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We obtain sufficient conditions, expressed in terms of Wiener type tests involving Hausdorff or Bessel capacities, for the existence of large solutions to equations (1) -∆ p u + e u -1 = 0 or (2) -∆ p u + u q = 0 in a bounded domain Ω when q > p -1 > 0. We apply our results to equations (3) -∆ p u + a |∇u| q + bu s = 0, (4) ∆ p u + u -γ = 0 with 1 < p ≤ 2, 1 ≤ q ≤ p, a > 0, b > 0 and q > p -1, s ≥ p -1, γ > 0.

Introduction

Let Ω be a bounded domain in R N (N ≥ 2) and 1 < p ≤ N . We denote ∆ p u = div(|∇u| p-2 ∇u), ρ(x) = dist(x, ∂Ω). In this paper we study some questions relative to the existence of solutions to the problem -∆ p u + g(u) = 0 in Ω lim

ρ(x)→0 u(x) = ∞ (1.1)
where g is a continuous nondecreasing function vanishing at 0, and most often g(u) is either sign(u)(e |u| -1) or |u| q-1 u with q > p -1. A solution to problem (1.1) is called a large solution.

When the domain is regular in the sense that the Dirichlet problem with continuous boundary data φ

-∆ p u + g(u) = 0 in Ω, u -φ ∈ W 1,p 0 (Ω), u ∈ W 1,p loc (Ω) ∩ L ∞ (Ω), (1.2) 
admits a solution u ∈ C(Ω), it is clear that problem (1.1) admits a solution provided problem -∆ p u + g(u) = 0 in Ω having a maximal solution, see [START_REF] Marcus | Maximal solutions for -∆u + u q = 0 in open and finely open sets[END_REF]Chapter 5]. It is known that a necessary and sufficient condition for the solvability of problem (1.2) in case g(u) ≡ 0 is the Wiener criterion, due to Wiener [START_REF] Wiener | The Dirichlet problem[END_REF] when p = 2 and Maz'ya [START_REF] Maz'ya | On the continuity at a boundary point of solutions of quasilinear equations[END_REF], Kilpelainen and Malý [START_REF] Kilpelainen | The Wiener test and potential estimates for quasilinear elliptic equations[END_REF] when p = 2, in general case is proved by Malý and Ziemer [START_REF] Maly | Fine Regularity of Solutions of Elliptic Partial Differential Equations[END_REF]. This condition is

1 0 C 1,p (B t (x) ∩ Ω c ) t N -p 1 p-1 dt t = ∞ ∀x ∈ ∂Ω, (1.3) 
where C 1,p denotes the capacity associated to the space W 1,p (R N ). The existence of a maximal solution is guaranteed for a large class of nondecreasing nonlinearities g satisfying the Vazquez condition [START_REF] Vazquez | An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion[END_REF] ∞ a dt p G(t) < ∞ where G(t) = t 0 g(s)ds (1.4) for some a > 0. This is an extension of the Keller-Osserman condition [START_REF] Keller | On solutions of ∆u = f (u)[END_REF], [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF], which is the above relation when p = 2. If for R > diam(Ω) there exists a function v which satisfies

-∆ p v + g(v) = 0 in B R \ {0}, v = 0 on ∂B R , lim x→0 v(x) = ∞, (1.5)
then it is easy to see that the maximal solution u of

-∆ p u + g(u) = 0 in Ω (1.6)
is a large solution, without any assumption on the regularity of ∂Ω. Indeed, x → v(x -y) is a solution of (1.6) in Ω for all y ∈ ∂Ω, thus u(x) ≥ v(x -y) for any x ∈ Ω, y ∈ ∂Ω. It follows lim ρ(x)→0 u(x) = ∞ since lim z→0 v(z) = ∞.

Remark that the existence of a (radial) solution to problem (1.5) needs the fact that equation (1.6) admits solutions with isolated singularities, which is usually not true if the growth of g is too strong since Vazquez and Véron prove in [START_REF] Vazquez | Removable singularities of some strongly nonlinear elliptic equations[END_REF] that if

lim inf |r|→∞ |r| -N (p-1) N -p sign(r)g(r) > 0 with p < N, (1.7) 
isolated singularities of solutions of (1.6) are removable. Conversely, if p -1 < q < N (p-1) N -p with p < N , Friedman and Véron [START_REF] Friedman | Singular Solutions of Some Quasilinear Elliptic Equations[END_REF] characterize the behavior of positive singular solutions to

-∆ p u + u q = 0 (1.8)
with an isolated singularities. In 2003, Labutin [START_REF] Labutin | Wiener regularity for large solutions of nonlinear equations[END_REF] show that a necessary and sufficient condition in order the following problem be solvable

-∆u + |u| q-1 u = 0 in Ω, lim ρ(x)→0 u(x) = ∞, is that 1 0 C 2,q ′ (B t (x) ∩ Ω c ) t N -2 dt t = ∞ ∀x ∈ ∂Ω,
where C 2,q ′ is the capacity associated to the Sobolev space W 2,q ′ (R N ) and q ′ = q/(q -1), N ≥ 3.

Notice that this condition is always satisfied if q is subcritical, i.e. q < N/(N -2). We refer to [START_REF] Marcus | Maximal solutions for -∆u + u q = 0 in open and finely open sets[END_REF] for other related results. Concerning the exponential case of problem (1.1) nothing is known, even in the case p = 2, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order problem (1.1) be solvable in the two cases g(u) = sign(u)(e |u| -1) and g(u) = |u| q-1 u, q > p-1.

For 1 < p ≤ N , we denote by H N -p 1 (E) the Hausdorff capacity of a set E defined by

H N -p 1 (E) = inf    j h N -p (B j ) : E ⊂ B j , diam(B j ) ≤ 1   
where the B j are balls and h N -p (B r ) = r N -p . Our main result concerning the exponential case is the following

Theorem 1. Let N ≥ 2 and 1 < p ≤ N . If 1 0 H N -p 1 (Ω c ∩ B r (x)) r N -p 1 p-1 dr r = +∞ ∀x ∈ ∂Ω, (1.9) 
then there exists u ∈ C 1 (Ω) satisfying

-∆ p u + e u -1 = 0 in Ω, lim ρ(x)→0 u(x) = ∞.
(1.10)

Clearly, when p = N , we have H N -p 1 ({x 0 }) = 1 for all x 0 ∈ R N thus, (1.9) is true for any open domain Ω.

We also obtain a sufficient condition for the existence of a large solution in the power case expressed in terms of some C α,s Bessel capacity in R N associated to the Besov space B α,s (R N ).

Theorem 2. Let N ≥ 2, 1 < p < N and q 1 > N (p-1) N -p . If

1 0 C p, q 1 q 1 -p+1 (Ω c ∩ B r (x)) r N -p 1 p-1 dr r = +∞ ∀x ∈ ∂Ω, (1.11) 
then, for any p -1 < q < pq1 N there exists u ∈ C 1 (Ω) satisfying

-∆ p u + u q = 0 in Ω, lim ρ(x)→0 u(x) = ∞.
(1.12)

We can see that condition (1.9) implies (1.11). In view of Labutin's theorem this previous result is not optimal in the case p = 2, since the involved capacity is C 2,q ′ 1 with q ′ 1 and thus there exists a solution to

-∆ p u + u q1 = 0 in Ω lim ρ(x)→0 u(x) = ∞ with q 1 > q.
At end we apply the previous theorem to quasilinear viscous Hamilton-Jacobi equations:

-∆ p u + a |∇u| q + b|u| s-1 u = 0 in Ω, u ∈ C 1 (Ω), lim ρ(x)→0 u(x) = ∞.
(1.13)

For q 1 > p -1 and 1 < p ≤ 2, if equation (1.12) admits a solution with q = q 1 , then for any a > 0, b > 0 and q ∈ (p -1, pq1 q1+1 ), s ∈ [p -1, q 1 ) there exists a positive solution to (1.13). Conversely, if for some a, b > 0, s > p -1 there exists a solution to equation (1.13) with 1 < q = p ≤ 2, then for any q 1 > p -1, 1 ≤ q 1 ≤ p, s 1 ≥ p -1, a 1 , b 1 > 0 there exists a positive solution to equation (1.13) with parameters q 1 , s 1 , a 1 , b 1 replacing q, s, a, b. Moreover, we also prove that the previous statement holds if for some γ > 0 there exists

u ∈ C(Ω) ∩ C 1 (Ω), u > 0 in Ω satisfying -∆ p u + u -γ = 0 in Ω, u = 0 on ∂Ω.
We would like to remark that the case p = 2 was studied in [START_REF] Lasry | Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints: 1. The Model problem[END_REF]. In particular, if the boundary of Ω is smooth then (1.13) has a solution with s = 1 and 1 < q ≤ 2, a > 0, b > 0.

2

Morrey classes and Wolff potential estimates

In this section we assume that Ω is a bounded open subset of R N and 1 < p < N . We also denote by B r (x) the open ball of center x and radius r and B r = B r (0). We also recall that a solution of (1.1) belongs to C 1,α loc (Ω) for some α ∈ (0, 1), and is more regular (depending on g) on the set {x ∈ Ω : |∇u(x)| = 0}.

Definition 2.1 A function f ∈ L 1 (Ω) belongs to the Morrey space M s (Ω), 1 ≤ s ≤ ∞, if there is a constant K such that Ω∩Br (x) |f |dy ≤ Kr N s ′ ∀r > 0, ∀x ∈ R N .
The norm is defined as the smallest constant K that satisfies this inequality; it is denoted by

||f || M s (Ω) . Clearly L s (Ω) ⊂ M s (Ω). Definition 2.2 Let R ∈ (0, ∞] and µ ∈ M b + (Ω)
, the set of nonnegative and bounded Radon measures in Ω. We define the (R-truncated) Wolff potential of µ by

W R 1,p [µ](x) = R 0 µ(B t (x)) t N -p 1 p-1 dt t ∀x ∈ R N ,
and the (R-truncated) fractional maximal potential of µ by

M p,R [µ](x) = sup 0<t<R µ(B t (x)) t N -p ∀x ∈ R N ,
where the measure is extended by 0 in Ω c .

We recall a result proved in [START_REF] Honzik | On the good-λ inequality for nonlinear potentials[END_REF] (see also [START_REF] Bidaut-Véron | Quasilinear Lane-Emden equations with absorption and measure data[END_REF]Theorem 2.4]).

Theorem 2.3 Let µ be a nonnegative Radon measure in R N . There exist positive constants

C 1 , C 2 depending on N, p such that 2B exp(C 1 W R 1,p [χ B µ])dx ≤ C 2 r N , for all B = B r (x 0 ) ⊂ R N , 2B = B 2r (x 0 ), R > 0 such that ||M p,R [µ]|| L ∞ (R N ) ≤ 1. For k ≥ 0, we set T k (u) = sign(u) min{k, |u|}. Definition 2.4 Assume f ∈ L 1 loc (Ω).
We say that a measurable function u defined in Ω is a renormalized supersolution of

-∆ p u + f = 0 in Ω (2.1) if, for any k > 0, T k (u) ∈ W 1,p loc (Ω), |∇u| p-1 ∈ L 1 loc (Ω)
and there holds

Ω (|∇T k (u)| p-2 ∇T k (u)∇ϕ + f ϕ)dx ≥ 0 for all ϕ ∈ W 1,p (Ω) with compact support in Ω and such that 0 ≤ ϕ ≤ k-T k (u), and if -∆ p u+f is a positive distribution in Ω.
The following result is proved in [START_REF] Maly | Fine Regularity of Solutions of Elliptic Partial Differential Equations[END_REF]Theorem 4.35].

Theorem 2.5 If f ∈ M N p-ǫ (Ω)
for some ǫ ∈ (0, p), u is a nonnegative renormalized supersolution of (2.1) and set µ := -∆ p u + f . Then there holds

u(x) + ||f || 1 p-1 M N p-ε (Ω) ≥ CW r 4 1,p [µ](x) ∀x ∈ Ω s.t. B r (x) ⊂ Ω,
for some C depending only on N, p, ε, diam(Ω).

Concerning renormalized solutions (see [START_REF] Maso | Renormalized solutions of elliptic equations with general measure data[END_REF] for the definition) of

-∆ p u + f = µ in Ω, (2.2) 
where f ∈ L 1 (Ω) and µ ∈ M b + (Ω), we have

Corollary 2.6 Let f ∈ M N p-ǫ (Ω) and µ ∈ M b + (Ω). If u is a renormalized solution to (2.2) and inf Ω u > -∞ then there exists a positive constant C depending only on N, p, ε, diam(Ω) such that u(x) + ||f || 1 p-1 M N p-ε (Ω) ≥ inf Ω u + CW d(x,∂Ω) 4 1,p [µ](x) ∀x ∈ Ω. The next result, proved in [2, Theorem 1.1, 1.2]
, is an important tool for the proof of Theorems 1 and 2. Before presenting we introduce the notation.

Definition 2.7 Let s > 1 and α > 0. We denote by C α,s (E) the Bessel capacity of Borel set

E ⊂ R N , C α,s (E) = inf{||φ|| s L s (R N ) : φ ∈ L s + (R N ), G α * φ ≥ χ E }
where χ E is the characteristic function of E and G α the Bessel kernel of order α. We say that a measure µ in Ω is absolutely continuous with respect to the capacity

C α,s in Ω if for all E ⊂ Ω, E Borel, C α,s (E) = 0 ⇒ |µ|(E) = 0. Theorem 2.8 Let µ ∈ M b + (Ω) and q > p -1. a.
If µ is absolutely continuous with respect to the capacity C p, q q+1-p in Ω, then there exists a nonnegative renormalized solution u to equation

-∆ p u + u q = µ in Ω, u = 0 on ∂Ω, which satisfies u(x) ≤ CW 2diam(Ω) 1,p [µ](x) ∀x ∈ Ω (2.3)
where C is a positive constant depending on p and N .

b. If exp(CW

2diam(Ω) 1,p [µ]) ∈ L 1 (Ω)
where C is the previous constant, then there exists a nonnegative renormalized solution u to equation

-∆ p u + e u -1 = µ in Ω, u = 0 on ∂Ω,
which satisfies (2.3).

Estimates from below

If G is any domain in R N with a compact boundary and g is nondecreasing, g(0) = g -1 (0) = 0 and satisfies (1.7)) there always exists a maximal solution to (1.6) in G. It is constructed as the limit, when n → ∞, of the solutions of

-∆ p u n + g(u n ) = 0 in G n lim ρn(x)→0 u n (x) = ∞ lim |x|→∞ u n (x) = 0 if G n is unbounded, (3.1) 
where

{G n } n is a sequence of smooth domains such that G n ⊂ G n ⊂ G n+1 for all n, {∂G n } n is a bounded and ∞ n=1
G n = G and ρ n (x) := dist(x, ∂G n ). Our main estimates are the following.

Theorem 3.1 Let K ⊂ B 1/4 \{0} be a compact set and let U j ∈ C 1 (K c ), j = 1, 2, be the maximal solutions of -∆ p u + e u -1 = 0 in K c (3.2)
for U 1 and

-∆ p u + u q = 0 in K c (3.3)
for U 2 , where p -1 < q < pq1 N . Then there exist constants C k , k = 1, 2, 3, 4, depending on N , p and q such that

U 1 (0) ≥ -C 1 + C 2 1 0 H N -p 1 (K ∩ B r ) r N -p 1 p-1 dr r , (3.4) 
and

U 2 (0) ≥ -C 3 + C 4 1 0 C p, q 1 q 1 -p+1 (K ∩ B r ) r N -p 1 p-1 dr r . (3.5) 
Proof. 1. For j ∈ Z define r j = 2 -j and S j = {x : r j ≤ |x| ≤ r j-1 }, B j = B rj . Fix a positive integer J such that K ⊂ {x : r J ≤ |x| < 1/8}. Consider the sets K ∩ S j for j = 3, ..., J. By [START_REF] Turesson | Nonlinear Potential Theory and Sobolev Spaces[END_REF]Theorem 3.4.27], there exists

µ j ∈ M + (R N ) such that supp(µ j ) ⊂ K ∩ S j , M p,1 [µ j ] L ∞ (R N ) ≤ 1 and c -1 1 H N -p 1 (K ∩ S j ) ≤ µ j (R N ) ≤ c 1 H N -p 1 (K ∩ S j ) ∀j,
for some c 1 = c 1 (N, p). Now, we will show that for ε = ε(N, p) > 0 small enough, there holds,

A := B1 exp εW 1 1,p J k=3 µ k (x) dx ≤ c 2 , (3.6) 
where c 2 does not depend on J. Indeed, define µ j ≡ 0 for all j ≥ J + 1 and j ≤ 2. We have

A = ∞ j=1 Sj exp εW 1 1,p J k=3 µ k (x) dx.
Since for any j

W 1 1,p J k=3 µ k ≤ c(p)W 1 1,p   k≥j+2 µ k   + c(p)W 1 1,p   k≤j-2 µ k   + c(p) j+1 k=max{j-1,3} W 1 1,p [µ k ],
with c(p) = max{1, 5

2-p

p-1 } and exp(

5 i=1 a i ) ≤ 5 i=1
exp(5a i ) for all a i . Thus,

A ≤ ∞ j=1 Sj exp   c 3 εW 1 1,p   k≥j+2 µ k   (x)   dx + ∞ j=1 Sj exp   c 3 εW 1 1,p   k≤j-2 µ k   (x)   dx + ∞ j=1 j+1 k=max(j-1,3) Sj exp c 3 εW 1 1,p [µ k ](x) dx := A 1 + A 2 + A 3 , with c 3 = 5c(p).
Estimate of A 3 : We apply Theorem 2.

3 for µ = µ k and B = B k-1 , 2B k-1 exp c 3 εW 1 1,p [µ k ](x) dx ≤ c 4 r N k-1 with c 3 ε ∈ (0, C 1 ], the constant C 1 is in Theorem 2.3. In particular, Sj exp c 3 εW 1 1,p [µ k ](x) dx ≤ c 4 r N k-1 for k = j -1, j, j + 1,
which implies

A 3 ≤ c 5 +∞ j=1 r N j = c 5 < ∞. ( 3 

.7)

Estimate of A 1 : Since k≥j+2 µ k (B t (x)) = 0 for all x ∈ S j , t ∈ (0, r j+1 ). Thus,

A 1 = ∞ j=1 Sj exp     c 3 ε 1 rj+1    k≥j+2 µ k (B t (x)) t N -p    1 p-1 dt t     dx ≤ ∞ j=1 exp   c3ε p -1 N -p   k≥j+2 µ k (S k )   1 p-1 r -N -p p-1 j+1   |Sj|. Note that µ k (S k ) ≤ µ k (B r k-1 (0)) ≤ r N -p k-1 , which leads to   k≥j+2 µ k (S k )   1 p-1 r -N -p p-1 j+1 ≤   k≥j+2 r N -p k-1   1 p-1 r -N -p p-1 j+1 =   k≥0 r N -p k   1 p-1 = 1 1 -2 -(N -p) 1 p-1 . Therefore A 1 ≤ exp c 3 ε p -1 N -p 1 1 -2 -(N -p) 1 p-1 |B 1 | = c 6 . (3.8) 
Estimate of A 2 : for x ∈ S j ,

W 1 1,p   k≤j-2 µ k   (x) = 1 rj-1    k≤j-2 µ k (B t (x)) t N -p    1 p-1 dt t = j-1 i=1 ri-1 ri    k≤j-2 µ k (B t (x)) t N -p    1 p-1 dt t . Since r i < t < r i-1 , k≤i-2 µ k (B t (x)) = 0, ∀i = 1, ..., j -1, thus W 1 1,p   k≤j-2 µ k   (x) = j-1 i=1 ri-1 ri      j-2 k=i-1 µ k (B t (x)) t N -p      1 p-1 dt t ≤ j-1 i=1 ri-1 ri      j-2 k=i-1 µ k (S k ) t N -p      1 p-1 dt t ≤ j-1 i=1 j-2 k=i-1 r N -p k-1 1 p-1 r -N -p p-1 i ≤ c 7 j, with c 7 = 4 N -p 1 -2 -(N -p) 1 p-1 . Therefore, A 2 ≤ ∞ j=1 Sj exp (c 3 c 7 εj) dx = ∞ j=1 r N j exp (c 3 c 7 εj) |S 1 | = ∞ j=1 exp ((c 3 c 7 ε -N log(2)) j) |S 1 | ≤ c 8 for ε ≤ N log(2)/(2c 3 c 7 ). (3.9)
Consequently, from (3.8), (3.9) and (3.7), we obtain A ≤ c 2 := c 6 + c 8 + c 5 for ε = ε(N, p) small enough. This implies

exp p 2N εW 1 1,p J k=3 µ k M 2N p (B1) ≤ c 9 B1 exp εW 1 1,p J k=3 µ k (x) dx p 2N ≤ c 10 , (3.10 
) where the constant c 10 does not depend on J. 1) , where C is the constant in (2.3), by Theorem 2.8 and estimate (3.10), there exists a nonnegative renormalized solution u to equation

Set B = B 1 4 . For ε 0 = ( pε 2N C ) 1/(p-
-∆ p u + e u -1 = ε 0 J j=3 µ j in B, u = 0 in ∂B, satisfying (2.
3) with µ = ε 0 J j=3 µ j . Thus, from Corollary 2.6 and estimate (3.10), we have

u(0) ≥ -c 11 + c 12 W 1 4 1,p   J j=3 µ j   (0). Therefore u(0) ≥ -c 11 + c 12 ∞ i=2 ri ri+1      J j=3 µ j (B t (0)) t N -p      1 p-1 dt t ≥ -c 11 + c 12 J-2 i=2 ri ri+1 µ i+2 (B t (0)) t N -p 1 p-1 dt t = -c 11 + c 12 J-2 i=2 ri ri+1 µ i+2 (S i+2 ) t N -p 1 p-1 dt t ≥ -c 11 + c 13 J-2 i=2 H N -p 1 (K ∩ S i+2 ) 1 p-1 r -N -p p-1 i = -c 11 + c 13 ∞ i=4 H N -p 1 (K ∩ S i ) 1 p-1 r -N -p p-1 i .
From the inequality

H N -p 1 (K ∩ S i ) 1 p-1 ≥ 1 max(1,2 2-p p-1 ) H N -p 1 (K ∩ B i-1 ) 1 p-1 -H N -p 1 (K ∩ B i ) 1 p-1 ∀i, we deduce that u(0) ≥ -c 11 + c 13 ∞ i=4 1 max(1,2 2-p p-1 ) H N -p 1 (K ∩ B i-1 ) 1 p-1 -H N -p 1 (K ∩ B i ) 1 p-1 r -N -p p-1 i ≥ -c 11 + c 13 2 N -p p-1 max(1,2 2-p p-1 ) -1 ∞ i=4 H N -p 1 (K ∩ B i ) 1 p-1 r -N -p p-1 i ≥ -c 14 + c 15 1 0 H N -p 1 (K ∩ B t ) t N -p 1 p-1 dt t .
Since U 1 is the maximal solution in K c , u satisfies the same equation in B\K and U 1 ≥ u = 0 on ∂B, it follows that U 1 dominates u in B\K. Then U 1 (0) ≥ u(0) and we obtain (3.4).

2.

By [1, Theorem 2.5.3], there exists µ j ∈ M + (R N ) such that supp(µ j ) ⊂ K ∩ S j and

µ j (K ∩ S j ) = R N (G p [µ j ](x)) q 1 p-1 dx = C p, q 1 q 1 -p+1 (K ∩ S j ).
By Jensen's inequality, we have for any

a k ≥ 0, ∞ k=0 a k s ≤ ∞ k=0 θ k,s a s k
where θ k,r has the following expression with θ > 0,

θ k,s = 1 if s ∈ (0, 1], θ+1 θ s-1 (θ + 1) k(s-1) if s > 1.
Thus,

B1 W 1 1,p J k=3 µ k (x) q1 dx ≤ B1 J k=3 θ k, 1 p-1 W 1 1,p [µ k ](x) q1 dx ≤ J k=3 θ q1 k, 1 p-1 θ k,q1 B1 W 1 1,p [µ k ](x) q1 dx ≤ c 16 J k=3 θ q1 k, 1 p-1 θ k,q1 R N (G p * µ k (x)) q 1 p-1 dx = c 16 J k=3 θ q1 k, 1 p-1 θ k,q1 C p, q 1 q 1 -p+1 (K ∩ S k ) ≤ c 17 J k=3 θ q1 k, 1 p-1 θ k,q1 2 -k N - pq 1 q 1 -p+1 ≤ c 18 ,
for θ small enough. Here the third inequality follows from [2, Theorem 2.3] and the constant c 18 does not depend on J. Hence,

W 1 1,p J k=3 µ k q M q 1 q (B1) ≤ c 19 W 1 1,p J k=3 µ k q L q 1 (B1) ≤ c 20 , (3.11) 
where c 20 is independent of J. Take B = B 1 4 . Since J j=3 µ j is absolutely continuous with respect to the capacity C p, q q+1-p in B, thus by Theorem 2.8, there exists a nonnegative renormalized solution u to equation

-∆ p u + u q = J j=3 µ j in B, u = 0 on ∂B.
satisfying (2.3) with µ = J j=3 µ j . Thus, from Corollary 2.6 and estimate (3.11), we have

u(0) ≥ -c 21 + c 22 W 1 4 1,p   J j=3 µ j   (0).
As above, we also get that

u(0) ≥ -c 23 + c 24 1 0 C p, q 1 q 1 -p+1 (K ∩ B r ) r N -p 1 p-1 dr r .
After we also have U 2 (0) ≥ u(0). Therefore, we obtain(3.5).

Proof of the main results

First, we prove theorem 1 in the case case p = N . To do this we consider the function

x → U (x) = U (|x|) = log N -1 2 N +1 1 R N R |x| + 1 in B R (0)\{0}.
One has

U ′ (|x|) = 1 R + |x| - 1 |x| and U ′′ (|x|) = - 1 (R + |x|) 2 + 1 |x| 2 , thus, for any 0 < |x| < R, -∆ N U + e U -1 = -(N -1)|U ′ (|x|)| N -2 U ′′ (|x|) + 1 |x| U ′ (|x|) + e U -1 = - (N -1)R N -1 (R + |x|) N |x| N -1 + N -1 2 N +1 1 R N R |x| + 1 -1 ≤ - (N -1)R N -1 (2R) N |x| N -1 + N -1 2 N +1 1 R N 2R |x| ≤ -1. Hence, if u ∈ C 1 (Ω) is the maximal solution of -∆ N u + e u -1 = 0 in Ω and R = 2diam(Ω), then u(x) ≥ U (|x -y|)
for any x ∈ Ω and y ∈ ∂Ω. Therefore, u is a large solution and satisfies

u(x) ≥ log N -1 2 N +1 1 R N R ρ(x) + 1 ∀ x ∈ Ω.
Now, we prove Theorem 1 in the case p < N and Theorem 2. Let u, v ∈ C 1 (Ω) be the maximal solutions of (i)

-∆ p u + e u -1 = 0 in Ω, (ii) -∆ p v + v q = 0 in Ω.
Fix x 0 ∈ ∂Ω. We can assume that x 0 = 0. Let δ ∈ (0, 1/12). For

z 0 ∈ B δ ∩ Ω. Set K = Ω c ∩B 1/4 (z 0 ). Let U 1 , U 2 ∈ C 1 (K c
) be the maximal solutions of (3.2) and (3.3) respectively. We have u ≥ U 1 and v ≥ U 2 in Ω. By Theorem 3.1,

U 1 (z 0 ) ≥ -c 1 + c 2 1 δ H N -p 1 (K ∩ B r (z 0 )) r N -p 1 p-1 dr r ≥ -c 1 + c 2 1 δ H N -p 1 (K ∩ B r-|z0| ) r N -p 1 p-1 dr r (since B r-|z0| ⊂ B r (z 0 ))) ≥ -c 1 + c 2 1 2δ H N -p 1 (K ∩ B r 2 ) r N -p 1 p-1 dr r ≥ -c 1 + c 3 1/2 δ H N -p 1 (K ∩ B r ) r N -p 1 p-1 dr r .
We deduce inf

B δ ∩Ω u ≥ inf B δ ∩Ω U 1 ≥ -c 1 + c 3 1/2 δ H N -p 1 (K ∩ B r ) r N -p 1 p-1 dr r → ∞ as δ → 0.
Similarly, we also obtain inf

B δ ∩Ω v ≥ -c 4 + c 5 1/2 δ C p, q 1 q 1 -p+1 (K ∩ B r ) r N -2 1 p-1 dr r → ∞ as δ → 0.
Therefore, u and v satisfy (1.10) and (1.12) respectively. This completes the proof.

Large solutions of quasilinear Hamilton-Jacobi equations

Let Ω be a bounded open subset of R N with N ≥ 2. In this section we use our previous results to give sufficient conditions for existence of solutions to the problem

-∆ p u + a |∇u| q + bu s = 0 in Ω, lim ρ(x)→0 u(x) = ∞, (5.1) 
where a > 0, b > 0 and 1 ≤ q < p ≤ 2, q > p -1, s ≥ p -1.

First we have the result of existence solutions to equation (5.1).

Proposition 5.1 Let a > 0, b > 0 and q > p -1, s ≥ p -1, 1 ≤ q ≤ p and 1 < p ≤ 2. There exists a maximal nonnegative solution u ∈ C 1 (Ω) to equation

-∆ p u + a |∇u| q + bu s = 0 in Ω, (5.2) 
which satisfies u(x) ≤ c(N, p, s)b -1 s-p+1 d(x, ∂Ω) -p s-p+1 ∀x ∈ Ω, (5.3) if s > p -1,
u(x) ≤ c(N, p, q) a -1 q-p+1 d(x, ∂Ω) -p-q q-p+1 + a -1 q-p+1 b -1 p-1 d(x, ∂Ω) - q (p-1)(q-p+1) ∀x ∈ Ω, (5.4) if p -1 < q < p and s = p -1, and

u(x) ≤ c(N, p)a -1 b -1 p-1 d(x, ∂Ω) -p p-1 ∀x ∈ Ω, (5.5) 
if q = p and s = p -1.

Proof. Case s = p -1 and p -1 < q < p. We consider

U 1 (x) = U 1 (|x|) = c 1 R p ′ -|x| p ′ p ′ R p ′ -1 -p-q q-p+1 + c 2 ∈ C 1 (B R (0)).
with p ′ = p p-1 and c 1 , c 2 > 0. We have

U ′ 1 (|x|) = c 1 (p -q) q -p + 1 |x| p ′ -1 R p ′ -1 R p ′ -|x| p ′ p ′ R p ′ -1 -1 q-p+1 , U ′′ 1 (|x|) = c 1 (p -q)(p ′ -1) q -p + 1 |x| p ′ -2 R p ′ -1 R p ′ -|x| p ′ p ′ R p ′ -1 -1 q-p+1 + c 1 (p -q) (q -p + 1) 2 |x| p ′ -1 R p ′ -1 2 R p ′ -|x| p ′ p ′ R p ′ -1 -1 q-p+1 -1 and A = -∆ p U 1 + a|∇U 1 | q + bU p-1 1 ≥ -∆ p U 1 + a|∇U 1 | q + bc p-1 2 .
Thus, for all x ∈ B R (0)

A ≥ -(p -1)|U ′ 1 (|x|)| p-2 U ′′ 1 (|x|) - N -1 |x| |U ′ 1 (|x|)| p-2 U ′ 1 (|x|) + a|U ′ 1 (|x|)| q + bc p-1 1 = c 1 (p -q)(p ′ -1) q -p + 1 p-1 R p ′ -|x| p ′ p ′ R p ′ -1 -q q-p+1 -(p -1) p ′ -1 p ′ 1 - |x| R p ′ - 1 q -p + 1 |x| R p ′ - N -1 p ′ |x| R p ′ 1 - |x| R p ′ +a c 1 (p -q) q -p + 1 q-p+1 |x| R q q-p+1 + bc p-1 2 ≥ c 1 (p -q)(p ′ -1) q -p + 1 p-1 R p ′ -|x| p ′ p ′ R p ′ -1 -q q-p+1 × - N (p -1) p - 1 q -p + 1 + a c 1 (p -q) q -p + 1 q-p+1 |x| R q q-p+1 + bc p-1 2 .
Proof. Assume that equation (1.12) admits a solution v with q = q 1 and set v = βw σ with β > 0, σ ∈ (0, 1), then w > 0 and

-∆ p w + (-σ + 1)(p -1)
|∇w| p w + β q1-p+1 σ -p+1 w σ(q1-p+1)+p-1 = 0 in Ω.

If we impose max{ s-p+1 q1-p+1 , q p-q -p + 1

1 q1-p+1 } < σ < 1, we can see that (-σ + 1)(p -1) |∇w| p w + β q1-p+1 σ -p+1 w σ(q1-p+1)+p-1 ≥ a|∇w| q + bw s in {x : w(x) ≥ M },
where a positive constant M depends on p, q 1 , q, s, a, b. Therefore

-∆ p w + a |∇w| q + bw s ≤ 0 in {x : w(x) ≥ M }.
Now we take an open subset Ω ′ of Ω with Ω ′ ⊂ Ω such that the set {x : w(x) ≥ M } contains Ω\Ω ′ . So w is a subsolution of -∆ p u + a |∇u| q + bu s = 0 in Ω\Ω ′ and the same property holds with w ε := εw for any ε ∈ (0, 1). Let u be as in Proposition 5.1. Set min{u(x) : x ∈ ∂Ω ′ } = θ 1 > 0 and max{w(x) : x ∈ ∂Ω ′ } = θ 2 ≥ M . Thus w ε < u on ∂Ω ′ with ε < min{ θ1 θ2 , 1}. Hence, from the construction of u in the proof of Proposition 5.1 and the comparison principle, we obtain w ε ≤ u in Ω\Ω ′ . This implies the result.

Remark 5.3 From the proof of above Theorem, we can show that under the assumption as in Proposition 5.1, equation (5.2) has a large solution in Ω if and only if equation (5.2) has a large solution in Ω\K for some a compact set K ⊂ Ω with smooth boundary. Now we deal with (5.1) in the case q = p. Theorem 5.4 Assume that equation (5.2) has a large solution in Ω for some a, b > 0, s > p -1 and q = p > 1. Then for any a 1 , b 1 > 0 and q 1 > p-1, s 1 ≥ p-1, 1 ≤ q 1 ≤ p ≤ 2, equation (5.2) also has a large solution u in Ω with parameters a 1 , b 1 , q 1 , s 1 in place of a, b, q, s respectively, and it satisfies (5.3)-(5.5).

Proof. For σ > 0 we set u = v σ thus -∆ p v -(σ -1)(p -1) |∇v| p v + aσv σ-1 |∇v| p + bσ -p+1 v (s-p+1)σ+p-1 = 0.

Choose σ = s1-p+1 s-p+1 + 2, it is easy to see that

-∆ p v + a 1 |∇v| q1 + b 2 v s1 ≤ 0 in {x : v(x) ≥ M },
for some a positive constant M only depending on p, s, a, b, a 1 , b 1 , q 1 , s 1 . Similarly as in the proof of Theorem 5.2, we get the result as desired.

Remark 5.5 If we set u = e v then v satisfies

-∆ p v + be (s-p+1)v = |∇v| p (p -1 -ae v ) in Ω.
From this, we can construct a large solution of -∆ p u + be (s-p+1)u = 0 in Ω\K, for any a compact set K ⊂ Ω with smooth boundary such that v ≥ ln p-1 a in Ω\K. In case p = 2, It would be interesting to see what Wiener type criterion is implied by the existence as such a large solution. We conjecture that this condition must be We now consider the function

U 4 (x) = c R β -|x| β βR β-1 p γ+p-1 in B R (0), γ > 0.
As in the proof of proposition 5.1, it is easy to check that there exist positive constants β large enough and c small enough so that inequality ∆ p U 4 + U -γ 4 ≥ 0 holds. From this, we get the existence of minimal solution to equation ∆ p u + u -γ = 0 in Ω.

(5.9)

Proposition 5.6 Assume γ > 0. Then there exists a minimal solution u ∈ C 1 (Ω) to equation (5.9) and it satisfies u(x) ≥ Cd(x, ∂Ω) p γ+p-1 in Ω.

We can verify that if the boundary of Ω is satisfied (1.3), then above minimal solution u belongs to C(Ω), vanishes on ∂Ω and it is therefore a solution to the quenching problem ∆ p u + u -γ = 0 in Ω, u = 0 in ∂Ω.

(5.10) Theorem 5.7 Let γ > 0. Assume that there exists a solution u ∈ C(Ω) to problem (5.10).

Then, for any a, b > 0 and q > p -1, s ≥ p -1, 1 ≤ q ≤ p ≤ 2, equation (5.2) admits a large solution in Ω and it satisfies (5.3)-(5.5).

Proof. We set u = e -a p-1 v , then v is a large solution of -∆ p v + a |∇v| p + p-1 a p-1 e a p-1 (γ+p-1)v = 0 in Ω.

So

-∆ p v + a |∇v| q + bv s ≤ 0 in {x : v(x) ≥ M }, for some a positive constant M only depending on p, q, s, a, b, γ. Similarly to the proof of Theorem 5.2, we get the result as desired.

1 0H N - 2 1(

 12 B r (x) ∩ Ω c ) r N -2 dr r = ∞ ∀x ∈ ∂Ω.

Clearly, one can find c 1 = c 2 (N, p, q)a -1 q-p+1 > 0 and c 3 = c 3 (N, p, q) > 0 such that A ≥ -c 3 a -p-1 q-p+1 R -q q-p+1 + bc p-1

2

.

Choosing c 2 = c 1 p-1 3 a -1 q-p+1 b -1 p-1 R - q (p-1)(q-p+1) , we get

Likewise, we can verify that the function U 2 below

) and satisfies

for some positive constants c 4 = c 4 (N, p, q), c 5 = c 5 (N, p, s) and β = β(N, p, q) > 1.

We emphasize the fact that with the condition 1 < p ≤ 2 and q ≥ 1, equation (5. 

2) in Ω n . Since -∆ p u k,n ≤ 0 in Ω n , so using the maximum principle we get u n,k ≤ k in Ω n for all n. Thus, by standard regularity (see [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF] and [START_REF] Lieberman | Boundary regularity for solution of degenerate elliptic equations[END_REF]), u n,k ∈ C 1,α (Ω n ) for some α ∈ (0, 1). It follows from the comparison principle and (5.6)-(5.8), that

in Ω n and (5.3)-(5.5) are satisfied with u n,k and Ω n in place of u and Ω respectively. From this, we derive uniform local bounds for {u n,k } k , and by standard interior regularity (see [START_REF] Dibenedetto | C 1+α local regularity of weak solutions of degenerate elliptic equations[END_REF]) we obtain uniform local bounds for

Hence, we can verify that u n is a solution of (5.2) and satisfies (5.3)-(5.5) with u n and Ω n replacing u and Ω and u n (x) → ∞ as d(x, Ω n ) → 0. Next, since u n,k ≥ u n+1,k in Ω n there holds u n ≥ u n+1 in Ω n . In particular, {u n } is uniformly locally bounded in Ω. Arguing as above, we obtain u n → u in C 1 (Ω), thus u is a solution of (5.2) in Ω and satisfies (5.3)-(5.5). Clearly, u is the maximal solution of (5.2). Theorem 5.2 Let q 1 > p -1 and 1 < p ≤ 2. Assume that equation (1.12) admits a solution with q = q 1 . Then for any a > 0, b > 0 and q ∈ (p -1, pq1 q1+1 ), s ∈ [p -1, q 1 ) equation (5.2) has a large solution satisfying (5.3) and (5.4).