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Wiener criteria for existence of large solutions of
quasilinear elliptic equations with absorption

Nguyen Quoc Hung*
Laurent Véron'

Laboratoire de Mathématiques et Physique Théorique,
Université Frangois Rabelais, Tours, FRANCE

Abstract

We obtain sufficient conditions, expressed in terms of Wiener type tests involving Hausdorff
or Bessel capacities, for the existence of large solutions to equations (1) —Apu+e*—1 =0 or (2)
—Apu+u? =0 in a bounded domain  when ¢ > p —1 > 0. We apply our results to equations
(3) —Apu+alVul?+bu* =0, (4) Apu+u7=0with1 <p<2,1<g<p,a>0,b>0and
qg>p—1,s>2p—1,v>0.

2010 Mathematics Subject Classification. 31C15, 35J92, 35F21, 35B44.
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capacities.

1 Introduction

Let © be a bounded domain in RN (N > 2) and 1 < p < N. We denote A,u = div(|Vul’"* Vu),
p(x) = dist(xz,09Q). In this paper we study some questions relative to the existence of solutions
to the problem
—Apu+gu)=0 inQ
fim u(z) = o0 (1.1)
p(z)—0

where g is a continuous nondecreasing function vanishing at 0, and most often g(u) is either
sign(u)(el*l — 1) or |u|?"" u with ¢ > p—1. A solution to problem (1.1) is called a large solution.
When the domain is regular in the sense that the Dirichlet problem with continuous boundary
data ¢

—Apu+g(u) =0 in Q, (12)

u—¢ € WyP(Q),u € W,oP(Q) N L=(Q), '

admits a solution u € C(9), it is clear that problem (1.1) admits a solution provided problem
—Apu + g(u) = 0 in Q having a maximal solution, see [14, Chapter 5]. It is known that a
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necessary and sufficient condition for the solvability of problem (1.2) in case g(u) = 0 is the
Wiener criterion, due to Wiener [22] when p = 2 and Maz’ya [15], Kilpelainen and Maly [7]
when p # 2, in general case is proved by Maly and Ziemer [12]. This condition is

/01 (Clvp(Bt(x)ﬂQC))ﬁﬁzoo v € 09, (1.3)

tN-p t

where C' , denotes the capacity associated to the space WLP(RN). The existence of a maximal
solution is guaranteed for a large class of nondecreasing nonlinearities g satisfying the Vazquez
condition [19]

00 dt t
/a 0] < oo where G(t) :/Og(s)ds (1.4)

for some a > 0. This is an extension of the Keller-Osserman condition [8], [16], which is the
above relation when p = 2. If for R > diam(f2) there exists a function v which satisfies

—Apu+g(v) =0 in Br \ {0},
v=20 on JBg, (1.5)
lim v(z) = oo,
x—0
then it is easy to see that the maximal solution u of
—Apu+g(u) =0 in Q (1.6)

is a large solution, without any assumption on the regularity of 9. Indeed,  — v(x — y) is
a solution of (1.6) in  for all y € 99, thus u(xz) > v(z —y) for any x € Q,y € 9. It follows
lim ()0 u(z) = oo since lim. o v(z) = oo.

Remark that the existence of a (radial) solution to problem (1.5) needs the fact that equation
(1.6) admits solutions with isolated singularities, which is usually not true if the growth of g is
too strong since Vazquez and Véron prove in [20] that if

N(p—1)

(
liminf |r|” " ~=7 sign(r)g(r) >0 with p <N, (1.7)

|r|—00

isolated singularities of solutions of (1.6) are removable. Conversely, if p —1 < ¢ < % with
p < N, Friedman and Véron [5] characterize the behavior of positive singular solutions to

—Apu+u?=0 (1.8)

with an isolated singularities. In 2003, Labutin [9] show that a necessary and sufficient condition
in order the following problem be solvable

—Au+ |ul P u=0 in €,
lim wu(x) = oo,

p(z)—0
is that )
(B Q°) dt
/ Cg (tfv(im )7 —c0  Vzeon,
0

where Cy, is the capacity associated to the Sobolev space W24 (RN) and ¢’ = ¢/(q—1), N > 3.
Notice that this condition is always satisfied if ¢ is subcritical, i.e. ¢ < N/(IN —2). We refer



o [14] for other related results. Concerning the exponential case of problem (1.1) nothing is
known, even in the case p = 2, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order
problem (1.1) be solvable in the two cases g(u) = sign(u)(el*l —1) and g(u) = [u|? " u, ¢ > p—1.
For 1 < p < N, we denote by ’Hivfp(E) the Hausdorff capacity of a set E defined by

H = inf Zth ECUB diam(B;) <1

where the B; are balls and A" ~P(B,.) = v ~P. Our main result concerning the exponential case
is the following

Theorem 1. Let N >2 and 1 <p < N. If

1

1 pr c B
/ (’Hl QN Br@))) d_: = 400 Vr € 09, (1.9)
0

rN-p

then there exists u € C*(S)) satisfying

lim wu(z) = . (1.10)

Clearly, when p = N, we have H] ?({z¢}) = 1 for all zo € RN thus, (1.9) is true for any
open domain €.

We also obtain a sufficient condition for the existence of a large solution in the power case
expressed in terms of some C,, s Bessel capacity in R associated to the Besov space B**(RY).

Theorem 2. Let N > 2,1 <p < N and ¢ >N(pp1). If

1 1
Cp_a__ (2N By(z))\7?
/ ( P dr =400 Vze o, (1.11)
T

rN-»p
0

then, for any p —1 < q < B there exists u € C1(Q) satisfying

—Apu+u? =0 in €,

lim wu(z) = oco. (1.12)
p(x)—0

We can see that condition (1.9) implies (1.11). In view of Labutin’s theorem this previous
result is not optimal in the case p = 2, since the involved capacity is Cy , with q; and thus
there exists a solution to

—Apu+ut =0 in Q
lim u(x) =00
p(x)—0

with ¢1 > gq.



At end we apply the previous theorem to quasilinear viscous Hamilton-Jacobi equations:

—Apu+alVu|? +blul*"lu=0  inQ,
u e CHQ), lim u(z) = oco. (1.13)
p(x)—0

For ¢y > p—1and 1 < p < 2, if equation (1.12) admits a solution with ¢ = ¢1, then for any
a>0,b>0and g€ (p-—1, q’z‘fﬁl), s € [p—1,q1) there exists a positive solution to (1.13).
Conversely, if for some a,b > 0, s > p — 1 there exists a solution to equation (1.13) with
l1<qg=p<2,thenforany g1 >p—1,1<¢q; <p, s1>p—1, a1,b; > 0 there exists a positive
solution to equation (1.13) with parameters ¢, $1, a1, b1 replacing ¢, s, a,b. Moreover, we also
prove that the previous statement holds if for some v > 0 there exists u € C(Q)NCH(Q), u > 0

in Q satisfying

—Apu+u~7 =0 in Q,
u=0 on 0.

We would like to remark that the case p = 2 was studied in [10]. In particular, if the boundary
of Q is smooth then (1.13) has a solution with s =1and 1 < ¢ < 2,a > 0,b> 0.

2 Morrey classes and Wolff potential estimates

In this section we assume that  is a bounded open subset of RY and 1 < p < N. We also
denote by B, (x) the open ball of center x and radius r and B, = B,(0). We also recall that a
solution of (1.1) belongs to C2*(€) for some a € (0,1), and is more regular (depending on g)

loc

on the set {z € Q: |Vu(z)| # 0}.

Definition 2.1 A function f € LY(Q) belongs to the Morrey space M?*(2), 1 < s < oo, if there
is a constant K such that

/ |f|dy§KT% V7’>0,V:C€RN,

QNB, ()

The norm is defined as the smallest constant K that satisfies this inequality; it is denoted by
| £l ame (). Clearly L*(2) € M*(€2).

Definition 2.2 Let R € (0,00] and p € MY (), the set of nonnegative and bounded Radon
measures in ). We define the (R-truncated) Wolff potential of u by

W) = /OR (%) m % Vr € RV,

and the (R-truncated) fractional maximal potential of p by

M, alul(e) = sup LB4D) g, e g

o<t<r tNTP
where the measure is extended by 0 in °.

We recall a result proved in [6] (see also [2, Theorem 2.4]).



Theorem 2.3 Let j be a nonnegative Radon measure in RN . There exist positive constants
C1,Cy depending on N,p such that

/ exp(CHW{‘:p[xB,u])dac < Cyr?Y,
2B

Jor all B = B,(z0) C RN, 2B = Ba.(x0), R > 0 such that [|My, glp]|| e @y) < 1.
For k > 0, we set Ty (u) = sign(u) min{k, |u|}.

Definition 2.4 Assume f € L}, (). We say that a measurable function u defined in Q is a
renormalized supersolution of

—Apu+f=0 in Q (2.1)
if, for any k> 0, Tr(u) € WEP(Q), [Vul"~" € LL.(Q) and there holds

loc loc
[ (VTP V TV + f)da >0
Q
for all p € WHP(Q) with compact support in Q and such that 0 < ¢ < k—Tk(u), and if —Apu—+f
s a positive distribution in €.
The following result is proved in [12, Theorem 4.35].

Theorem 2.5 If f € M%(Q) for some € € (0,p), u is a nonnegative renormalized supersolu-
tion of (2.1) and set p:= —Apu+ f. Then there holds

1 r
u(x) +[f*" x> CW{ [u](x) Vo € Q s.t. B.(z) CQ,
M2 (Q) :
for some C' depending only on N,p, e, diam(£).

Concerning renormalized solutions (see [3] for the definition) of
—Apu+ f=p in Q, (2.2)
where f € L*(Q) and p € MY (), we have

Corollary 2.6 Let f € M%(Q) and p € MY (). Ifu is a renormalized solution to (2.2) and
infgu > —oo then there exists a positive constant C' depending only on N, p, e, diam(Q) such
that

d(x,0Q)

w(@) + 17 . >infu+ CW, " [u)(z) Va e Q.
MP—=(Q) @ '

The next result, proved in [2, Theorem 1.1, 1.2], is an important tool for the proof of Theorems
1 and 2. Before presenting we introduce the notation.

Definition 2.7 Let s > 1 and a > 0. We denote by Cy s(E) the Bessel capacity of Borel set
E C RV,
Ca,s(E) = nf{[|||7. gny : ¢ € LY(RY), Gox¢ > xp}
where xg s the characteristic function of E and G, the Bessel kernel of order «.
We say that a measure p in §2 is absolutely continuous with respect to the capacity Co. s in Q if

for all E C Q,E Borel,Cy s(E) =0=|u|(E) =0.



Theorem 2.8 Let € M8 (Q) and ¢ > p — 1.

a. If p is absolutely continuous with respect to the capacity C, = in ), then there exists a
’q+1-p

nonnegative renormalized solution u to equation

—“Apju+ul=p in ,
u =0 on 0f2,

which satisfies
u(z) < OWTS ™D ) (z) Vo e Q (2.3)

where C' is a positive constant depending on p and N.
b. If exp(CWffi;am(Q) [1]) € LY() where C is the previous constant, then there exists a non-

negative renormalized solution u to equation

—Apu+e*—1=p in €,
u=20 on 082,

which satisfies (2.3).

3 Estimates from below

If G is any domain in RY with a compact boundary and g is nondecreasing, g(0) = g=(0) =0
and satisfies (1.7)) there always exists a maximal solution to (1.6) in G. It is constructed as the
limit, when n — oo, of the solutions of

—Apuy + g(un) =0 in G,
lim wu,(x) =00
pn(z)—0 () (3.1)
‘ l‘im un(x) =0 if G,, is unbounded,
xT|—00

where {G,,}, is a sequence of smooth domains such that G,, C G,, C Gy, for all n, {9G,},, is
a bounded and |J G, = G and p,(z) := dist(x, 0G,). Our main estimates are the following.
n=1
Theorem 3.1 Let K C By;4\{0} be a compact set and let U; € C'(K¢), j = 1,2, be the
mazimal solutions of
—Apu+e"—1=0 in K¢ (3.2)

for Uy and
—Apu+u? =0 in K¢ (3.3)

for Us, where p—1< g < %. Then there exist constants Cy, k =1,2,3,4, depending on N, p
and q such that

1 N—p ﬁ
H KnNB, dr
U1(0) > =C1 + 02/0 <%> - (3.4)
and .
1/C, o (KNB)\? "y
P r
Uz2(0) > —Cs +C4/0 < T*pr ) — (3.5)



Proof. 1. For j € Z define r; = 277 and S; = {z : r; < |z| < rj_1}, B = B,,. Fix
a positive integer J such that K C {x : r; < |z| < 1/8}. Consider the sets K N .S; for
j =3,...,J. By [18, Theorem 3.4.27], there exists p; € M (RY) such that supp(p;) C K NS,

||M;U71[Mj]HLoo(RN) <1 and
o' HY MK N S)) < p(RYN) < eHy P(ENS;) Vi,

for some ¢; = ¢1(N,p).
Now, we will show that for ¢ = e(N, p) > 0 small enough, there holds,

J
A= /Bl exp <€Wip [Z Mk] (z)) dx < ¢, (3.6)

k=3

where co does not depend on J.
Indeed, define p1; =0 for all j > J + 1 and j < 2. We have

00 J
A= ;/SJ exp <€Wip L;g Mk‘| (z)) dzx.

Since for any j

J J+1
Wi, [Zukl ScWi, | D m| +c@Wi, | D0 me| +elp) Y. Wil
k=3 k>j+2 k<j—2 k=max{j—1,3}

- 5
with ¢(p) = max{1,57=1} and exp(}_ a;) < > exp(ba;) for all a;. Thus,
i=1 i=1

AgZ/ exp 03€W%7p Z i | (x) d:C+Z/6Xp 03€W%7p Z pr | (x) | dx
j=1"5i j=1"5i

55 k>j+2 k<j—2
0o J+1
+ Z Z /S.exp (03€W%7p[uk](z)) dx == Ay + As + As, with c3 = 5¢(p).

Jj=1 k=max(j—1,3)

Estimate of As: We apply Theorem 2.3 for 4 = pg and B = By_1,
/ exp (03€Wip[uk](x)) dx < 047”1]@\[—1
2B -1
with ese € (0,C4], the constant C; is in Theorem 2.3. In particular,

/ exp (03€Wip[,uk](ac)) dx < 047“,]6\[_1 fork=75-1,7,7+1,
S.

J
which implies

+oo
Az < cs ZTJN = c5 < 00. (3.7)
j=1



Estimate of Ar: Since Y. pp (Bi(x)) =0 for all z € Sj,t € (0,7;41). Thus,
k>j+2

1
Lo 2 (Bl
A1:Z/ exp 035/ —k_H_Qthp 7 dz
© S

g=1om i1
1
00 p—1
p—1 —5=t
< Zexp C3€ N Z i (Sk) Tih |S;].
=1 P \ksit2
Note that g (Sk) < gk (Bry_, (0)) < ra*, which leads to
1 1 1
" *NfT N—p o *N:lp N—p m 1 »-1
Do) A< Y T+l = " - <1 - 2—(N—p>> '
k>j42 k>j+2 k>0
Therefore .
p—1 1 =T
Ay <exp <C35Np(12(NP)) ) |B1| = cs. (3.8)

Estimate of Ag: for x € S,

1 k<j—2 dt ' k<j—2 dt
Wl,p Z Mk (:L') / tN-p t . / tN—p t
k<j—2 i1 i=1 T
Since r; <t <mi—1, . uk(Bi(x))=0,Vi=1,..,j5—1, thus
k<i—2
1 1
Jj—2 p—1 Jj—2 p—1
jor mi [ puk(Be(w) P > Hk(Sk) J
1 _ k=i—1 k=i—1
Wl,p Z Mk (‘T) - / tN—p ? < / tN-p ?
k<j—2 i=1 ;. =1 ;.
1
jzl /g2 1 Ny 4N-Pp p—1
< ( T,iv_p> r; "7 <crj, with ¢7 = <1 — 2_(N_p)>
=1 \k=i—1
Therefore,

oo oo
Ay < Z/ exp (c3crej) do = erv exp (czereg) |91
j=175;

j=1

= Zexp ((cgere — N'log(2))j) |S1| < es for € < Nlog(2)/(2¢scr). (3.9)

j=1



Consequently, from (3.8), (3.9) and (3.7), we obtain A < ¢3 := ¢ + cg + ¢5 for € = ¢(N, p) small
enough. This implies

P

J J 2N
ol [, oL ([ )e) <
k=3 2 1

? (B1) k=3
(3.10)
where the constant ci;g does not depend on J. Set B = Bi' For ¢g = (%)1/(7”1), where
C' is the constant in (2.3), by Theorem 2.8 and estimate (3.10), there exists a nonnegative
renormalized solution u to equation

—Apu+e*—1=¢g Zj:g 7 in B,
u=0 in 0B,

satisfying (2.3) with u = ¢g Z'j]:3 ;. Thus, from Corollary 2.6 and estimate (3.10), we have

J
1
u(0) > —c11 +c12W7 Zﬂj

=3
Therefore
J pil
> 1 (Bi(0)) r a1
=3 dt piv2(Be(0)) \ P~ dt
u(0) > —c11 + 12 Z / TN > —ci1 + ci2 Z / ( IN—p 7
Tz+1 T1+1
T u (S ) piil dt J—2 1 N—p
i+2(9i42 N— 1~
—c11 + C12 Z / (W) 7 > —c11 + 13 Z (7—[1 P(KN Sz‘+2)) T

Tz+1 =2

1

—cC11 + €13 Z (,Hiv_p(K N Sz)) pil?‘; ]:71 .

=4

From the inequality

1

(le—p(Kﬂ Si)) N ﬁ(;«{fv—lﬁ(z{m&_l))ﬁ — (Hiv"’(K ﬂBi))p%l Vi,

max(1,2P—1)

we deduce that

u(0) > —c11 + c13 Z <

max(1, 217 1)

CRIUETN L (TP I Ll P

= — (N 1 N
> —c11 + 13 (21)72:) - 1) <H1 (KN Bz)) r, P
max(1,2P—-1) i—a
>

1 .
’H “P(KNBy) Lt
—c14 + C15 —pr T
0



Since U; is the maximal solution in K¢, u satisfies the same equation in B\K and U; > u =0
on 9B, it follows that U; dominates v in B\K. Then U;(0) > u(0) and we obtain (3.4).

2. By [1, Theorem 2.5.3], there exists p; € M (RY) such that supp(p;) C K N S; and

n(K08) = [(Gulis)@) e =C, (KNS,
RN

By Jensen’s inequality, we have for any a; > 0,

0o S 0o
(Sor) <3
k=0 k=0
where 6y, has the following expression with 6 > 0,

, 1 if s € (0,1],
T THO+)MTY s> 1.

Thus,

for 0 small enough. Here the third inequality follows from [2, Theorem 2.3] and the constant
c18 does not depend on J. Hence,

(v [2)

where co is independent of J. Take B = B 1. Since Z i3 My is absolutely continuous with

respect to the capacity C,, - in B, thus by Theorem 2.8, there exists a nonnegative renor-

malized solution u to equation

q
< cig
(B1)

S C20, (3.11)
L1 (Bl)

]

k=3

41
q

M

—Apu+ul = Zj:3 i in B,
u=0 on 0B.

10



satisfying (2.3) with u = Z'j]:3 ;. Thus, from Corollary 2.6 and estimate (3.11), we have

J
1
’LL(O) Z —C21 =+ CQQWfﬁp E [Lj
Jj=3

As above, we also get that

1 /C a1 (K N BT) ﬁ d
u(0) > —ca3 + 024/ ( TE ) %
0

rN-p

After we also have Uz(0) > u(0). Therefore, we obtain(3.5). |

4 Proof of the main results

First, we prove theorem 1 in the case case p = N. To do this we consider the function

N—-11 R .
v U(z) = U(|z|) = log (WR—N (|x| + 1)) in Bgr(0)\{0}.
One has
1 1 " 1 1
= and U'(|z)) = — e
Ul = ey~ ™ U ) = e Y e
thus, for any 0 < |z| < R,
CANU 4V 1= (N~ DU (a2 ( () + 7 | U () ) r o
 (N-DRM N-11
= TR ) T T 2V 'Y

- (N—l)RN*1+N—1 1 2R
- (QR)N|:C|N*1 2N+1 RN |x|
S —

Hence, if u € C1(Q) is the maximal solution of
—Ayu+e*—1=0 in Q

and R = 2diam(2), then u(z) > U(|z — y|) for any x € Q and y € 90. Therefore, u is a large

solution and satisfies
N—-11 R
u(x) > log ( SNTT RN (p(:c) + 1)) Ve

Now, we prove Theorem 1 in the case p < N and Theorem 2. Let u,v € C*(2) be the maximal
solutions of

(i) —Apu+et—1=0 in £,
(i) —Apv+0v?7=0 in Q.

11



Fix 29 € 0Q2. We can assume that zp = 0. Let § € (0,1/12). For zyp € Bs N Q. Set

K =Q°NBy4(z0). Let Uy, Uy € C*(K*°) be the maximal solutions of (3.2) and (3.3) respectively.
We have u > Uy and v > U, in €. By Theorem 3.1,

VInNP(KNB o d
Ul(ZO) > —c1 + c2/ (Hl ( N T(ZO))> 77’
§

rN-p
1 N—p T
HyY P(KNB,_, d ,
> fclJch/ ( 1 ~ l °|)> a (since B, _|., C Br(20)))
5 riV—p r
1
> e+ /1 Ay MK 0By)\ T dr
Z —C1 T C2 05 N—p ,
1
V2 (uN=P(knB,)\" " dr
> — i S Sl eV -
> —C +C3/6 < "N—p -
We deduce
1/2 N—p KNB ﬁ d
inf u> inf U1Z*C1+Cg/ (W) —rﬁoo as d — 0.
BsNQ BsN 5 riv—p r

Similarly, we also obtain

1
12 (C a1 (KQBT) p—1 d
inf UZ*C4+C5/ ( p7q17’)+;[_2 ) T o asd—0.
s

BsNQ r r

Therefore, u and v satisfy (1.10) and (1.12) respectively. This completes the proof.

5 Large solutions of quasilinear Hamilton-Jacobi equations

Let € be a bounded open subset of RY with N > 2. In this section we use our previous results
to give sufficient conditions for existence of solutions to the problem

—Apu+a|Vul'+but=0 inQ,

lim wu(x) = oo,
p(x)—0 (@)

(5.1)

wherea >0,0>0and1<q¢<p<2,¢g>p—-1,s>p—1.
First we have the result of existence solutions to equation (5.1).

Proposition 5.1 Leta >0,b>0andg>p—1,s>p—1,1<qg<pandl <p<2. There
exists a mazimal nonnegative solution u € C1(Q) to equation

—Apu+a|Vul? +bu® =0 in Q, (5.2)

which satisfies
1 p
u(z) < e(N,p,s)b” s=r¥1d(x,00)” 5=»F1 VY € Q, (5.3)

ifs>p—1,

12



u(z) < ¢(N,p,q) (a*—q%ﬂd(gg,ag)*% + a*rlﬁb*ﬁd(%ag)—m) Ve Q,

(5.4)
ifp—1l<g<pands=p—1, and

w(z) < ¢(N,p)a~ b~ 7 1d(z,00) 7T VzeQ, (5.5)
ifg=pand s=p—1.
Proof. Case s=p—1and p—1 < q < p. We consider

RY — ||t
p/Rp/fl

Ur(z) = Ui(lz]) = a1 < ) 7 + ¢co € CH(Bg(0)).

with p’ = ﬁ and c1,co > 0. We have

oy el —a) [P (R — e\ T
U () = ,

q—p+1 RVt pRV!

g—p+1  Rr'-L\ p/RP-I
1\ 2 ' N\ ~Trr L
Loalb-9 ([P RP — |af?
(¢—p+1)2 \ RV1 PR 1

A= AUy +a|VUL|T +bUP™" > =AUy + a| VUL |7 + beh ™"

1
" Cl(p — q)(pl _ 1) |.I'|p/_2 Rp/ o |$|p/ T=pF1
Uy (lz]) =

and

Thus, for all x € Br(0)

’ _ " N* 1 ’ _ ’ ’ _
A= —(p = DU ()P0, (|a]) — W|U1(|x|)|p 2Uy (|]) + alUy (J])|« + by ™

(a0 (R \ e lay
¢-p+l PR % R
L (YN ey (el

q—p+1\ R P R 7
ap—g) " ()T )
+a<q—p+1> I + b
B g—p+1 p/'RP'—1

N(p-1 1 _ a-p+l 77T
L) N1 +a(c1(p q)) (M) bl
D g—p+1 qg—p+1 R
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Clearly, one can find ¢; = c2(N, p,q)a™ 57T > 0 and cs = c3(N, p,q) > 0 such that

A> —c3a” ot R a=p T + bcgfl_

1 1 1 _ q
Choosing Co = Cgfla_ e—pF1h p—-1 R P=DG=—r+D | we get

—A UL +a|VUL |7 +bUP™ >0 in Br(0). (5.6)

Likewise, we can verify that the function Us below

/

Us(x) = caa™ ' lo _ tesa b FTRTET
2 =G g RV — [a]?’ 4
belongs to C}(Br(0)) and satisfies
—AUs +a|VUs|P +bUE™" >0 in Bg(0). (5.7)

While, if s > p—1,
RB — |x|ﬂ)—s—p+1

Ug(m) = c5b s—pT1 ( ﬂRﬁ*l

belongs to C''(Bg(0)) and verifies
7ApU3 + bU§ >0 in BR(O), (58)

for some positive constants ¢4 = c4(N, p, q), ¢c5 = ¢5(N,p, s) and 8 = B(N,p,q) > 1.

We emphasize the fact that with the condition 1 < p < 2 and ¢ > 1, equation (5.2) satisfies

a comparison principle, see [17, Theorem 3.5.1, corollary 3.5.2]. Take a sequence of smooth

domains Q,, satisfying Q,, C Q,, C Q,41 for all n and |J Q, = Q. For each n,k € N*, there
n=1

exist nonnegative solution u, x = u € W,"" () := Wy ?(Q,) + k of equation (5.2) in Q,,.

Since —Apug,, < 0 in Q,, so using the maximum principle_we get upp < k in Q,, for all n.

Thus, by standard regularity (see [4] and [11]), u,, € C1*(Q,,) for some a € (0,1). It follows

from the comparison principle and (5.6)-(5.8), that

Un,k < Un k41 in Qn

and (5.3)-(5.5) are satisfied with w,  and Q, in place of u and € respectively. From this,
we derive uniform local bounds for {u, k}r, and by standard interior regularity (see [4]) we
obtain uniform local bounds for {u, x}x in Cllog(Qn) It implies that the sequence {up k}i is
pre-compact in C1. Therefore, up to a subsequence, u, r — u, in C1(Q,). Hence, we can verify
that u, is a solution of (5.2) and satisfies (5.3)-(5.5) with u,, and €, replacing v and Q and
un(x) = oo as d(z, ) — 0.

Next, since p g > Upt1,k in £, there holds w, > up41 in Q. In particular, {u,} is uniformly
locally bounded in Q. Arguing as above, we obtain u,, — u in C1(£2), thus u is a solution of
(5.2) in © and satisfies (5.3)-(5.5). Clearly, u is the maximal solution of (5.2). |

Theorem 5.2 Let g1 > p—1 and 1 < p < 2. Assume that equation (1.12) admits a solution
with ¢ = q1. Then for any a > 0,b>0 and g € (p—1, qf‘i_ll), s€lp—1,q1) equation (5.2) has
a large solution satisfying (5.3) and (5.4).
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Proof. Assume that equation (1.12) admits a solution v with ¢ = ¢; and set v = fw? with

B >0,0 €(0,1), then w > 0 and

[Vuwl]?
w

—Apw+ (—o+1)(p—1) 4 puPHl TPy (@—pr+r=l — iy Q,

If we impose max{ qsl__’;:rll, (p;zq —-p+ 1) ﬁ} < o < 1, we can see that

+ ﬂql7p+107p+1w0('“7p+1)+p71 > a|lVwl? + bw’® in {z:w(x)> M},

(o + -7

where a positive constant M depends on p, q1,q, s, a,b. Therefore
—Apw+a|Vuw|?+bw® <0 in {z:w(z) > M}.

Now we take an open subset ' of Q with O’ C  such that the set {z : w(z) > M} contains Q\'.
So w is a subsolution of —Ayu + a|Vu|? 4+ bu® = 0 in Q\ and the same property holds with
w, := ew for any € € (0,1). Let u be as in Proposition 5.1. Set min{u(z) : x € 9V} =6, >0
and max{w(z) : x € 9V} = 0 > M. Thus w, < u on 9 with e < min{z—;, 1}. Hence, from
the construction of u in the proof of Proposition 5.1 and the comparison principle, we obtain
we < u in Q\Q'. This implies the result. ]

Remark 5.3 From the proof of above Theorem, we can show that under the assumption as in
Proposition 5.1, equation (5.2) has a large solution in Q if and only if equation (5.2) has a large
solution in Q\K for some a compact set K C  with smooth boundary.

Now we deal with (5.1) in the case ¢ = p.

Theorem 5.4 Assume that equation (5.2) has a large solution in Q for some a,b >0, s >p—1
and g =p > 1. Then for any a1,by >0 and qn >p—1,s1 > p—1,1 < g1 <p <2, equation (5.2)
also has a large solution u in ) with parameters ay,b1,q1,s1 in place of a,b,q,s respectively,

and it satisfies (5.3)-(5.5).
Proof. For o > 0 we set u = v thus
|vv|p o—1 p —p+1, (s—p+1)o+p—1
—Apv—(0—=1)(p—1)—— +aocv® " |Vu|’ + bo PT 0077 Pt =0.
v

s1—p+l

Choose o = ppryw

+ 2, it is easy to see that
—Apv + a1 |[Vo|? 4 bov®t <0 in {z:v(z) > M},

for some a positive constant M only depending on p,s,a,b,a1,b1,q1,s1. Similarly as in the
proof of Theorem 5.2, we get the result as desired. [

Remark 5.5 If we set u = e then v satisfies
—Apv + bes7PHY = |yl (p — 1 — ae?) in Q.
From this, we can construct a large solution of

—Apu + bels=PThu = in O\K,
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for any a compact set K C Q with smooth boundary such that v > In (%) in Q\K. In case
p = 2, It would be interesting to see what Wiener type criterion is implied by the existence as
such a large solution. We conjecture that this condition must be

1 N-—-2 c
/Hl (B;(meﬁ:oo Va € 09.
0 reY T r

We now consider the function

RS — |$|ﬁ

o1
FRA ) in Br(0),v > 0.

Us(z) =c (
As in the proof of proposition 5.1, it is easy to check that there exist positive constants /3 large
enough and ¢ small enough so that inequality A,Us + U; 7 > 0 holds.
From this, we get the existence of minimal solution to equation

Apu+u=7=0 in Q. (5.9)
Proposition 5.6 Assume v > 0. Then there exists a minimal solution u € C*(Q) to equation
(5.9) and it satisfies u(z) > Cd(z, OQ) 77T in Q.

We can verify that if the boundary of § is satisfied (1.3), then above minimal solution u
belongs to C'(2), vanishes on 9 and it is therefore a solution to the quenching problem

Apu+u™7=0 in €,

u=20 in 0Q. (5.10)
Theorem 5.7 Let v > 0. Assume that there exists a solution u € C(Q) to problem (5.10).
Then, for any a,b >0 and ¢ >p—1,s>p—1,1< q <p <2, equation (5.2) admits a large
solution in Q0 and it satisfies (5.3)-(5.5).

Proof. We set u = e 71", then v is a large solution of

—Apv+a|Vol” + (%)p_lepil('ﬁp*l)v =0 in Q.
So
—Apv+a|Voul? +bv* <0 in{z:v(x) > M},
for some a positive constant M only depending on p,q,s,a,b,y. Similarly to the proof of
Theorem 5.2, we get the result as desired. ]
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