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Orbits in a stochastic Goodwin-Lotka-Volterra model

B. Costa-Limaa, A. Nguyen Huu1a

aDepartment of Mathematics and Statistics, McMaster University, Hamilton ON L8S 4L8, Canada

Abstract

This paper examines the cycling behavior of a deterministic and a stochastic version of the economical interpretation
of the Lotka-Volterra model, the Goodwin model. We provide a characterization of orbits in the deterministic, highly
non-linear version of the model. We then study the cycling behavior for a stochastic version, where a Brownian noise
is introduced via an heterogeneous productivity factor. Fundamental properties of the system are provided. We start
with a perturbation analysis for small range of volatility and prove that the system locally behaves in average as the
deterministic counterpart. We then prove with original stochastic Lyapunov techniques that the system produces cycles
around an equilibrium point in finite time for general volatility levels. We also conjecture a limit cycle phenomenon
via numerical simulations.

Keywords: Lotka-Volterra model, Goodwin model, Business cycles, Lyapunov techniques, Stochastic differential
equation

1. Introduction

The Lotka-Volterra equation is at the heart of population dynamics, but also possesses a famous economical
interpretation. Introduced by Richard Goodwin in 1967 [4], the model bears several differences with its biological
counterpart. Firstly, the model results from mathematical derivation of economical assumptions and its justification as
a pertinent model relies on the latter. Secondly and consequently, the state variables of the planar oscillator represent
two economical ratios: the workers wage share of output x and the employment rate y of a closed capitalist economy.
As recently noticed in [2], the model shall be modified to ensure the viability of this interpretation: dxt/dt = xt (Φ(yt) − α)

dyt/dt = yt (κ(xt) − γ)
. (G)

Here, Φ and κ are highly non-linear functions with vertical asymptotes at y = 1 and x = 1 respectively. It is proved
in [2] that the system stays in the interior of the unit square if it starts inside it under this condition, producing closed
orbits around a non-hyperbolic equilibrium point. The purpose of Section 2 is to fully characterize these orbits. The
last difference with the biological counterpart is that the aim of (G) is to study the fluctuations of the production level
Pt of the economy as an auxiliary variable, and the period of real business cycles. On this matter, Goodwin himself
conceded that the model is “starkly schematized and hence quite unrealistic” [4]. Indeed, it hardly connects with
irregular observed trajectories, see [5] for an econometric study. Bartlett [1] admitted an equivalent statement for the
biological interpretation of the system.

But surprisingly, to our knowledge, there is no reference of addition of stochastic components to the Goodwin
model, whereas Bartlett [1] proposed a stochastic Lotka-Volterra equation as an improvement of the deterministic
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system. After this seminal work, stochastic Lotka-Volterra equations have been extensively studied, with focus on
random factors affecting the environment and properties of biological systems, see [10, 11, 12, 14, 17] for recent ex-
amples. The goal of the present paper is to fill the gap in Economics. To do so, we take into account the three previous
remarks. We derive the stochastic model from economical assumptions and an assumption on the heterogeneity of
the productivity rate α among workers. The productivity of the labor class is theoretically one of the parameters that
should affect real business cycles, see [3] for example, so that it seems a reasonable starting point. Keeping in mind the
second distinction of Goodwin interpretation of the prey-predator equation, we study the system and its fundamental
properties with functions Φ and κ forbidding values for the state process (xt, yt).

The last particularity of the economical angle motivates the main result of the present paper. Previous references
contribute to the mathematical study of such models by analyzing asymptotic distributions and moments. For the
present stochastically perturbed system, we prove that the system produces orbits. We first study the model for small
values of volatility by perturbation methods. This analysis shows that within first order approximation, the stochastic
version preserves the characteristics of the deterministic one, in the sense of expectation. We thus keep the cycling
behavior for local times. We then relax the small volatility assumption. We prove under mild assumptions that the
system makes orbits, in some new sense, around a non stable equilibrium point in finite time, by means of stochastic
Lyapunov techniques [9]. We additionally provide numerical results to conjecture the existence of an asymptotic
stochastic limit cycle.

The structure of the paper follows the above outline. Section 2 introduces the deterministic Goodwin model and
full description of its orbits. Section 3 introduces the stochastic model and its fundamental properties. In Section 4,
we prove the cycling behavior of the new system with small volatility. In Section 5, we show via recurrent domain
techniques that any solution to the stochastic system produces orbits in finite time. Examples and illustrations are
provided along the paper.

2. Goodwin interpretation, orbits and periods

The Goodwin model [4] describes with Eq. (G) a closed capitalist economy in a dynamical fashion. In this
model, total yearly output Pt comes from a Leontief production function with full utilization of invested capital Kt

(normalized by a constant ν):
Pt = min(Kt/ν; atytNt) = Kt/ν = atytNt ,

with the adjusted employment rate yt, the productivity of workers at := a0 exp(αt) and the size of the labor class given
by Nt := N0 exp(βt). A second statement concerns the evolution of capital, which evolves by investing according to
an investment function κ minus a depreciation rate:

dKt/dt = (κ(xt) − δ)Kt .

The function κ gives as a fraction of capital the amount put in investment by the capitalists class. It is an increasing
function of profits, and thus a decreasing function of the wage share xt. It is originally given by Say’s law, i.e.,
everything left from production is reinvested:

κ(x) :=
1 − x
ν

for x ∈ [0,+∞), (1)

with ν the capital-to-output ratio introduced above. We will relax this assumption later. The last statement concerns
the introduction of Φ in the bargaining power of real wage wt := at xt by imposing dynamics dwt = Φ(yt)wtdt. The
function Φ is economically supported by the Phillips curve and is an increasing function on its domain. Stating
γ := α + β + δ allows to retrieve (G) for (xt, yt) = (wt/at,Kt/(νatNt)).
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Assumption 1. We assume the following:

(i) Φ ∈ C2([0, 1)) is increasing convex on [0, 1). Additionally, Φ(0) ∈ (−∞, α) and limy→1− Φ(y) = +∞.
(ii) κ ∈ C2([0,+∞)) is decreasing. Additionally, κ(0) ∈ (γ,+∞) and limx→+∞ κ(x) = −∞.

Remark 1. The modification proposed by Desai and al [2] is kept for the function Φ but not for κ, keeping the domain
R+. We have both economical and mathematical reasons. If investment comes from production outcome only, Say’s
law (1) ensures stock-flow consistency, an important criterion for economical models. Otherwise, external sources of
incomes, as proposed in [7], can justify a total wage greater than output, i.e., xt ≥ 1 is possible. Finally, symmetry of
x and y is put aside to study the two cases of bounded and unbounded variables. This asymmetry will be emphasized
in the subsequent assumptions, and the extension to another domain follows easily.

Under Assumption 1, the Goodwin-Lotka-Volterra model is well-known for its cycling behavior around a non-
hyperbolic equilibrium point (x̂, ŷ) := (κ−1(γ),Φ−1(α)) for any starting point (x0, y0) in the domain D := (0,+∞) ×
(0, 1). The closed orbits are described by the set of points (x, y) ∈ D verifying V(x, y) = V(x0, y0), with

V(x, y) := V1(x) + V2(y) :=
∫ x

x̂

κ(x̂) − κ(s)
s

ds +

∫ y

ŷ

Φ(s) − Φ(ŷ)
s

ds

being a constant of motion. The function reaches its minimum 0 at point (x̂, ŷ), so that V is a Lyapunov function for
(G). The other equilibrium point of the system (0, 0) is a saddle point and not economically relevant: it is eluded in
all the paper. It is straightforward that V converges to infinity for (x, y) converging to the boundary of D. The domain
of interest immediately follows.

Proposition 1 (Desail and al.[2]). If (xt, yt)t≥0 is a solution of system (G) starting at (x0, y0) ∈ D := (0,+∞) × (0, 1),
then (xt, yt) ∈ D for all t ≥ 0.

The function V characterizes orbits and allows to study the period of cycles around the center (x̂, ŷ). The following
theorem generalizes the approach of [6].

Theorem 1. Let (xt, yt)t≥0 be a solution to (G) such that (x0, x0) ∈ D. Let V0 := V(x0, y0). Then (xT , yT ) = (x0, y0) for
T defined by

T (V0) :=
∫ log(x̄)

log(x)

1
F−1

1 ◦G(z)
−

1
F−1

2 ◦G(z)
dz (2)

where x < x̄ are the two solutions to equation V1(x) = V0 and G, F1 and F2 are defined as the function G(z) :=
V0 − V1(ez) , F1(u) := V2 ◦ Φ−1(u+ + α) and F2(u) := V2 ◦ Φ−1(−u− + α).

Proof The function V being a constant of motion for system (G), the graph of {(x, y) ∈ D : V(x, y) = V0} is a closed
contour line included in D for all (x0, y0) , (x̂, ŷ). Therefore, its orthogonal projection on the x-axis is given by a closed
interval I, with boundaries given by V1(x) = V0, so that I = [x, x̄]. System (G) being homogeneous, we fix x0 = x
without loss of generality and keep V(x0, y0) = V0. This implies V2(y0) = 0, i.e., y0 = ŷ. Let T1 := inf{t ≥ 0 : xt = x̄}.
For t ∈ [0,T1], (xt, yt) ∈ [x, x̄] × [ŷ, ȳ], with ȳ such that V2(ȳ) = V(x, ŷ). Let z(t) := log(xt) for t ≥ 0. It follows the
equation dz = (Φ(y) − α)dt so that y = Φ−1(dz/dt + α). By differentiating dz/dt, we can write a second order ODE

d2z
dt2 = Φ′(y)

dy
dt

= Φ′
(
Φ−1

(
dz
dt

+ α

))
Φ−1

(
dz
dt

+ α

)
[κ(ez) − γ]

which can be formulated, with additional variable u := Φ(y) − α and function Ψ := Φ′ ◦ Φ−1 × Φ−1, as dz/dt = u

du/dt = Ψ (u + α) [κ(ez) − γ]
. (3)
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Since zt ∈ [z, z̄] := [log(x), log(x̄)] and ut ∈ [0,Φ(ȳ) − α] for t ∈ [0,T1], we separate variables of Eq. (3) and integrate
to obtain two new equal quantities:

F(u) :=
∫ u

0

s
Ψ (s + α)

ds =

∫ z

z
[κ(es) − γ]ds =: G(z) . (4)

The functions F verifies F(0) = G(z̄) = 0, is increasing on [0,Φ(ȳ) − α] and decreasing on [Φ(y) − α, 0] with y < ŷ so
that V2(y) = 0. Coming back to y = Φ−1(u + α) we get

F(u) =

∫ u

0

s
Φ′(Φ−1(s + α))Φ−1(s + α)

ds =

∫ Φ−1(u+α)

ŷ

Φ(s) − Φ(ŷ)
s

ds = V2(Φ−1(u + α)) ,

implying that F(u) ∈ [0,V(x, ŷ)] for u ∈ [Φ(y)+α,Φ(ȳ)+α]. Altogether, we can construct two monotonous restrictions
of F:

F1(u) := V2(Φ−1(u+ + α)) and F2(u) := V2(Φ−1(−u− + α)) .

Notice that if t ∈ [0,T1], then ut := Φ(yt) + α ∈ [0,Φ(ȳ + α)]. Thus, F1(ut) is a strictly increasing function of t taking
its values in [0,V(x, ŷ)]. Getting back to x = ez for G, we have for z ≥ z

G(z) :=
∫ x̂∧ez

x

κ(s) − γ
s

ds +

∫ ez

x̂∧ez

κ(s) − γ
s

ds = V0 − V1(ez)

Since sign(κ(x) − γ) = sign(x̂ − x) we have maxz∈[z,z̄] G(z) = G(log(x̂)) = V1(x) = V(x, ŷ), while minimums are given
by G(z̄) = G(z) = 0. This sums up with G([z, z̄]) ⊂ [0,V0], so we can write on this interval F−1

1 ◦ G(z) = u = dz/dt
which finally gives

T1 =

∫ z̄

z

dz
F−1

1 (G(z))
.

We apply the same method for the other half orbit, taking (x0, y0) = (x̄, ŷ) and T2 := inf{t ≥ 0 : xt = x}, to reach the
other half of expression (2). 2

Remark 2. If we linearize (G) around (x̂, ŷ), we can verify that the solution to the resulting homogeneous linear system
is a linear combination of sines and cosines of (−x̂Φ′(ŷ)ŷκ′(x̂)t). It follows that

lim
V0→0

T (V0) =
2π√

−x̂Φ′(ŷ)ŷκ′(x̂)
.

Example 1. We assume that investment follows Say’s law (1) and Philips curve is provided by [7]:

κ(x) :=
1 − x
ν

and Φ(y) :=
φ1

(1 − y)2 + φ0 .

Assumption 1 holds here and the equilibrium point is given by (x̂, ŷ) =
(
1 − νγ, 1 −

√
φ1/(α − φ0)

)
. The Lyapunov

function V is given by V(x, y) = V1(x) + V2(y) with

V1(x) =
1
ν

(
x − x̂

(
log

( x
x̂

)
+ 1

))
(5)

and

V2(y) = φ1

(
log

(
1 − ŷ
1 − y

)
+

(
ŷ

1 − ŷ

)
log

(
ŷ
y

)
+

1
y − y2 −

1
ŷ − ŷ2

)
. (6)

Although function T given by Theorem 1 is not explicit here, numerical computations allow to approximate it with a
linear function, see first part of Fig. 1. As put in Remark 2 above, the period does not converge to 0 with the orbits
concentrating to (x̂, ŷ). A phase portrait with values of T is provided in second part of Fig. 1.
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Figure 1: Up: values of T as a function of V . Down: Contour lines with values of T in a subset of D. Parameters set at (α, γ, ν, φ0, φ1) =

(0.025, 0.055, 3, 0.040064, 0.000064). Equilibrium point at (x̂, ŷ) = (0.8350, 0.80).

3. Goodwin model with stochastic productivity

Consider a labor force with constant but heterogeneous growth rate of productivity per capita. One can imagine
the repartition of αt among an infinite population to follow an atom-less probability distribution on R. In the Goodwin
model at any given time, only a fraction y of the labor force is employed. Assume now that, for exogenous reasons,
the working subset of the labor class changes continuously and unsteadily among it. One can support this assumption
by the permanent flow of workers coming in and out of the labor class. However, this random change of the subset of
workers is conditioned by y: the higher the fraction of workers y is, the less the variations of this fraction are possible:
for y = 1, productivity remains constant. Now assume that the productivity growth rate has an average α over the
whole population. According to this vision, we propose that productivity follows dynamics

dat := atdαt = at (αdt − σ(yt)dWt) (7)

where σ(y) is the volatility parameter, a non-negative decreasing function of y verifying σ(1) = 0. Here, W is a one
dimensional Brownian motion defined on a filtered probability space (Ω,F ,F,P) where the filtration is F = (Ft)t≥0 =

σ(Ws, 0 ≤ s ≤ t) completed with P-null sets. We proceed to the same derivation of the model as in Section 2. Using
Itô formula we obtain the following stochastic differential equation: dxt = xt

(
(Φ(yt) − α + σ2(yt))dt + σ(yt)dWt

)
dyt = yt

(
(κ(xt) − γ + σ2(yt))dt + σ(yt)dWt

) . (SG)
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We propose to study a specific case of this system by assuming a unique root to the deterministic part of (SG).

Assumption 2. There is a unique (x̃, ỹ) ∈ D verifying Φ(ỹ) − α + σ2(ỹ) = 0 and x̃ := κ−1(γ − σ2(ỹ)) .

We introduce the Dynkin operator associated to (SG). For ϕ ∈ C1,2,2(R+ × (0,+∞) × (0, 1)), we define

Lϕ(t, x, y) :=
(
∂ϕ

∂t
+
∂ϕ

∂x
x(Φ(y) − α + σ2(y)) +

∂ϕ

∂y
y(κ(x) − γ + σ2(y)) +

σ2(y)
2

(
∂2ϕ

∂x2 x2 +
∂2ϕ

∂y2 y2 + 2
∂2ϕ

∂x∂y
xy

))
(t, x, y)

For a stochastic differential equation to have a unique global solution for any given initial value, functions Φ and κ
are generally required to satisfy linear growth and local Lipschitz conditions, see [9]. This clearly cannot stand here
according to Assumption 1. We thus study the system under the following general condition.

Assumption 3. There exists K > 0 and k > 0 such that, for all (x, y) ∈ D,

(i) −xκ′(x) − κ(x) ≤ KV1(x) + k

(ii) σ2(y)Φ′(y) ≤ KV2(y) + k .

Remark 3. Notice that in line with Theorem 3.6 in [9], these conditions appear in the proof as the best possible
conditions, without being formally necessary. Assumption 3.(i) holds for κ having a polynomial growth, suiting a
large class of functions. The bound (ii) concerns both Φ and σ to ensure that yt ≤ 1 P − a.s.

Theorem 2. There exists a regular solution (xt, yt)t≥0 to Eq. (SG) starting at any point (x0, y0) ∈ D. Moreover, the
solution is unique up to P-null sets, has the Markov property and remains in D P − a.s.

Proof It suffices to show that conditions of Theorem 3.4 and Corollary 3.1 in [9] are satisfied, which we reproduce
in Appendix A for convenience. First, the locally Lipschitz growth and sub-linearity conditions of the coefficients of
the system on every compact subset included in D follow from Assumption 1. We are only left to check conditions
(A.2) and (A.3) in Theorem 6 of Appendix A. Applying the Dynkin operator to the Lyapunov function V we get

LV(x, y) = [κ(x̂) − κ(x)] (Φ(y) − α + σ2(y)) +
[
Φ(y) − Φ(ŷ)

]
(κ(x) − γ + σ2(y))

+
([
κ(x) − κ(x̂) − xκ′(x)

]
+

[
Φ(ŷ) − Φ(y) + yΦ′(y)

])
σ2(y)/2 .

Since α = Φ(ŷ) and γ = κ(x̂), we obtain

LV(x, y) =
([
κ(x̂) − κ(x) − xκ′(x)

]
+

[
Φ(y) − Φ(ŷ) + yΦ′(y)

])
σ2(y)/2 . (8)

Applying Assumption 3, we obtain LV(x, y) ≤ max(σ2(0)/2; 2K)V(x, y) + 2k for K, k > 0 given in the same assump-
tion, and then condition (A.2) holds for V . From separation of variables in V ,

inf
x∈[0,+∞)

V(x, y) = V2(y) + inf
x∈[0,+∞)

V1(x) = V2(y)

which tends to infinity when y goes to either 1 or 0. We also have infy∈(0,1) V(x, y) going to infinity as x goes to 0 or
+∞. Condition (A.3) is then satisfied, which allows to apply Theorem 6. 2

Example 2. We continue the study of Example 1, with now (SG) and volatility function σ(y) := σ0(1−y) with σ0 > 0.
According to Assumption 2, (1 − ỹ)2 is the root of a quadratic polynomial

σ2
0(1 − ỹ)4 − (α + φ0)(1 − ỹ)2 + φ1 = 0 . (9)
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By assuming that φ1 ≤ (α + φ0)/2 and σ0 ≤ max{(α + φ0)/(2
√
φ1), (α + φ0 − φ1)}, we have a sufficient condition for

having a unique root in (0, 1) to Eq. (9). Assumption 2 thus holds under that restriction. Assumption 3 also holds.
Indeed for all y ∈ (0, 1), following Eq. (6),

σ2(y)Φ′(y) =
2σ2

0φ1

(1 − y)
≤ 2σ2

0

(
V2(y) − φ1

(
1

1 − ŷ

(
ŷ log(ŷ) −

1
ŷ

)
+ log(1 − ŷ)

))
and following Eq. (5) along with the sub-linearity of the log function,

−κ(x) − xκ′(x) =
2x − 1
ν
≤

2
1 − x̂

(
V1(x) + x̂ − x̂ log(x̂)

)
. (10)

Remark 4. It is a trivial property that if (xt, yt) follows (SG),

P
[
lim

t
xt = x

]
+ P

[
lim

t
yt = y

]
= 0

for any (x, y) in D, as the drift part or the volatility coefficient is non null on D. It also holds for the boundaries
{0} × (0, 1) and (0,+∞) × {0, 1}. For the point (0, 0), we observe that LV(0, 0) < −ε < 0 for some small ε > 0. By
continuity of LV , it holds also in a region [0, ε] × [0, ε]. Since lim(x,y)↓(0,0) V(x, y) = +∞, the property holds for the
closure of D.

It is possible to picture a solution to (SG) as a trajectory continuously jumping from an orbit of (G) to another.
Along this idea, V provides an estimate on trajectories.

Theorem 3. Let (xt, yt)t≥0 be a regular solution to Eq. (SG) with initial condition (x0, y0) ∈ D. Let V0 := V(x0, y0)
and ρ ≤ V0. Let

τρ := inf{t > 0 : |V(xt, yt) − V0| ≥ ρ}.

Then for all µ > 0

P
[
τρ > Θ(ρ)

]
≥

(
1 −

I(V0, ρ)
µ2

)
(11)

with

Θ(ρ) :=
2
(
µ2 + µ

√
µ2 + 2ρR(V0, ρ) + ρR(V0, ρ)

)
(R(V0, ρ)σ)2

for two constants R(V0, ρ) and I(V0, ρ) depending only on V0 and ρ.

Proof Let us define the compact set D(V0, ρ) := {(x, y) ∈ D : |V(x, y) − V0| ≤ ρ} and constants

R(V0, ρ) := max
D(V0,ρ)

{
σ2(y)

(
κ(x̂) − κ(x) − xκ′(x) + yΦ′(y) + Φ(y) − Φ(ŷ)

)}
and

I(V0, ρ) := max
D(V0,ρ)

{
σ2(y) (κ(x̂) − κ(x) + Φ(y) − Φ(ŷ))2

}
.

Fix µ > 0. Now we define the Fτρ -measurable set Aµ =
{
ω ∈ Ω : sup0<t≤τρ

∣∣∣Mt(ω)
∣∣∣ ≤ µ} where (Mt)t≥0 is a martingale

defined by

Mt =
1
√

t

∫ t

0
σ(ys) (κ(x̂) − κ(xs) + Φ(ys) − Φ(ŷ)) dW(s) .

for t > 0 and by Mt = 0 for t = 0. Notice that M is not right-continuous at t = 0 but still verifies E
[
M2

t

]
≤ I(V0, ρ) for

all 0 < t ≤ τρ. By replacing Mt by its càdlàg representation, the property still holds. Doob’s martingale inequality can
then be applied:

P
[
Aµ

]
≥

(
1 −

I(V0, ρ)
µ2

)
.
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At last, using Itô’s formula, we have from Eq. (8):

|V(xt, yt) − V0| ≤
1
2

∫ t

0
σ2(ys)

∣∣∣κ(x̂) − κ(xs) − xsκ
′(xs) + ysΦ

′(ys) + Φ(ys) − Φ(ŷ)
∣∣∣ ds

+

∣∣∣∣∣ ∫ t

0
σ(ys) (κ(x̂) − κ(xs) + Φ(ys) − Φ(ŷ)) dWs

∣∣∣∣∣
so that for P− a.e. (ω, t) ∈ Aµ × [0, τρ(ω)], |V(xt, yt)−V0| ≤

1
2 R(V0, ρ)t + µ

√
t =: S (t) P− a.s. Also, |V(xt, yt)−V0| ≤ ρ

on that set. Put in another way, τρ > S −1(ρ) =: Θ(ρ) on Aµ, so that according to Bayes rule,

P
[
τρ > Θ(ρ)

]
≥ P

[
τρ > Θ(ρ)

∣∣∣Aµ

]
P

[
Aµ

]
≥ P

[
Aµ

]
≥

(
1 −

I(V0, ρ)
µ2

)
2

Remark 5. Since V explodes at the boundary ∂D, I and R are bounded for all V0 ≥ 0 and ρ ≤ V0. Notice that an
estimate of V provides indirectly an estimate on T , although not explicit here.

Example 3. We build on Example 2. Note that, according to Assumptions 1 and 3 the vertical asymptote at y = 1
implies that σ2(y)Φ(y) ≤ K0V2(y) + k0 for some K0, k0 ∈ R2

+. In specification of Example 2, K0 = 0 and k0 =

σ2
0(φ1 + φ0). We are thus able to claim the existence of K, k ∈ R2

+ such that |R(V0, ρ)| ≤ K(V0 + ρ) + k, for the general
form of Φ. Applying to Theorem 3, we obtain

R(V0, ρ) := max
D(V0,ρ)

{
σ2

0(1 − y)2
(

2x − x̂
ν

+
2φ1y

(1 − y)3 +
φ1

(1 − y)2 −
φ1

(1 − ŷ)2

)}
.

Using Eq. (10), this estimate becomes

|R(V0, ρ)| ≤ K(V0 + ρ) + k with K :=
2σ2

0

1 − x̂
,

and k an explicitly calculable constant. Following the same procedure with Eq. (10), with the same K,

I(V0, ρ) ≤ K(V0 + ρ)2 + k′, k′ ≥ 0 .

Now choosing µ = (ρ − 1
2 (K(V0 + ρ) + k)θ)/

√
θ for some θ ≥ 0, so that Θ(ρ) = θ we obtain

P
[
τρ > θ

]
≥

1 − (K(V0 + ρ)2 + k′)θ(
1
2 (K(V0 + ρ) + k)θ − ρ

)2

 .
4. Small volatility approximation

A first approach to a stochastic Lotka-Volterra model is to assume that the white noise is sufficiently small to
consider an approximate auxiliary system where the volatility part is considered as a perturbation. See [10] for a
related study with a very similar model. Here, we study (SG) and replace σ(y) by εσ(y) for a small ε > 0. We then
look for solutions of (SG) of the form  xt = x0(t) + εxε(t) + O(ε2)

yt = y0(t) + εyε(t) + O(ε2)
. (12)

with two sets of solution Gt :=
[
x0(t), y0(t)

]> and Pt :=
[
xε(t), yε(t)

]>. By using the Fundamental Theorem of Perturba-
tion [15] with Taylor expansion of Φ and κ, it follows that Gt is a solution to (G), and Pt a solution to the perturbation
dynamics

dPt = At · Pt.dt + bt.dWt (13)
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where ” ·” and ”.” denote the matrix product and the component-wise product respectively. Terms A and b are periodic
functions of period T ◦ V(x0(0), y0(0)) given by Theorem 1:

At :=

 Φ(y0(t)) − α x0(t)Φ′(y0(t))
y0(t)κ′(x0(t)) κ(x0(t)) − γ

 and bt :=

 x0(t)σ(y0(t))
y0(t)σ(y0(t))

 .
As usual in this type of analysis, initial conditions are given by (x0(0), y0(0)) ∈ D\(x̂, ŷ) and P0 = [0, 0]>. For
convenience, we will introduce the following notations: Ξt := κ(x0(t)) − γ and Υt := Φ(y0(t)) − α.

Theorem 4. Let us define

Gt :=

 x0(t) 0
0 y0(t)


where (x0(t), y0(t)) solves (G) with initial condition (x0(0), y0(0)) , (x̂, ŷ). Consider (Pt)t≥0 a solution to Eq. (13).
Then for t ≥ 0,

Pt = Gt · Ψt ·

[
G−1

0 · P0 +

∫ t

0
σ(y0(s)).Ψ−1

s · 1. dWs

]
(14)

with 1 = [1, 1]> and

Ψt :=

 Υt/Υ0 − Ξ0Γx
t Υ0Γx

t

Ξ0Γ
y
t Ξt/Ξ0 − Υ0Γ

y
t


with

[Γx
t ,Γ

y
t ] :=

[
Υt

∫ t

0

y0(s)Φ′(y0(s))
Υ2

s
ds,Ξt

∫ t

0

x0(s)κ′(x0(s))
Ξ2

s
ds

]
.

Proof For (x0(0), y0(0)) ∈ D\(x̂, ŷ), we define Zt := [xε(t)/x0(t), yε(t)/y0(t)]> which is solution to dZt = A′t · Zt.dt +

b′t .dWt with

A′t :=

 0 y0(t)Φ′(y0(t))
x0(t)κ′(x0(t)) 0

 and b′t := σ(y0(t))1 .

The above elements are periodic of period T := T ◦V(x0(0), y0(0). Consider now for Xt ∈ R2×Rk, k ∈ N the following
deterministic dynamics:

dXt = A′t · Xt.dt, t ≥ 0 . (15)

Define now [Z1(t)|Z2(t)] a fundamental matrix of (15) with Z1(t) := [Υt,Ξt]> and Z2(t) := [x2(t), y2(t)]>. Indeed, Z1 is
a particular solution to (15). Abel’s formula, together with the fact that tr(A′t) = 0, implies that for any t ≥ 0

Υty2(t) − x2(t)Ξt = Υ0y2(0) − x2(0)Ξ0 =: c ,

which can be plugged in (15) to obtain a characterization for Z2: Υtdx2(t) = y0(t)Φ′(y0(t)) (c + x2(t)Ξt) dt

Ξtdy2(t) = x0(t)κ′(x0(t)) (c + y2(t)Υt) dt
.

Rearranging, we obtain the following system: d (x2(t)/Υt) = cy0(t)Φ′(y0(t))/Υ2
t dt

d (y2(t)/Ξt) = cx0(t)κ′(x0(t))/Ξ2
t dt

for time t when Υt , 0 and Ξt , 0 , i.e., when c , 0. This allows us to characterize Z2 and a general solution X of Eq.
(15) under the form

Xt = X0 · I2 ·

 Υt/Υ0

Ξt/Ξ0

 + c.

 Γx
t

Γ
y
t

 , c ∈ R ,
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with I2 the identity matrix of M2×2. From that, we can identify the state-transition matrix Ψt for Eq. (15). Since Ψt is
a solution to Eq. (15),

dΨ−1
t = −Ψ−1

t · A
′
t .dt and d

(
Ψ−1

t · Zt

)
= Ψ−1

t · b
′
t .dWt .

Taking into account that Ψ0 = I2, we have the following solution for Zt:

Zt = Ψt ·

[
Z0 +

∫ t

0
Ψ−1

s · b
′
s.dWs

]
, t ≥ 0 ,

which leads us to the desired result (14) by definition of Z. 2

Coming back to the perturbation analysis, Theorem 4 has the following direct consequence.

Corollary 1. Any solution to Eq. (14) verifying P0 = [0, 0]> is a martingale with covariance matrix

Var[Pt] =

∫ t

0
V(s, t) · V>(s, t).σ2(y0(s)).ds (16)

with V(s, t) := Gt · Ψt · Ψ
−1
s · 1. Moreover Var[PnT ] = O(n3) for n ∈ N.

Proof The martingale property follows from solution (14) and the variance (16) follows from Itô isometry. Notice
that with integration by part, we obtain

ΞtΓ
x
t + ΥtΓ

y
t =

ΞtΥt

Ξ0Υ0
− 1

so that det Ψt = 1. This allows to express straightforwardly Ψ−1
t :

Ψ−1
t =

 Ξt/Ξ0 − Υ0Γ
y
t −Υ0Γx

t

−Ξ0Γ
y
t Υt/Υ0 − Ξ0Γx

t

 .
We then resort to Floquet theorem to assert that there exists a T -periodic matrix Qt and a constant matrix R such that
Ψt = Qt · eR.t, which implies that

ΨnT+t = QnT+t · eR.(nT+t) = Qt · eR.teR.nT = Ψt · Ψ
n
T . (17)

According to the periodicity of Gt, we find that Ξ0Γx
T = −Υ0Γ

y
T =: Γ̄ which allows to express the monodromy matrix

and its inverse

ΨT =

 1 − Γ̄ Γ̄Υ0/Ξ0

−Γ̄Ξ0/Υ0 1 + Γ̄

 and Ψ−1(T ) =

 1 + Γ̄ Γ̄Υ0Ξ0

Γ̄Ξ0/Υ0 1 − Γ̄

 .
Define

Mt = σ2(y0(t)).

 1 1
1 1

 .
From Eq. (17), we obtain for n ∈ N:

Var[PnT ] = G0 ·

∫ nT

0
eR.(nT−s) · Q−1

s · Ms · Q>s · e
R>.(nT−s).ds ·G0

= G0 ·

n−1∑
k=0

[∫ (k+1)T

kT
eR.(nT−s) · Q−1

s · Ms · Q>s · e
R>.(nT−s)ds

]
·G0

= G0

n∑
m=1

[
eR.mT

(∫ T

0
e−R.s · Q−1

s · Ms · Q>s e−R>.s.ds
)
· eR>.mT

]
·G0

= G0 · V ·
n∑

m=1


 1 m

0 1

 · ∆ ·  1 0
m 1


 · V> ·G0
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where ∆ = V−1 ·

(∫ T
0 e−R.s · Q−1

s · Ms · Q>s · e
−R>.s.ds

)
· V> is constant. The variance then grows with order 3 with

respect to n. 2

It can be said that the system with small perturbation has orbits in the sense that it follows the deterministic
equation (G) with an additional noise. The noise depends on the value of Gt and is locally centered in expectation
onto the point Gt. This behavior is local in time according to Corollary 1. However, one can just translate this vision
in time by taking another value for G0. The cycling behavior of a solution to (SG) with small volatility around the
point (x̂, ŷ) ≈ (x̃, ỹ) is obtained by repeating indefinitely the approach. We provide a numerical illustration with Fig.
2. The approximations have been analyzed through numerical integration with values of σ0 = εσ(0) ranging from
0.001 to 0.025. Analytical expressions come from Example 2.

Figure 2: Left column: subsample path of x(t) (left column) and y(t) (right column) of solutions of both Eq. (G) (solid black line) and Eq. (12)
(dashed blue line) for different values of σ0.

5. Stochastic orbits with recurrent domains

5.1. Definition and result

To our knowledge, there is no formal definition of a cycling behavior for a stochastic oscillator described by
(SG). We provide here a temporary and convenient definition for the concept in this framework. Recall (x̃, ỹ) ∈ D,
and consider a regular solution (xt, yt)t≥0 of (SG) starting at an arbitrary point (xt0 , yt0 ) ∈ D\(x̃, ỹ). Let us define the

11



stochastic angle (ρ(ω, t))t≥t0 between [xt(ω)− x̃, yt(ω)−ỹ]> and [xt0− x̃, yt0−ỹ]>. A stochastic orbit from t0 around (x̃, ỹ)
for ω ∈ Ω is a subsample path (xt(ω), yt(ω))t∈[t0,t0+S (ω)] such that ρ(ω, t0 + S (ω)) = ρ(ω, t0) − 2π. The random quantity
S is called the period of the stochastic orbit. We omit the case where (xs(ω), ys(ω)) = (x̃, ỹ) for some s ∈ [t0, t0 +S (ω)]
in order to properly define stochastic orbits which cycle clockwise on the plan (x, y), see Remark 6 hereafter.

Theorem 5. For any regular solution (xt, yt)t≥0 to (SG) starting at (x0, y0) ∈ D\(x̃, ỹ), the period S of the stochastic
orbit from 0 is finite P − a.s.

Subsection 5.2 is devoted to the proof of Theorem 5. The idea is to define subregions (Ri)i of the domain D,
illustrated by Fig. 3, and prove that the process exits from them in finite time by the appropriate frontier. Altogether
this describes fluctuations of (x, y) in the most general way. In preamble to subsection 5.2 we consider θ := (θt)t≥0

defined by θt := yt/xt, which is F-adapted and a finite variation process with dynamics

dθt = θt (κ(x) − γ + α − Φ(y)) dt = θt (Φ( f (x)) − Φ(y)) dt ,

where f is defined by f (x) := Φ−1(α− γ + κ(x)) and is a concave decreasing function on R+ Define θ̃ := ỹ/x̃. We now
divide the existence region D = (0,+∞) × (0, 1) in 8 sets (Ri)i=1,...,8 such that

⋂8
i=1 Ri = (ỹ, x̃) and

⋃8
i=1 Ri = D .

R1 := {(x, y) ∈ D : y ≥ ỹ and θt ≤ θ̃}

R2 := {(x, y) ∈ D : f (x) ≤ y ≤ ỹ}
R3 := {(x, y) ∈ D : y ≤ f (x) and x ≥ x̃}
R4 := {(x, y) ∈ D : x ≤ x̃ and θ ≤ θ̃}

R5 := {(x, y) ∈ D : y ≤ ỹ and θt ≥ θ̃}

R6 := {(x, y) ∈ D : ỹ ≤ y ≤ f (x)}
R7 := {(x, y) ∈ D : y ≥ f (x) and xt ≤ x̃}
R8 := {(x, y) ∈ D : y ≥ f (x) and xt ≤ x̃}

0 0.5 1 1.5 2 2.5
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Figure 3: Covering of D := (0,+∞) × (0, 1) by (Ri)i=1...8. Since f (0) < 1 and limy↑1 Φ(y) = +∞, the graph illustrates the general case.
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Remark 6. Notice that ỹ = f (x̃) and ŷ = f (x̂). We also emphasize that σ(y) is bounded from below and dθt , 0 for
y , f (x). We can thus fairly assume along Remark 4 that

P
[
(xt, yt) = (x̃, ỹ), for some t > 0

]
= 0.

Accordingly, we will work as if (x̃, ỹ) is never reached, implying that (xt, yt) can only leave a region Ri to one of its
neighboring regions R j, where j ∈ {mod(i ± 1, 8)}.

Our proof, although unwieldy, allows us to describe precisely the possible trajectories of the stochastic system. If
the result of Theorem 2 seems trivial, an interesting consequence follows.

Proposition 2. Consider the function S from (0, ỹ) to (0, ỹ) such that for y ∈ (0, ỹ), S(y) = E
[
yS

]
, where (xt, yt) is a

solution to (SG) verifying (x0, y0) = (y/θ̃, y), and S is the period of the stochastic orbit of (xt, yt) from 0. Then S has a
fixed point.

Proof If we introduce a modification of V:

Ṽ(x, y) :=
∫ x

x̃

κ(x̃) − κ(s)
s

ds +

∫ y

ỹ

Φ(s) − Φ(ỹ)
s

ds ,

we can see that LṼ(x̃, ỹ) = σ2(ỹ)[ỹΦ′(ỹ) − x̃κ′(x̃)]/2 > 0, so that according to Theorem 6, (xt, yt) always leaves a
neighborhood of (x̃, ỹ) in finite time. For any y close enough to ỹ, we have that S(y) ≤ y. Now for y close to 0, we
already noticed in Remark 4 that LV(0, 0) < ε in some neighborhood (0, ε]2. Therefore the same reasoning applies
and S(y) ≥ y for y close to 0. The function S is continuous, the conclusion follows. 2

5.2. Proof of Theorem 5

According to Theorem 2 any regular solution of (SG) is a Markov process. We then repeatedly change the initial
condition of the system, as equivalent of a time translation. We consider a solution (xt, yt) of (SG) such that (x0, y0) =

(x, y) for (x, y) ∈ D and the stopping times

τi(x, y) := inf{t ≥ 0 : (xt, yt) ∈ Ri}, i = 1, . . . , 8.

To ease the reading of the proof of Theorem 5 which follows from the following Propositions 3 to 12, we divide it in
four quadrants around (x̃, ỹ). We first prove that the process cycles, even in infinite time.

Proposition 3. If (x0, y0) ∈ R1, then P
[
τ8(x0, y0) ≤ τ7(x0, y0)

]
= 0. If (x0, y0) ∈ R5, then P

[
τ4(x0, y0) ≤ τ3(x0, y0)

]
= 0.

Proof This is a direct consequence of the absence of Brownian motion in θ. Take (x0, y0) ∈ R1. Then on [0, τ3(x0, y0)],
the process θ is non increasing P− a.s., meaning that R8 cannot be reached without first crossing region R7. The other
side is identical. 2

Remark 7. Proposition 3 holds even if τi = +∞, for any i involved. Notice also that Proposition 3 and Remark 6
imply that if (x0, y0) ∈ R1 ∪ R5, then τi(x0, y0) ≤ τ j(x0, y0) P − a.s. for j ∈ {mod(i + 1, 8)}.

5.2.1. Eastern quadrant

We ought to prove that for (x0, y0) ∈ R1, the process reaches R3 in finite time P−a.s. In the following propositions,
we use results of sections 3.7 and 3.8 in [9] on recurrent domains, where the main theorem is reproduced in Appendix
B.

Proposition 4. If (x0, y0) ∈ R1 then P
[
τ2(x0, y0) < +∞

]
= 1.
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Proof We apply Theorem 7 in Appendix B with function h(y) :=
√

y, for which we have h(y) ≥ h(ỹ) > 0 and, for
every (x, y) ∈ R1,

Lh(y) =
h(y)

2

(
κ(x) − γ +

3
4
σ2(y)

)
≤ −

σ2(ỹ)h(y)
8

≤ −
σ2(ỹ)h(ỹ)

8
< 0 .

The theorem stipulates that (xt, yt) leaves R1 in finite time P−a.s. which is only possible via R2 according to Proposition
3 and Theorem 2. 2

Proposition 5. If (x0, y0) ∈ R2 ∪ R3 then P
[
τ1(x0, y0) ∧ τ4(x0, y0) < +∞

]
= 1.

Proof The proof is similar to the one of Proposition 4 by using h(x) =
√

x. Theorem 2 ensures that the boundary of
D is not reached in finite time. 2

Proposition 6. If (x0, y0) ∈ R1 ∪ R2 then P
[
τ3(x0, y0) < +∞

]
= 1.

Proof 1. Let (υn)n≥0 be a sequence of stopping times defined by υ0 = 0 and

υn := inf{t ≥ υn−1 : yt = ỹ or (xt, yt) ∈ R3}, n ≥ 1.

By construction if (xυn , yυn ) ∈ R3 for some n ≥ 1, then υk = υn for all k > n. Following Propositions 3, 4 and 5,
υn < +∞ P − a.s. for all n ≥ 1, and {τ3(x, y) = +∞} ⊂

⋂
n≥1{yυn = ỹ}. We prove in step 2 that this implies

lim
t→∞

θt(ω) = 0, for P − a.e. ω ∈ {τ3(x, y) = +∞} . (18)

Providing that (18) holds we immediately get P
[
τ3(x0, y0) = +∞

]
≤ P

[
limn xυn = +∞

]
= 0 .

2. If ω ∈ {τ3(x, y) = +∞}, then for all n ≥ 1, yυn = ỹ and according to Proposition 5, (xt, yt) does not converge
to the set R2 ∩ R3. Since θt is a positive decreasing process for (xt, yt) ∈ R1 ∪ R2, Doob’s martingale convergence
theorem implies that θt converges path-wise in L∞([0, θ̃)) on D. Assume now that θt(ω) does not converge with t to 0
on E ⊂ {τ3(x0, y0) = +∞}. Then for any ε > 0, and for P − a.e. ω ∈ E

lim
t

∫ t

0
1{κ(xs(ω))−γ+α−Φ(ys(ω))<−ε}ds = Cε(ω) < +∞ . (19)

It the integral in (19) explodes to +∞ for some ε > 0 on some P-non null set F ⊂ E, then for P − a.e. ω ∈ F,

L log θt(ω) = (κ(xt(ω)) − γ + α − Φ(yt(ω))) < −ε1{κ(xt(ω))−γ+α−Φ(yt(ω))<−ε}

and limt↑∞ log θt(ω) = −∞ for P − a.e. ω ∈ F, implying that θt converges to 0 on F, a contradiction with F ⊂ E. Eq.
(19) holding on E, we consider the random time tε,n, being the first time such that∫ tε,n

0
1{κ(xs)−γ+α−Φ(ys)<−ε}ds ≥ Cε −

1
n
. (20)

and kn the smallest index such that υkn ≥ tε,n. Note that tε,n is not a F-stopping time and kn is not F-adapted since they
depend on Cε which is F∞-measurable. Eq. (20) implies that there exists a random time sn ∈ (υkn , υkn + 1/n) such that
−ε < κ(xsn ) − γ + α − Φ(ysn ) < 0 , otherwise we would have a contradiction of (19) on a subset of E:∫ υkn +1/n

0
1{κ(xs)−γ+α−Φ(ys)<−ε}ds ≥ Cε .

This implies that limn(sn − υkn )(ω) = 0 for P − a.e. ω ∈ E, and (yt)t≥0 being a continuous process

lim
n

ysn (ω) = ỹ, for P − a.e. ω ∈ D ⊂ {τ3(x0, y0) = +∞} .

This is impossible for ε > 0 small enough since θt is strictly decreasing and thus E is a P-null set. Eq. (18) holds. 2
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5.2.2. Southern quadrant

We show that starting from R2 ∩ R3, (xt, yt) reaches R5 in finite time P − a.s.

Proposition 7. If (x0, y0) ∈ R2 ∩ R3 then P
[
τ4(x0, y0) < +∞

]
= 1.

Proof 1. We consider Rt := R(xt, yt) = (yt − ỹ)/(xt − x̃), and aim to prove that the process Ft := F ◦ R(xt, yt) =

tan
(
tan−1(R(xt, yt)) + tan−1(c)

)
is a super-martingale on R1 ∪ R2 ∪ R3, for c ∈ (0, θ̃−1). Notice that it is bounded in

R1 ∪ R2 ∪ R3. Applying Itô to R first gives

dRt =
dyt

xt − x̃
−

yt − ỹ
(xt − x̃)2 dxt +

σ2(yt)
(xt − x̃)2

[
yt − ỹ
xt − x̃

x2
t − xtyt

]
dt .

Then, noticing that Ft = (Rt + c)(1 − Rtc), we obtain

dFt =
1 + c2

(1 − Rtc)2

(
dRt +

c
1 − Rtc

d 〈R〉t

)
.

It is clear that −(y − ỹ)(Φ(y) − α + σ2(y)) ≤ 0 for all y ∈ [0, 1). Now notice that for (x, y) ∈ R1, we have (x − x̃)(κ(x) −
γ + σ2(y)) < 0 so that

(x − x̃)4

σ2(y)
(1 − Rc)2

1 + c2 LF ≤ (y − ỹ)(x − x̃)x2 − xy(x − x̃)2 +
1

ỹ/x̃ − R
(ỹx − yx̃)2

= (x − x̃)
[
x2(y − ỹ) − xy(x − x̃) + x̃(ỹx − yx̃)

]
= (x − x̃)2xx̃

[ y
x
−

ỹ
x̃

]
< 0 .

Now on R2 ∪ R3, x̂ < x̃ implies that (κ(x) − γ) < 0, so that

(x − x̃)4

σ2(y)
(1 − Rc)2

1 + c2 LF ≤ (y − ỹ)(x − x̃)x2 − yx̃(x − x̃)2 +
1

ỹ/x̃ − R
(ỹx − yx̃)2

= (x − x̃)
[
x2(y − ỹ) − yx̃(x − x̃) + x̃(ỹx − yx̃)

]
= (x − x̃)2x (y − ỹ) < 0 .

Denoting τ1,4 := τ1(x0, y0) ∧ τ4(x0, y0), we conclude that Ft∧τ1,4 is a super-martingale for t ≥ 0. Using optional
sampling theorem, assisted by Proposition 5, τ1,4 < +∞ P − a.s. and

F0 ≥ E
[
Fτ1,4

]
=

1
c
P

[
τ4(x, y) < τ1(x, y)

]
+ cP

[
τ1(x0, y0) < τ4(x0, y0)

]
Since M := max{F ◦ R(x, y) : (x, y) ∈ R2 ∩ R3} < c then

P
[
τ4(x0, y0) < τ1(x0, y0)

]
≥

c(c − M)
c2 + 1

> 0 ∀(x0, y0) ∈ R2 ∩ R3 .

2. According to Proposition 5, τ1,4 < +∞ P − a.s. for any (x0, y0) ∈ R2 ∩ R3, and according to Proposition 6,
τ3(x0, y0) < +∞ P−a.s. for all (x0, y0) ∈ R1. Taking (x0, y0) ∈ R2∩R3, we define the sequence (τn

1,4, τ
n
3)n≥0 with τ0

3 = 0
and  τn

1,4 := inf{t ≥ τn
3 : (xt, yt) ∈ R1 ∪ R4}

τn+1
3 := inf{t ≥ τn

1,4 : (xt, yt) ∈ (R2 ∩ R3) ∪ R4}
, for all n ≥ 1 .

We then have {τ4(x0, y0) = +∞} ⊂ ∩n≥1{xτn
1,4
> x̃} for any (x0, y0) ∈ R2∩R3. The sequence ({xτn

1,4
> x̃})n≥1 is decreasing

in the sense of inclusion, so that
P

[
τ4(x, y) = +∞

]
= lim

n
P

[
xτn

1,4
> x̃

]
. (21)
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Using Baye’s rule,

P
[
xτn

1,4
> x̃

]
≤

n∏
k=1

P
[
xτk

1,4
> x̃|xτk−1

1,4
> x̃

]
≤

n∏
k=1

P
[
xτk

1,4
> x̃|xτk

3
> x̃

]
.

Using step 1 of the present proof and the Markov property of (xt, yt),

P
[
xτn

1,4
> x̃

]
≤

n∏
k=1

P
[
τ1(xτk

3
, yτk

3
) < τ4(xτk

3
, yτk

3
)
]
≤

n∏
k=1

(
1 −

c(c − M)
c2 + 1

)
.

Plugging this inequality into (21) concludes the proof. 2

Remark 8. Notice that by choosing c properly in the above proof, it is possible to be arbitrarily close to R5 in finite
time. The device is used later in Proposition 11.

Proposition 8. If (x0, y0) ∈ R3 ∩ R4 then P
[
τ5(x0, y0) < +∞

]
= 1.

Proof 1. We claim that τ2,5 := τ2(x0, y0) ∧ τ5(x0, y0) < +∞ P − a.s. Consider the process ht := √xt∧υ0 . which is a
positive super martingale on R2 ∪ R3 ∪ R4:

Lht =
ht

2

(
(Φ(yt) − α +

σ2(yt)
2

)
≤ −

σ2(yt)ht

4
. (22)

According to Doob’s martingale convergence theorem, ht converges point-wise with t. Let ε > 0 and define Rε :=⋃4
i=2 Ri∩{x ≥ ε}. Then h(xt) ≥

√
ε on Rε, and similarly to Proposition 5, we use Theorem 7 withLht ≤ −

√
εσ2(ỹ)/4 <

0 to assert that (xt, yt) leaves Rε in finite time. This being true for any ε > 0, ht can only converge to 0 for P − a.e.
ω ∈ Ω such that τ2,5(ω) = +∞. In regard of the region R5, this is only possible if limt yt(ω) = 0 also, implying that
(xt(ω), yt(ω)) converges to (0, 0). Recalling Remark 4, it is improbable and τ2,5 < +∞ P − a.s.

2. By denoting τ0
4 = 0, we then define the sequence (τn

2,5, τ
n
4)n≥0 by τn

4 := inf{t ≥ τn−1
2,5 : xt = x̃ or (xt, yt) ∈ R5}

τn
2,5 := inf{t ≥ τn

4 : (xt, yt) ∈ R2 ∪ R5}
, for all n ≥ 1 .

If (xτ0
2,5
, yτ0

2,5
) ∈ R2, then, according to Proposition 7, the process reaches back R4 in finite time. Using step 1, we have

that P
[
τn

4 < +∞
]

= P
[
τn

2,5 < +∞
]

= 1. By construction and Proposition 7, for n ≥ 1

{(xτn
2,5
, yτn

2,5
) ∈ R2} ⊂ {xτn

4
= x̃} = {(xτn−1

2,5
, yτn−1

2,5
) ∈ R2} = {xτn−1

2,5
> x̃}. (23)

Therefore, {τ5(x0, y0) = +∞} =
⋂

n≥0{(xτn
2,5
, yτn

2,5
) ∈ R2} and the sequence of sets

(
{(xτn

2,5
, yτn

2,5
) ∈ R2}

)
n≥0

is decreasing
in the sense of inclusion. Altogether we get

P
[
τ5(x0, y0) = +∞

]
= lim

n
P

[
xτn

2,5
> x̃

]
. (24)

Now using Bayes formula and Eq. (23), we finally obtain for every n ≥ 1

P
[
xτn

2,5
> x̃

]
≤

n∏
k=1

P
[
xτk

2,5
> x̃|xτk−1

2,5
> x̃

]
=

n∏
k=1

P
[
xτk

2,5
> x̃|xτk

4
= x̃

]
(25)

Putting (24) and (25) together, P
[
τ5(x0, y0) = +∞

]
> 0 implies that

lim
n

P
[
xτn

2,5
> x̃|xτn

4
= x̃

]
= 1 . (26)
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3. Let h(x, t) :=
√

x exp( 1
8σ

2(ỹ)t). According to Eq. (22) of step 1, the process h(xt, t) is a super-martingale on
[τn

4, τ
n
2,5]. Fixing t > 0 and applying optional sampling theorem, we obtain

E
[
h(xt∧τn

2,5
, t ∧ τn

2,5) − h(xt∧τn
4
, t ∧ τn

4)|xt∧τn
4

= x̃
]
≤ 0 .

Since max(τn
4, τ

n
2,5) < +∞ P − a.s., we apply Fatou’s lemma and obtain

E
[
exp

(
1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
) √

xτn
2,5

(1{
xτn

2,5
<x̃

} + 1{
xτn

2,5
>x̃

})∣∣∣xτn
4

= x̃
]
≤
√

x̃ . (27)

Since √xτn
2,5
1{

xτn
2,5
<x̃

} ≥ 0 and √xτn
2,5
1{

xτn
2,5
>x̃

} ≥ √x̃1{
xτn

2,5
>x̃

} for all n ≥ 1, Eq. (27) implies

E
[
exp

(
1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
)
1{

xτn
2,5
>x̃

}∣∣∣xτn
4

= x̃
]
≤ 1 ,

leading to

E
[
(exp

(
1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
)
− 1)1{

x(τn
2,5)>x̃

}∣∣∣xτn
4

= x̃
]
≤ 1 − P

[
xτn

2,5
> x̃|xτn

4
= x̃

]
. (28)

If xτn
4

= x̃ then yτn
4
< ỹ and by continuity {τn

2,5 > τ
n
4} ⊃ {xτn

4
= x̃}, implying

exp
(

1
8
σ2(ỹ)[τn

2,5(ω) − τn
4(ω)]

)
> 1, for P − a.e. ω ∈ {xτn

4
= x̃} . (29)

Let’s assume that P
[
τ5(x0, y0) = +∞

]
> 0, so that (26) holds. According to Eq. (28), we get

0 ≤ E
[(

exp
(

1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
)
− 1

)
1{

xτn
2,5
>x̃

}∣∣∣xτn
4

= x̃
]
→ 0 as n→ ∞ .

Markov inequality then leads to the following convergence for any ε > 0:

lim
n

P
[(

exp
(

1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
)
− 1

)
1{

xτn
2,5
>x̃

} > ε∣∣∣xτn
4

= x̃
]

= 0 .

Now Bayes rules with Eq. (29) provides

P
[
(exp

(
1
8
σ2(ỹ)[τn

2,5 − τ
n
4]
)
− 1) > ε

∣∣∣xτn
2,5
> x̃, xτn

4
= x̃

]
P

[
xτn

2,5
> x̃|xτn

4
= x̃

]
= P

[
(τn

2,5 − τ
n
4) > 8 ln(1 + ε)/σ2(ỹ)

∣∣∣xτn
2,5
> x̃, xτn

4
= x̃

]
P

[
xτn

2,5
> x̃|xτn

4
= x̃

]
which leads to the following convergence, for any ε > 0:

P
[
(τn

2,5 − τ
n
4) > ε|xτn

2,5
> x̃, xτn

4
= x̃

]
→ 0 as n→ ∞ .

From step 2, {τ5(x0, y0) = +∞} =
⋂

n≥0

(
{xτn

4
= x̃} ∩ {xτn

2,5
> x̃}

)
. Therefore on this set, the continuous mapping theorem

asserts that (x, y) at consecutive stopping times converge in probability. By continuity, this implies limn yτn
4
(ω) = ỹ

and limn xτn
2,5

(ω) = x̃ for P − a.e. ω ∈ {τ5(x0, y0) = +∞}. By the Markov property of (xt, yt),

lim
t→∞

(xt, yt)(ω) = (x̃, ỹ) for P − a.e. ω ∈ {τ5(x0, y0) = +∞} .

Recalling Remark 4, we conclude that P
[
τ5(x0, y0) = +∞

]
= 0. 2
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5.2.3. Western Quadrant

Proposition 9. If (x0, y0) ∈ R5 ∪ R6 then P
[
τ7(x0, y0) < +∞

]
= 1.

Proof 1. Consider Rε := R5 ∪ R6 ∩ {x ≤ x̂ − ε} for arbitrarily fixed ε > 0. Assume that (x0, y0) ∈ Rε. Denoting
ht := 1/yt ≥ 0 and recalling the definition of f ,

Lht = −ht(κ(xt) − γ) < −(κ(x̂ − ε) − γ)/ f (0) < 0 on Rε .

Theorem 7 then states that (xt, yt) exits Rε in finite time almost surely. Since that θ is non-decreasing on this set, and
recalling Theorem 6, it is only possible via R7 and P

[
τ7(x0, y0) < +∞

]
= 1 This holds for any ε > 0.

2. Assume now that (x0, y0) ∈ (R5 ∪ R6)\Rε. According to step 1, {τ7(x0, y0) = +∞} ⊂ {xt ≥ x̂, ∀t ≥ 0} and
thus {τ7(x0, y0) = +∞} ⊂ {θt ≤ f (x̂)/x̂, ∀t ≥ 0}. Because θt is non decreasing, θt converges to θ0 ∈ L0([θ̃, f (ω̂)/ω̂])
on {τ7(x0, y0) = +∞} according to Doob’s martingale convergence theorem. This implies that (xt, yt) converges with
t to R6 ∩ R7 on {τ7(x0, y0) = +∞}. Along Remark 4, since σ(y) > σ( f (0)), this convergence is improbable and
P

[
τ7(x0, y0) = +∞

]
= 0. 2

5.2.4. Northern quadrant

Finally we prove that if (x0, y0) ∈ R7, then the process reaches R1 in finite time P − a.s. One can notice that proofs
are very similar to those of Subsections 5.2.1 and 5.2.2.

Proposition 10. If (x0, y0) ∈ R6 ∪ R7 then P
[
τ5 ∧ τ8(x0, y0) < +∞

]
= 1.

Proof Define the sequence of regions {Bn}n∈N through Bn = R6 ∪ R7 ∩ {y < 1 − k/n} ∩ {x > k/n} where k > 0 is
sufficiently small to have (x0, y0) ∈ B1. Applying Itô to ht :=

√
x̂ − xt, we find that for all (x, y) ∈ Bn

Lht = −
1

2ht

[
x
[
Φ(y) − α + σ2(y)

]
+

1
4

x2

x̂ − x
σ2(y)

]
≤ −

1
8

x2

(x̂ − x)3/2σ
2(y)

while Lht ≤ 0 in R6 ∪ R7. Doob’s supermartingale convergence theorem implies the existence of the point-wise limit
h∞(ω) := limt ht∧τ5,8 (ω) for P − a.e. ω ∈ Ω, where we use the notation τ5,8 := τ5(x0, y0) ∧ τ8(x0, y0). In addition,
Theorem 7 guarantees that every set Bn is exited in finite time P − a.s. Consequently if ω ∈ {τ5,8 = +∞}, we have that
either xt(ω)→ 0 or yt(ω)→ 1. Either way, according to Remark 4, we have a contradiction. 2

Proposition 11. If (x0, y0) ∈ R6 ∩ R7 then P
[
τ8(x0, y0) < +∞

]
= 1.

Proof The proof is identical to the one of Proposition 7, with small modifications. Here Rt := (yt − ỹ)/(xt − x̃), and

Ft := F ◦ R(xt, yt) := tan
(
tan−1(Rt) + tan−1(c)

)
is a supermartingale on R5 ∪ R6 ∪ R7 if we chose c ∈ (0, (θ̃ + M/m)−1) where (m,M) are two positive constants given
by m := min[x̃,x̂]×[ŷ,ỹ] xx̂σ2(y) and

M := max
[x̃,x̂]×[ŷ,ỹ]

y(x − x̂)
[
κ(x) − γ

]
− x(y − ŷ)

[
Φ(y) − α

]
.

The justification is the following. The domain S c := D\{θ̃ ≤ y−ỹ
x−x̃ ≤ 1/c} contains the area of interest R5 ∪ R6 ∪ R7.

Using Proposition 7, we can prove that Ft is a supermartingale on S c\[x̂, x̃] × [ỹ, ŷ]. On [x̂, x̃] × [ỹ, ŷ],
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(x − x̃)2 (1 − Rtc)2

1 + c2 LFt ≤ y(x − x̃)[κ(x) − γ] − x(y − ỹ)[Φ(y) − α]

+ σ2(y)
[
y(x − x̃) − x(y − ỹ) + x̃ (y − x(1/c − x̃ + x̃))

]
≤ y(x − x̃)[κ(x) − γ] − x(y − ỹ)[Φ(y) − α] − xx̃σ2(y)(1/c − θ̃)

≤ M − m(1/c − θ̃) ≤ 0 .

We then reproduce step 2 of the designated proof, using Propositions 9 and 10 above instead of Propositions 4 and 5.
2

Proposition 12. If (x0, y0) ∈ R7 ∩ R8 then P
[
τ1(x0, y0) < +∞

]
= 1.

Proof We follow Proposition 8 with the minor following modifications.
1 We consider τ1,6 := τ1(x0, y0) ∧ τ6(x0, y0) the exit time of R7 ∪ R8. The process ht := x−2

t verifies

Lht = −2ht

(
Φ(yt) − α +

3
2
σ2(yt)

)
< −εht < −εh(θ̃) < 0

for some ε > 0. Indeed Φ(y) − α + σ2(y) ≥ 0 and is null only if y = ỹ, whereas σ2(y) = 0 only if y = 1. Applying
Theorem 7 to R7 ∪ R8, τ1,6 < +∞ P − a.s.

2. If (xτ1,6 , yτ1,6 ) ∈ R6, then the process reaches R8 in finite time P− a.s. according to Proposition 11. We define the
sequence (τn

1,6, τ
n
8)n≥0 with τ0

8 := 0 and τn
1,6 := inf{t ≥ τn

8 : (xt, yt) ∈ R6 ∪ R1}

τn+1
8 := inf{t > τn

1,6 : (xt, yt) ∈ (R7 ∩ R8) ∪ R1}
, for all n ≥ 0 .

Proceeding as in step 2 Proposition 8, we obtain that P
[
τ1(x0, y0) = +∞

]
> 0 implies that

lim
n

P
[
xτn

1,6
< x̃|xτn

8
= x̃

]
= 1 . (30)

3. Define m := inf{2(Φ(y) − α) + 3σ2(y) : y ∈ [ỹ, 1)}, which is strictly positive according to step 1. Consider the
new process ht := exp(−mt)x2

t . It is a positive submartingale on [0, τ0
1,6], and similarly to step 3 of Proposition 8, we

can obtain

x̃2 ≤ E
[
x2
τn

1,6
e−m(τn

1,6−τ
n
8)
|xτn

8
= x̃

]
≤ x̃2E

[
e−m(τn

1,6−τ
n
8)1{

xτn
1,6
<x̃

}|xτn
8

= x̃
]

+ θ̃−2E
[
e−m(τn

1,6−τ
n
8)1{

xτn
1,6
≥x̃

}|xτn
8

= x̃
]
.

Assuming Eq. (30), we have

0 ≤ E
[
(1 − e−m(τn

1,6−τ
n
8))1{

xτn
1,6
<x̃

}|xτn
8

= x̃
]
≤ (1/λ̃ − 1)(1 − P

[
xτn

1,6
< x̃|xτn

8
= x̃

]
)

n
−→ 0 .

We then proceed exactly as in step 3 of Proposition 8 to finish the proof. 2

5.3. Numerical insights

The result of Theorem 5 is a straightly observable phenomenon with simulations. However, apart from specific
subregions of D as R1 or R5 where Corollary 3.2 in [9] can provide an estimate for the expectation of the exit time, a
bound for the expected period E [S ] seems out of reach. In the present section, we use the parameters of Examples 1,2
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Figure 4: Left column : phase diagram (x, y) of subsample paths of trajectories for (SG) with different values of volatility σ0, starting from the
green star and stopping at the red start. Right column: evolution of output Pt over time for the subsample path.

and 3. The system has been simulated using XPPAUT with a fourth order Runge-Kutta scheme for the deterministic
part, and an Euler scheme for the Brownian part.

Fig. 4 illustrates the effect of the volatility level σ0 := σ(0) on trajectories of the system, as for the economical
quantity Pt := atytNt. One can observe that with σ0, the oscillating behavior on the subregion below y = θ̃x, i.e.,
∪4

i=1Ri, is amplified. We can mostly observe high variations of x with low variations of y.
The second phenomenon we ought to analyze is the period of the system and Proposition 2. According to the

previous subsection, we start with (x0, y0) ∈ R1 ∩ R8 and formulate S as the time the process crosses the line y = θ̂x
for the second time. This is equivalent to take (x0, y0) ∈ R4 ∩ R5. Resorting to numerical methods, we have simulated
the system 2000 times for 100 different starting points in R1 ∩ R8 and recorded the position at the time when this line
is crossed the second time, that is the positions after a full loop. Fig. 5 contains such examination for an array of
values of σ0. The expected time E [S ] to complete a full-loop is also illustrated. As observed, there seems to be a
stable attractive fixed point to y0 7→ E

[
yS

]
for sufficiently large values of σ0. This implies that after many loops, the

expectation converges, and so does E [S ] with the number of loops around (x̃, ỹ). This confirms Proposition 2.
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Figure 5: Expected values of employment y after one full loop yT (left), and expected elapsed time T (right). Computation performed in MATLAB,
with 2000 simulations for every value single one of the 100 initial values taken along the line y = θ̂x.
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Appendix A. Existence and regularity of a solution to a SDE

The following theorem is an exhaustive version of Corollary 3.1 p.76 with elements of Theorem 3.4 p.71 and
Theorem 3.5 p.75 in [9].

Theorem 6. Let (Dn) be an increasing sequence of open sets whose closure are contained in D and such that
⋃

n Dn =

D ⊂ Rk. We define the stochastic differential equation for elements X ∈ Rk:

dXt = µ(Xt)dt + σ(Xt)dWt . (A.1)

Assume that on each set Dn, µ and σ are Lipschitz and sub-linear. Assume that there exists a function V(Xt, t) ∈
C2,1(D × R+) such that

LV(Xt, t) ≤ KV(Xt, t) + k on D × R+ (A.2)
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for some K, k ∈ R+, and
lim

n
inf

D\Dn

V(c, t) = +∞ . (A.3)

Then Eq. (A.1) possesses a unique P − a.s. continuous regular solution for any X0 ∈ L0(D,F0) and it verifies also
P [Xt ∈ D] = 1 for all t ≥ 0.

Appendix B. Recurrent domains

The following theorem is Theorem 3.9 in [9] and is repeatedly used in Section 5. We adapt the original theorem
to our notations.

Theorem 7. Let (xt, yt)t≥0 be a regular process in D, with (x0, y0) ∈ U, for some U ⊂ D. Assume that there exists a
non-negative function V(t, x, y) ∈ C1,2,2(R+ × U) verifying

LV(s, x, y) ≤ − f (s)

where f (s) ≥ 0 and limt
∫ t

0 f (s)ds = +∞. Then (xt, yt) leaves the region U in finite time P − a.s.
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