ

+ κ(yσ − y) + p,
yσ
ε
, ω)−H(

yσ − zσ
σ

+
y − x

γ
+ p,

zσ
ε
, ω) ≥

−C(
|yσ − y|

γ
+ κ|yσ − y|+

|yσ − zσ|

ε
) ≥ −C((

ε

δκ
)
1
2 (

1

γ
+ κ) +

σ

ε
). (3.15)

We estimate the difference between (3.12) and (3.13), using (3.14) and (3.15), to find

−δvδ
(
zσ
ε
, ω;

y − x

γ
+ p

)
≤ HL(p, ω) + C(

σ

ε
+

ε

γ
+ κε+ (

ε

δκ
)
1
2 (

1

γ
+ κ) +

σ

ε
) + ηεC(σ).

Finally the choice of ω (recall (3.3)) implies

H(
y − x

γ
+ p) ≤ HL(p, ω) + λ+C(

σ

ε
+

ε

γ
+ κε+ (

ε

δκ
)
1
2 (

1

γ
+ κ) +

σ

ε
) + ηεC(σ).

We now let η → 0 and then σ → 0 to obtain

H(
y − x

γ
+ p) ≤ HL(p, ω) + λ+ C(

ε

γ
+ κε+ (

ε

δκ
)
1
2 (

1

γ
+ κ)).

Recalling (3.7), we may now conclude (3.4) holds. �

The full estimate. Combining Proposition 3.2 and Lemma 2.3 yields the full estimate.

Proof of Theorem 3.1. Recall that ηL = L
− a

4(a+1) and choose δ = L
− 1

2(a+1) and λ = δa =

L
− a

2(a+1) . Then Proposition 3.2 implies that, for L ≥ 1,

P[ sup
p∈BK

(H (p)−HL(p, ·)) > CL
− a

4(a+1) ]

≤ P[ inf
(z,p′)∈QL×BC

(−δvδ(z, ·; p′)−H(p′)) < −δa].

Then (3.1) gives

P[ sup
p∈BK

(H(p)−HL(p, ·)) > CL
− a

4(a+1) ] ≤ c
C,2(a+1)
1 (L

− 1
2(a+1) ).
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Similarly Lemma 2.3 implies, for L ≥ 1, that

{ω ∈ Ω : sup
p∈BK

(HL(p, ω)−H(p)) >
Cλ

ηL
}

⊂ {ω ∈ Ω : sup
(y,p)∈QL×BK

|δvδ(y, ω ; p) +H(p)| > λ}.

Since λ/ηL = L
− a

4(a+1) , using (3.1) we get

P[ sup
p∈BK

(HL(p, ·)−H(p)) > CL
− a

4(a+1) ]

≤ P[ sup
(y,p)∈QL×BK

|δvδ(y, · ; p) +H(p)| > δa] ≤ c
C,2(a+1)
1 (L

− 1
2(a+1) ).

Combining both estimates gives the result. �

4. Approximations fully nonlinear uniformly elliptic equations

We introduce the hypotheses and state and prove the approximation result. We remark that
our arguments extend to nonlinear elliptic equations which include gradient dependence at
the expense of some additional technicalities.

The hypotheses. The map F : Sd × R
d × Ω → R is B(Sd) ⊗ B ⊗ F measurable and

stationary, that is, for all X ∈ Sd, x, y ∈ R
d and ω ∈ Ω,

F (X, y, τzω) = F (X, y + z, ω). (4.1)

We continue with the structural hypotheses on F . We assume that it is uniformly elliptic
uniformly in ω, that is there exist constants 0 < λ < Λ such that, for all X,Y ∈ Sd with
Y ≥ 0, x ∈ R

d and ω ∈ Ω,

−Λ‖Y ‖ ≤ F (X + Y, x, ω)− F (X,x, ω) ≤ −λ‖Y ‖, (4.2)

and bounded, that is there exists C > 0 such that

sup
ω∈Ω

|F (0, 0, ω)| ≤ C. (4.3)

Note that, in view of (4.1) and (4.2), for each R > 0, there exists C = C(R,λ,Λ, C) > 0
such that

sup
‖X‖≤R, y∈Rd, ω∈Ω

|F (X, y, ω)| ≤ C. (4.4)

The required regularity on F is that there exists ρ : [0,∞) → [0,∞) such that limr→0 ρ(r) =
0 and, for all x, y ∈ R

d, σ > 0, P,X, Y ∈ Sd such that
(

X 0
0 −Y

)
≤

3

σ

(
Id −Id
−Id Id

)
,

F (X + P, x, ω)− F (Y + P, y, ω) ≤ ρ(
|x− y|2

σ
+ |x− y|). (4.5)

To simplify the statements, we write

(4.1), (4.2), (4.3) and (4.5) hold. (4.6)
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The periodic approximation. Let ζη : Rd → [0, 1] be a smooth, 1− periodic satisfying
(1.10), choose ηL → 0 and, to simplify the notation, write ζL(x) := ζηL(

x
L).

For (X,x, ω) ∈ Sd ×QL × Ω we set

FL(X,x, ω) = (1− ζL(x))F (X,x, ω) + ζL(x)F0(X),

where F0 ∈ C(Sd) is space independent and uniformly elliptic map with the same ellipticity
constants as F . Then we extend FL to be an L− periodic map in x, i.e., for all (X,x, ω) ∈
Sd ×R

d × Ω and all ξ ∈ Z
d,

FL(X,x + Lξ, ω) = FL(X,x, ω).

Note that, in view of the choice of F0,

FL satisfies (4.6). (4.7)

The approximation result. Let F = F (·) and FL = FL(·, ω) be the averaged nonlinear-
ities (ergodic constants) that correspond to the homogenization problem for F and FL(·, ω).
We claim that, as L → ∞, FL(·, ω) is an a.s. good approximation of F .

Theorem 4.1. Assume (1.7) and (4.6). For any P ∈ S(Rd) and a.s. in ω,

lim
L→+∞

FL(P, ω) = F (P ). (4.8)

Proof. Fix P ∈ Sd with ‖P‖ ≤ K, ω ∈ Ω for which the homogenization holds and let χL be
a L−periodic corrector for FL(P, ω), that is a continuous solution to

FL(D
2χL + P, x, ω) = FL(P, ω) in R

d.

Without loss of generality we assume that χL(0) = 0.
The rescaled function vL(x) := L−2χL(Lx) is 1−periodic and solves

FL(D
2vL + P,Lx, ω) = FL(P, ω) in R

d.

Lemma 4.2 below (its proof is presented after the end of the ongoing one) implies the
existence of an α ∈ (0, 1) and C > 0 depending only λ,Λ, d and C in (4.3) so that

osc(vL) ≤ C and [vL]0,α ≤ C. (4.9)

Note that, by the definition of FL(P, y, ω),

F (D2vL + P,Lx, ω) = FL(P ) in Q1−2ηL ,

while, since FL is uniformly elliptic,

−M+(D2vL + P ) ≤ F (P,Lx, ω) − FL(P ) in R
d

and
−M−(D2vL + P ) ≥ F (P,Lx, ω)− FL(P ) in R

d,

where M+ and M− are the classical Pucci extremal operators associated with the uniform
ellipticity constants λ/d and Λ —see [9] for the exact definitions.

Fix a sequence (Ln)n∈N such that FLn(P, ω) → lim supL→+∞ FL(P, ω). Using (4.9) we find

a further subsequence (still denoted in the same way) and an 1−periodic v ∈ C0,α(Rd)
such that the vLn ’s converge uniformly to v. In view of the results of [12] about stochastic
homogenization, v solves

F (D2v + P ) = lim sup
L→+∞

FL(P, ω) in Int(Q1), (4.10)
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while the stability of solutions also gives, for CP = supx∈Rd |F (P, x, ω)|+lim supL→+∞ |FL(P )|,

−M+(D2v) ≤ CP and −M−(D2v) ≥ −CP in Rd.

Define B := ∪z∈Zd∂Q1(z). In view of (4.10), the periodicity of v implies that

F (D2v + P ) = lim sup
L→+∞

FL(P, ω) in R
d\B. (4.11)

Let x be a minimum point of v and, for σ ∈ (0, 1) fixed, consider the map w(x) := v(x) +
σ|x− x|2 and and its convex hull Γ(w). Since w is a subsolution to

−M+(D2w) = −M+(D2v + 2σId) ≤ C ′
P := CP + 2σΛ,

it follows (see [9]) that Γ(w) is C1,1 with ‖D2Γ(w)‖∞ ≤ C.

Let E be the contact set between w and its convex envelope, i.e.,

E := {x ∈ Int(B1/4) : w(x) = Γ(w)(x)}.

Note, and this is a step in the proof of the ABP-estimate (see [9]) that, if p ∈ Bσ/4, then
there exists x ∈ E such that DΓ(w)(x) = p. Indeed, if y /∈ B1/4(x) and p ∈ Bσ/4, then

w(y)− 〈p, y〉 ≥ v(y) + σ|y − x|2 − 〈p, x〉 − |p||y − x|

> v(x)− 〈p, x〉+ |y − x|(σ/4 − |p|) ≥ w(x)− 〈p, x〉.

Hence any maximum point x of w − 〈p, ·〉 must belong to B1/4(x). Then, since w(y) ≥

w(x) + 〈p, y − x〉 for any y ∈ R
d, it follows that w(x) = Γ(w)(x) and DΓ(w)(x) = p. As a

consequence we have

|Bσ/4| ≤ |DΓ(w)(E)| ≤

ˆ

E
det(D2Γ(w)) ≤ C|E|.

Since B has zero measure, the above estimate shows that there exists x ∈ E\B such that
w(x) = Γ(w)(x). Then, for any y ∈ R

d,

v(y) ≥ Γ(w)(y)− σ|y − x|2 ≥ w(x) + 〈DΓ(w)(x), y − x〉 − σ|y − x|2,

with an equality at y = x.

Using φ(y) := w(x)+ 〈DΓ(w)(x), y−x〉−σ|y−x|2 as a test function in (4.11) and the fact
that x /∈ B, we get

F (−2σId + P ) ≥ lim sup
L→+∞

FL(P, ω).

Letting σ → 0 gives one side of the equality (4.8). The proof of the reverse one follows in
a symmetrical way. �

To complete the proof, it remains to explain (4.9). For this we note that vL is 1−periodic
and, in view of (4.4), belongs to the class S∗(λ/d,Λ, C0), where C0 = supx |F (P, x, ω)| (see
[9] for the definition of S∗(λ/d,Λ, C0)). Then (4.9) is a consequence of the classical Krylov-
Safonov result about the continuity of solutions of uniformly elliptic pde. Since we do not
know an exact reference for (4.9), we present below its proof.

Lemma 4.2. Let 0 < λ < Λ and C0 > 0 be constants. There exist C = C(d, λ,Λ, d, C0) >
0 and α = α(d, λ,Λ, d, C0) ∈ (0, 1] such that, any 1−periodic u ∈ S∗(λ,Λ, C0) satisfies
osc(u) ≤ C and [u]C0,α ≤ C.
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Proof. Without loss of generality, we assume that u(0) = 0. For M ≥ 1, let uM (x) :=
M−2u(Mx). Note that uM is M−1−periodic and still belongs to S∗(λ,Λ, d, C0). The
Krylov-Safonov result yields C = C(λ,Λ, d, C0) > 0 and α = α(d, λ,Λ, d, C0) ∈ (0, 1] with

[uM ]0,α;Q1 ≤ C(‖uM‖Q2 + 1).

It follows from the 1−periodicity of u and u(0) = 0 that

[uM ]0,α;Q1 ≥ Mα−2[u]0,α and ‖uM‖Q2 = M−2‖u‖ ≤ M−2d
1
2 [u]0,α.

Hence,

[u]0,α ≤ CM2−α(M−2d
1
2 [u]0,α + 1).

Choosing M so that CM−αd
1
2 = 1

2 gives a bound on [u]C0,α , from which we derive a sup
bound on u. �

We remark that the proof of Theorem 4.1 shows the following fact, which we state as a
separate proposition, since it may be of independent interest.

Proposition 4.3. Let Σ ⊂ R
d be a set of zero measure and assume that u ∈ C(Rd) is a

viscosity solution of the uniformly elliptic equation F (D2u, x) = 0 in R
d\Σ. If, in addition,

u ∈ S∗(λ,Λ, d, C) in R
d, for some 0 < λ < Λ, then u is a viscosity solution of F (D2u, x) = 0

in R
d.

5. The convergence rate for nonlinear elliptic equations

Here we show that it is possible to quantify the rate of convergence of FL(·, ω) to F . As
in the viscous HJB problem, we assume that we know a rate for the convergence of the
solution to the approximate cell problem to the ergodic constant F .

For the sake of the presentation below and to simplify the argument it is more convenient
to consider, for L ≥ 1 and P ∈ Sd, the solution vL = vL(·;P, ω) of

vL + F (D2vL + P,Lx, ω) = 0 in R
d. (5.1)

Note that vL(x) := L2vL(L−1x) solves the auxiliary problem

L−2vL + F (D2vL + P, x, ω) = 0 in R
d.

In view of the stochastic homogenization, it is known that the vL’s converge locally uniformly
and a.s. to the unique solution v = −F (P ) of

v + F (D2v + P ) = 0 in R
d.

We assume that there exist nonincreasing rate maps L → λ(L) and L → c2(L), which tend
to 0 as L → +∞, such that

P[ sup
x∈B5

|vL(x, ·) + F (P )| > λ(L)] ≤ c2(L). (5.2)

Recall that such a rate was obtained in [10] under a strong mixing assumption on the random
media—see at the beginning of the paper for the meaning of this. The recent contribution
[4] shows that for “i.i.d” environments the rate is at least algebraic, that is λ(L) = L−a for
some a ∈ (0, 1).

In addition to the above assumption on the convergence rate, it also necessary to enforce
the regularity condition (4.5) on F . Indeed we assume that there exists a constant C > 0
such that

(4.5) holds with ρ(r) = Cr. (5.3)
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The periodic approximations of F is exactly the same as in the previous section and the
result is:

Theorem 5.1. Assume (4.6), (5.2) and (5.3) and set ηL(L) = λ(L)
d

2d+1 . Then there exists
a constants C > 0 such that, for L ≥ 1,

P[| − F (P ) + FL(P, ·)| > Cλ(L)
1

2d+1 ] ≤ c2(L).

Proof. For any L ≥ 1, let vL be the solution to (5.1) and χL a L−periodic corrector for
FL(P, ω), i.e., a solution to

FL(D
2χL + P, x, ω) = FL(P, ω) in R

d.

Without loss of generality we assume that χL(0, ω) = 0. Set wL(x, ω) := L−2χL(Lx, ω) and
note that wL is 1−periodic and solves

FL(D
2wL + P,Lx, ω) = FL(P, ω) in R

d. (5.4)

It also follows from (4.9) that ‖wL‖ ≤ C and [wL]0,α ≤ C, and we note that the vL’s are

bounded in C0,α uniformly with respect to L.

From now on we fix λ > 0 and ω such that

sup
x∈B5

|vL(x, ω) + F (P )| ≤ λ. (5.5)

The goal is to show that
∣∣F (P )− FL(P, ω)

∣∣ ≤ λ+ C(η
1
d
L + λη−2

L ). (5.6)

For this, we follow the proof of the convergence quantifying each step in an appropriate
way. In what follows to simplify the expressions we suppress the dependence on ω which is
fixed throughout the argument. Moreover since the proof is long we organize it in separate
subsections.

Construction of the minimum points x0 and x̂0: Let x0 be a minimum point of wL in Q1;
note that since wL is 1−periodic, x0 is actually a minimum point of wL(·) in R

d. For
a, r, r0 ∈ (0, 1) to be chosen below and ξ ∈ R

d, we consider the map

Φ0
ξ(x) := wL(x) +

a

2
|x− x0|

2 + 〈ξ, x− x0〉.

The claim is that, if x̂0 is a minimum point of Φ0
ξ with ξ ∈ Br0 and

2r0 ≤ ar, (5.7)

then x̂0 ∈ Br(x0). Indeed, by the definition of x̂0 and x0,

Φ0
ξ(x̂0) ≤ Φ0

ξ(x0) = wL(x0) ≤ wL(x̂0),

hence,
a

2
|x̂− x0|

2 + 〈ξ, x̂− x0〉 ≤ 0,

and, in view of (5.7),
|x̂0 − x0| ≤ 2|ξ|/a ≤ 2r0/a ≤ r.

Next we consider two cases depending on whether x̂0 ∈ Q1 or not.

Case 1: x̂0 ∈ Q1. Let

E0 := {x̂0 ∈ Q1 ∩Br(x0) : there exists ξ ∈ Br0 such that Φ0
ξ has a minimum at x̂0}.
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Note that, by the definition of x̂0, wL is touched from below at x̂0 by a parabola of opening
a ∈ (0, 1). It then follows from the Harnack inequality that wL is touched from above at x̂0
by a parabola of opening C. This is a classical fact about uniformly elliptic second-order
equations and we refer to [11] for more details. It follows that wL is differentiable at x̂0
and, in view of the choice of x̂0 for Φ0

ξ , DwL(x̂0) + a(x̂0 − x0) + ξ = 0.

Hence ξ is determined from x̂0 by the relation ξ = Ψ0(y) := −
(
DwL(x̂0) + a(x̂0 − x0)

)
.

Moreover, in view the above remark on the parabolas touching wL from above and below,
Ψ0 is Lipschitz continuous on E0 with a Lipschitz constant bounded by C. We refer the
reader to [11] for the details of this argument.

Case 2: x̂0 /∈ Q1: If x̂0 /∈ Q1, then there exists z ∈ Z
d such that x̂0 ∈ Q1(z). Since x̂0 ∈

Qr(x) with x ∈ Q1 and r < 1, it follows that |z|∞ = 1. Set xz := x0 − z, x̂z := x̂0 − z ∈ Q1

(note that x̂z ∈ Br(xz)) and

Φz
ξ(x) = wL(x) +

a

2
|x− xz|

2 + 〈ξ, x− xz〉.

In view of the periodicity of wL, x̂z is a minimum point of Φz
ξ .

Let Z := {z ∈ Z
d ; |z|∞ ≤ 1}. It is clear that Z is a finite set and, if z ∈ Z, either |z|∞ = 1

or z = 0. Also set Ez to be the set of points x̂z ∈ Q1∩Br(xz) for which there exists ξ ∈ Br0

such that Φz
ξ has a minimum at x̂z.

Arguing as in the previous case, we see that there is a Lipschitz map Ψz on Ez (with a
uniform Lipschitz constant bounded) such that, if x̂z ∈ Ez and ξ = Ψz(x̂z), then x̂z is a
minimum of Φz

ξ .

The existence of interior minima. It follows from the previous two steps that, for any
ξ ∈ Br0 , there exist z ∈ Z and x̂z ∈ Ez such that ξ = Ψz(x̂z). Hence, using that the Ψz’s
are Lipschitz continuous with a uniform Lipschitz constant uniformly for z ∈ Z, we find

|Br0 | = | ∪z∈Z Ψz(Ez)| ≤ ♯(Z)max
z

|Ψz(Ez)| ≤ Cmax
z

|Ez |.

Therefore there must exist some z ∈ Z, which we fix from now on, such that

|Ez| ≥ rd0/C. (5.8)

We now show that, for a suitable choice of the constants, the sets Ez and Q1−3ηL have a
nonempty intersection. For this we note that, since Ez ⊂ Br(xz)∩Q1, the claim holds true
as soon as

|Ez|+ |Br(xz) ∩Q1−3ηL | > |Br(xz) ∩Q1| .

As

|Br(xz) ∩Q1| − |Br(xz) ∩Q1−3ηL | = |Br(xz) ∩ (Q1\Q1−3ηL)| ≤ Crd−1ηL,

provided r ≥ CηL, we conclude from (5.8), that if

rd0 ≥ Crd−1ηL, (5.9)

then Ez ∩Q1−3ηL 6= ∅.

The perturbed problem: From now on we assume that (5.7) and (5.9) hold and, therefore,
there exist (fixed) z ∈ Z, ξ ∈ Br0 and x̂z ∈ Q1−3ηL ∩ Br(xz) such that Φz

ξ has a minimum
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at x̂z. For b, σ ∈ (0, 1) to be chosen below, set

Φσ(x, y) := vL(x)− wL(y)−
a

2
|y − xz|

2 −
b

2
|y − x̂z|

2 − 〈ξ, y − xz〉 −
|x− y|2

2σ

= vL(x)− Φz
ξ(y)−

b

2
|y − x̂z|

2 −
|x− y|2

2σ

and let (x̃, ỹ) be a maximum point of Φσ over Q5 ×R
d. We claim that

|ỹ − x̂z| ≤ 2(λb−1)
1
2 and |ỹ − x̃| ≤ Cσ

1
2−α . (5.10)

Indeed, since Φσ(x̃, ỹ) ≥ Φσ(x̂z, x̂z) and Φz
ξ(x̂z) ≤ Φz

ξ(ỹ), in view of (5.5), we find

Φσ(x̃, ỹ) ≥ vL(x̂z)− Φz
ξ(x̂z) ≥ F (P )− λ− Φz

ξ(ỹ)

≥ vL(x̃)− 2λ− Φz
ξ(ỹ),

and, therefore,
b

2
|ỹ − x̂z|

2 +
|x̃− ỹ|2

2σ
≤ 2λ.

This gives the first inequality in (5.10). The maximality of x̃ in Φσ(·, ỹ) and the Hölder
regularity of vL gives the second inequality.

If we assume that
2(λb−1)

1
2 ≤ ηL, (5.11)

then, since x̂z ∈ Q1−3ηL and (5.10) holds, it follows that ỹ belongs to Q1−2ηL . Moreover,
for σ small enough, we still have by (5.10) that x̃ ∈ Q2. In particular, (x̃, ỹ) is an interior
maximum of Φσ in Q5 × R

d.

The maximum principle: Since (x̃, ỹ) is an interior maximum of Φσ, the maximum principle
already used earlier states that there exist X,Y ∈ Sd and px, py ∈ R

d such that

(px,X) ∈ J
2,+

vL(x̃), (py, Y ) ∈ J
2,−

wL(ỹ)

and (
X 0
0 −Y − (a+ b)Id

)
≤

3

σ

(
Id −Id
−Id Id

)
.

In view of (5.1) and (5.4) and since ỹ ∈ Q1−2ηL , which yields that FL(·, ỹ) = F (·, ỹ),
evaluating the equations satisfied by vL and wL at x̃ and ỹ respectively we find

vL(x̃) + F (X + P,Lx̃) ≤ 0 (5.12)

and
F (Y + P,Lỹ) ≥ FL(P, ω).

From the uniform in x and ω Lipschitz continuity of F with respect to P , we get

F (Y + (a+ b)Id + P,Lỹ) ≥ FL(P, ω)− C(a+ b).

Using (5.3) to estimate the difference between (5.12) and the above inequality, we obtain

vL(x̃) + FL(P, ω) ≤ C(
L2|x̃− ỹ|2

σ
+ L|x̃− ỹ|+ a+ b).

Finally we use (5.5) and (5.10) to conclude that

−F (P ) + FL(P, ω) ≤ λ+ C(L2σα/(2−α) + Lσ1/(2−α) + a+ b).
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Letting σ → 0, we get

−F (P ) + FL(P, ω) ≤ λ+ C (a+ b) (5.13)

provided (5.5), (5.7), (5.9) and (5.11) hold.

The choice of the constants: In order for (5.11), (5.7) and (5.9) to hold, we choose respec-

tively b = 4λη−2
L , r = 1/2, r0 = a/4 and a = Cη

1
d
L . We then have

−F (P ) + FL(P, ω) ≤ λ+ C(η
1
d
L + λη−2

L ).

Arguing in a similar way, we can check that, under (5.5), we also have

−F (P ) + FL(P, ω) ≥ −λ− C(η
1
d
L + λη−2

L ),

which yields (5.6).

Combining (5.6) with the assumption (5.2) on the convergence rate, we find

P[| − F (P ) + FL(P, ·)| > λ(L) + C(η
1
d
L + λ(L)η−2

L )]

≤ P[ sup
x∈B5

∣∣vL(x, ·) + F (P )
∣∣ > λ(L)] ≤ c2(L).

The choice of ηL(L) = (λ(L))
d

2d+1 gives the claim. �
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