Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption

Hung Nguyen Quoc, Laurent Veron

To cite this version:

Hung Nguyen Quoc, Laurent Veron. Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption. 2013. hal-00851381v2

HAL Id: hal-00851381
https://hal.science/hal-00851381v2
Preprint submitted on 1 Sep 2013 (v2), last revised 10 Oct 2014 (v4)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Wiener criteria for existence of large solutions of quasilinear elliptic equations with absorption

Nguyen Quoc Hung*
Laurent Véron ${ }^{\dagger}$
Laboratoire de Mathématiques et Physique Théorique, Université François Rabelais, Tours, FRANCE

Abstract

We obtain sufficient conditions expressed in terms of Wiener type tests involving Hausdorff or Bessel capacities for the existence of large solutions to equations (1) $-\Delta_{p} u+e^{\lambda u}+\beta=0$ or (2) $-\Delta_{p} u+\lambda|u|^{q-1} u+\beta=0$ in a bounded domain Ω when $q>p-1>0, \lambda>0$ and $\beta \in \mathbb{R}$. We apply our results to equations (3) $-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0$, (4) $\Delta_{p} u+u^{-\gamma}=0$ with $1<p \leq 2$, $1 \leq q \leq p, a>0, b \geq 0$ and $(q-p+1)+b(s-p+1)>0, \gamma>0$.

2010 Mathematics Subject Classification. 31C15, 35J92, 35F21, 35B44. Key words: quasilinear elliptic equations, Wolff potential, maximal functions, Hausdorff capacities, Bessel capacities.

1 Introduction

Let Ω be a bounded domain in $\mathbb{R}^{N}(N \geq 3)$ and $1<p \leq N$. We consider the question of existence of solutions to the problem

$$
\begin{align*}
-\Delta_{p} u+g(u) & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.1}
\end{align*}
$$

where $\Delta_{p} u=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right), \rho(x)=\operatorname{dist}(x, \partial \Omega)$ and g is a continuous nondecreasing function vanishing at 0 ; most often $g(u)$ is either $e^{\lambda u}+\beta$ or $\lambda|u|^{q-1} u+\beta$ with $q>p-1, \lambda>0$ and $\beta \in \mathbb{R}$. A solution to problem (1.1) is called a large solution. When the domain is regular in the sense that the Dirichlet problem with continuous boundary data ϕ

$$
\begin{align*}
-\Delta_{p} u+g(u) & =0 & & \text { in } \Omega \tag{1.2}\\
u & =\phi & & \text { in } \partial \Omega
\end{align*}
$$

[^0]admits a solution, it is clear that problem (1.1) admits a solution. It is known that a necessary and sufficient condition for such a result is the so called Wiener criterion (for $p=2$ see [21]), for $p \neq 2$ see [13], [7])
\[

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{C_{1, p}\left(B_{t}(x) \cap \Omega^{c}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}=\infty \quad \forall x \in \partial \Omega \tag{1.3}
\end{equation*}
$$

\]

where $C_{1, p}$ denotes the capacity associated to the space $W^{1, p}\left(\mathbb{R}^{N}\right)$. We remark that the Lipschitz and the Reifenberg flat domains are satisfied (1.3). The existence of a large solution is guaranted for a large class of nondecreasing nonlinearities g satisfying the Vazquez condition [18]

$$
\begin{equation*}
\int_{a}^{\infty} \frac{d t}{G^{\frac{1}{p}}(t)}<\infty \quad G(t)=\int_{0}^{t} g(s) d s \tag{1.4}
\end{equation*}
$$

a variant of the Keller-Osserman estimate [8], [15], which is the above relation when $p=2$. If for $R>\operatorname{diam}(\Omega)$ there exists a function v which satisfies

$$
\begin{align*}
-\Delta_{p} v+g(v) & =0 & & \text { in } B_{R} \backslash\{0\} \\
v & =0 & & \text { on } \partial B_{R} \tag{1.5}\\
\lim _{x \rightarrow 0} v(x) & =\infty, & &
\end{align*}
$$

then it is easy to see that the maximal solution of

$$
\begin{equation*}
-\Delta_{p} u+g(u)=0 \quad \text { in } \Omega \tag{1.6}
\end{equation*}
$$

is a large solution, without any assumption on the regularity of $\partial \Omega$, provided (1.3) is satisfied. However the existence of a (radial) solution to problem (1.5) needs the fact that equation (1.6) admits solutions with isolated singularities, which is usually not true if the growth of g is too strong since Vazquez and Véron proved [19] that if

$$
\begin{equation*}
\liminf _{|r| \rightarrow \infty}|r|^{-\frac{N(p-1)}{N-p}} \operatorname{sign}(r) g(r)>0 \tag{1.7}
\end{equation*}
$$

isolated singularities of solutions of (1.6) are removable. Conversely, if $p-1<q<\frac{N(p-1)}{N-p}$, Friedman and Véron [5] characterize the behavior of positive singular solutions to

$$
\begin{equation*}
-\Delta_{p} u+u^{q}=0 \tag{1.8}
\end{equation*}
$$

with an isolated singularities. In 2003, Labutin [9] proved that a necessary and sufficient condition in order the following problem be solvable

$$
\begin{align*}
-\Delta u+|u|^{q-1} u & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.9}
\end{align*}
$$

is that

$$
\begin{equation*}
\int_{0}^{1} \frac{C_{2, q^{\prime}}\left(B_{t}(x) \cap \Omega^{c}\right)}{t^{N-2}} \frac{d t}{t}=\infty \quad \forall x \in \partial \Omega \tag{1.10}
\end{equation*}
$$

where $C_{2, q^{\prime}}$ is the capacity associated to the Sobolev space $W^{2, q^{\prime}}\left(\mathbb{R}^{N}\right)$ and $q^{\prime}=q /(q-1)$. Notice that this condition is always satisfied if q is subcritical, i.e. $q<N /(N-2)$. Concerning the
exponential case of problem (1.1) nothing is known, even in the case $p=2$, besides the simple cases already mentioned.

In this article we give sufficient conditions, expressed in terms of Wiener tests, in order problem (1.1) be solvable in the two cases $g(u)=e^{\lambda u}+\beta$ and $g(u)=\lambda|u|^{q-1} u+\beta, q>$ $p-1 . \lambda>0, \beta \in \mathbb{R}$. For $1<p<N$, we denote by $\mathcal{H}_{1}^{N-p}(E)$ the Hausdorff capacity of a set E defined by

$$
\begin{equation*}
\mathcal{H}_{1}^{N-p}(E)=\inf \left\{\sum_{j} h^{N-p}\left(B_{j}\right): E \subset \bigcup B_{j}, \operatorname{diam}\left(B_{j}\right) \leq 1\right\} \tag{1.11}
\end{equation*}
$$

where the B_{j} are balls and $h^{N-p}\left(B_{r}\right)=c_{N} r^{N-p}$. Our main result concerning the exponential case is the following
Theorem 1. Let $N \geq 3$ and $1<p<N$. If

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(\Omega^{c} \cap B_{r}(x)\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r}=+\infty \quad \forall x \in \partial \Omega \tag{1.12}
\end{equation*}
$$

then for any $\lambda>0$ and $\beta \in \mathbb{R}$ there exists $u \in C_{l o c}^{1}(\Omega)$ satisfying

$$
\begin{align*}
-\Delta_{p} u+e^{\lambda u}+\beta & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.13}
\end{align*}
$$

As a consequence we obtained a sufficient condition for the existence of a large solution in the power case expressed in terms of some $C_{s, r}$ Bessel capacity in \mathbb{R}^{N} associated to the Besov space $B^{s, r}\left(\mathbb{R}^{N}\right)$.
Theorem 2. Let $N \geq 3,1<p<N$ and $q_{1}>\frac{N(p-1)}{N-p}$. If

$$
\begin{equation*}
\int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(\Omega^{c} \cap B_{r}(x)\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r}=+\infty \quad \forall x \in \partial \Omega, \tag{1.14}
\end{equation*}
$$

then, for any $p-1<q<\frac{p q_{1}}{N}, \lambda>0$ and $\beta \in \mathbb{R}$ there exists $u \in C_{\text {loc }}^{1}(\Omega)$ satisfying

$$
\begin{gather*}
-\Delta_{p} u+\lambda u^{q}+\beta=0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x)=\infty \tag{1.15}
\end{gather*}
$$

In view of Labutin's theorem this last result is not optimal in the case $p=2$, since the involved capacity is $C_{2, q_{1}^{\prime}}$ with q_{1}^{\prime} and thus there exists a solution to

$$
\begin{align*}
-\Delta_{p} u+u^{q_{1}} & =0 \quad \text { in } \Omega \\
\lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.16}
\end{align*}
$$

with $q_{1}>q$.
At end we apply the previous theorems to quasilinear viscous Hamilton-Jacobi equations:

$$
\begin{align*}
-\Delta_{p} u+a|\nabla u|^{q}+b|u|^{s-1} u & =0 \quad \text { in } \Omega \\
u \in C_{l o c}^{1}(\Omega), \lim _{\rho(x) \rightarrow 0} u(x) & =\infty \tag{1.17}
\end{align*}
$$

We prove that if $1<p \leq 2,1 \leq q<p, a>0, b \geq 0,(q-p+1)+b(s-p+1)>0$ and (1.12) holds, there exists a positive solution to (1.17). Conversely, if for some $a, b>0, s>p-1$ there exists a solution to equation (1.17) with $q=p$, then for any $\max \{p-1,1\} \leq q_{1} \leq p, s_{1} \geq p-1$, $a_{1}, b_{1} \geq 0, a_{1}\left(q_{1}-p+1\right)+b_{1}\left(s_{1}-p+1\right)>0$ there exists a positive solution to equation (1.17) with $q_{1}, s_{1}, a_{1}, b_{1}$ replacing q, s, a, b, here and we add $1<p \leq 2$ if $a_{1}>0$. Moreover, we also prove that previous claim holds if for some $\gamma>0$ there exists $u \in C(\bar{\Omega}), u>0$ in Ω satisfying

$$
\begin{array}{rc}
-\Delta_{p} u+u^{-\gamma}=0 & \text { in } \Omega \\
u=0 & \text { on } \partial \Omega . \tag{1.18}
\end{array}
$$

2 Morrey classes and Wolff potential estimates

In this section Ω is a bounded domain in \mathbb{R}^{N}. We also denote by $B_{r}(x)$ the open ball of center x and radius r and $B_{r}=B_{r}(0)$. We also recall that a solution of (1.1) belongs to $C_{l o c}^{1, \alpha}(\Omega)$ for some $\alpha \in(0,1)$, and is more regular (depending on g) on the set $\{x \in \Omega:|\nabla u(x)| \neq 0\}$.

Definition 2.1 1 - A function $f \in L^{1}(\Omega)$ belongs to the Morrey space $\mathcal{M}^{s}(\Omega), 1 \leq s \leq \infty$, if there is a constant K such that

$$
\begin{equation*}
\int_{\Omega \cap B_{r}(x)}|f| d y \leq K r^{\frac{N}{s^{\prime}}} \quad \forall r>0, \forall x \in \mathbb{R}^{N} \tag{2.1}
\end{equation*}
$$

The norm is defined as the smallest constant K that satisfies this inequality; it is denoted by $\|f\|_{\mathcal{M}^{s}(\Omega)}$.
2- A function $f \in L^{1}(\Omega)$ belongs to the weak L^{s}-space $M^{s}(\Omega), 1 \leq s \leq \infty$, if there is a constant K such that

$$
\begin{equation*}
\int_{E}|f| d y \leq K|E|^{\frac{1}{s^{\prime}}} \quad \forall E \subset \Omega, \text { EBorel. } \tag{2.2}
\end{equation*}
$$

The quasi-norm is defined as the smallest constant K that satisfies this inequality; it is denoted by $\|f\|_{M^{s}(\Omega)}$

Clearly $L^{p}(\Omega) \subset M^{p}(\Omega) \subset \mathcal{M}^{p}(\Omega)$.
Definition 2.2 Let $R \in(0, \infty]$ and $\mu \in \mathfrak{M}_{+}(\Omega)$, the set of positive Radon measures in Ω. If $\alpha>0$ and $1<p<\alpha^{-1} N$, we define the (R-truncated) Wolff potential of μ by

$$
\begin{equation*}
\mathbf{W}_{p}^{R}[\mu](x)=\int_{0}^{R}\left(\frac{\mu\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \quad \forall x \in \mathbb{R}^{N} \tag{2.3}
\end{equation*}
$$

and, for $1<p<N$, the (R-truncated) fractional maximal potential of μ by

$$
\begin{equation*}
\mathbf{M}_{p, R}[\mu](x)=\sup _{0<t<R} \frac{\mu\left(B_{t}(x)\right)}{t^{N-p}} \quad \forall x \in \mathbb{R}^{N} \tag{2.4}
\end{equation*}
$$

where the measure is extended by 0 in Ω^{c}.
For $k \geq 0$, we set $T_{k}(u)=\operatorname{sign}(u) \min \{k,|u|\}$.

Definition 2.3 Assume $f \in L_{l o c}^{1}(\Omega)$. We say that a Borel function u defined in Ω is a renormalized supersolution of

$$
\begin{equation*}
-\Delta_{p} u+f=0 \quad \text { in } \Omega \tag{2.5}
\end{equation*}
$$

if for any $k>0, T_{k}(u) \in W_{l o c}^{1, p}(\Omega),|\nabla u|^{p-1} \in L_{l o c}^{1}(\Omega)$ and there holds

$$
\begin{equation*}
\int_{\Omega}\left(\left|\nabla T_{k}(u)\right|^{p-2} \nabla T_{k}(u) \nabla \varphi+f \varphi\right) d x \geq 0 \tag{2.6}
\end{equation*}
$$

for all $\varphi \in W^{1, p}(\Omega)$ with compact support in Ω and such that $0 \leq \varphi \leq k-T_{k}(u)$, and if $-\Delta_{p} u+f:=\mu$ is a positive distribution in Ω.

The following result is proved in [14, Theorem 4.35].
Theorem 2.4 Let Ω be an open bounded domain in \mathbb{R}^{N}. If $f \in \mathcal{M}^{\frac{N}{p-\epsilon}}(\Omega)$ for some $\epsilon \in(0, p)$, u is a nonnegative renormalized supersolution of (2.5) and set $\mu:=-\Delta_{p} u+f$. Then there holds

$$
\begin{equation*}
u(x)+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}} \geq c_{1} W_{1, p}^{\frac{r}{4}}[\mu](x) \quad \forall x \in \Omega \text { s.t. } B_{r}(x) \subset \Omega \tag{2.7}
\end{equation*}
$$

for some c_{1} depending only on $N, p, \varepsilon, \operatorname{diam}(\Omega)$.
Concerning renormalized solutions (see [3] for the definition) of

$$
\begin{equation*}
-\Delta_{p} u=f+\mu \quad \text { in } \Omega \tag{2.8}
\end{equation*}
$$

where $f \in L_{l o c}^{1}(\Omega)$ and μ is a Radon measure, we have
Corollary 2.5 Let $f \in \mathcal{M}^{\frac{N}{p-\epsilon}}(\Omega)$ and $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$, the set of positive and bounded Radon measures in Ω. If u is a renormalized solution to (2.8) and $\inf _{\Omega} u>-\infty$ then there exists a positive constant c_{2} depending only on $N, p, \varepsilon, \operatorname{diam}(\Omega)$ such that

$$
\begin{equation*}
u(x)+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}} \geq \inf _{\Omega} u+c_{2} W_{1, p}^{\frac{d(x, \partial \Omega)}{4}}[\mu](x) \quad \forall x \in \Omega . \tag{2.9}
\end{equation*}
$$

We now recall [2, Theorem 3.8].
Theorem 2.6 Let $\mu \in \mathfrak{M}^{b}(\Omega)$. There exists a positive constant c_{3} such that if u is a renormalized solution to $-\Delta_{p} u=\mu$ in Ω and $u=0$ on $\partial \Omega$, then for any $x \in \Omega$

$$
\begin{equation*}
|u(x)| \leq c_{3} W_{1, p}^{2 \operatorname{diam}(\Omega)}[|\mu|](x) \tag{2.10}
\end{equation*}
$$

Definition 2.7 Let $s>0$ and $0<\alpha s<N$. We denote by $L^{\alpha, s}\left(\mathbb{R}^{N}\right)$ the Besov space the space functions $\phi=G_{\alpha} * f$ for $f \in L^{s}\left(\mathbb{R}^{N}\right)$ and we set $\|\phi\|_{L^{\alpha, s}\left(\mathbb{R}^{N}\right)}=\|f\|_{L^{s}\left(\mathbb{R}^{N}\right)}$, where G_{α} is Bessel kernel of order α. The dual space of $L^{s, q}\left(\mathbb{R}^{N}\right)$ is the space $L^{-s, q^{\prime}}\left(\mathbb{R}^{N}\right)$ and it is naturally endowed with the dual norm. We also denote by $C_{\alpha, s}(E)$ the Bessel capacity of Borel set $E \subset \mathbb{R}^{N}$ defined by

$$
C_{\alpha, s}(E)=\inf \left\{\|\phi\|_{L^{s}\left(\mathbb{R}^{N}\right)}^{s}: \phi \in L_{+}^{s}\left(\mathbb{R}^{N}\right), \quad G_{\alpha} * \phi \geq \chi_{E}\right\}
$$

where χ_{E} is the characteristic function of E.
From Corollary 2.5, Theorem 2.6 and $[2$, Theorem 2.3] we can verify the following result.

Theorem 2.8 Let $f \in \mathcal{M}^{\frac{N}{p-\epsilon}}(\Omega)$ and $\mu \in \mathfrak{M}_{+}^{b}(\Omega)$. Assume that u is a nonnegative renormalized solution to equation (2.8). If $\mu \in L^{-p, \frac{q}{p-1}}\left(\mathbb{R}^{N}\right)$ for some $q>p-1$, then $u \in L^{q}(\Omega)$ and $\|\mu\|_{L^{-p, \frac{q}{p-1}}\left(\mathbb{R}^{N}\right)}=\left\|G_{p} * \mu\right\|_{L^{\frac{q}{q-1}}\left(\mathbb{R}^{N}\right)}$,

$$
\begin{equation*}
\|u\|_{L^{q}(\Omega)} \leq C\left(\|\mu\|_{L^{-p, \frac{q}{p-1}}\left(\mathbb{R}^{N}\right)}^{\frac{1}{p-1}}+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}}\right) \tag{2.11}
\end{equation*}
$$

for some a positive constant C depending only on $N, p, q, \varepsilon, \operatorname{diam}(\Omega)$.
Conversely, if $u \in L^{q}(\Omega)$, then for any compact set $K \subset \Omega$, there exists a positive constant C_{K} depending only on $N, p, q, \varepsilon, \operatorname{diam}(\Omega)$ and $\operatorname{dist}(K, \partial \Omega)$ such that $\chi_{K} \mu \in L^{-p, \frac{q}{p-1}}\left(\mathbb{R}^{N}\right)$ and

$$
\begin{equation*}
\left.\left\|\chi_{K} \mu\right\|_{L^{-p, \frac{q}{p-1}}{\left(\mathbb{R}^{N}\right)}_{\frac{1}{p-1}} \leq C_{K}\left(\|u\|_{L^{q}(\Omega)}+\|f\|_{\mathcal{M}^{\frac{N}{p-\varepsilon}}(\Omega)}^{\frac{1}{p-1}}\right) . . \text {. }}\right) \tag{2.12}
\end{equation*}
$$

In particular, for any Borel set $E \subset \Omega$,

$$
\begin{equation*}
C_{p, \frac{q}{q+1-p}}(E)=0 \Longrightarrow \mu(E)=0 \tag{2.13}
\end{equation*}
$$

The next statement is proved in [2, Theorem 2.4], and in [6] for a variant.
Theorem 2.9 Let $\mu \in \mathfrak{M}^{+}\left(\mathbb{R}^{N}\right)$. There exist positive constants c_{4}, c_{5} such that

$$
\int_{2 B} \exp \left(c_{4} W_{1, p}^{R}\left[\mu_{B}\right]\right) \leq c_{5} r^{N}
$$

for all $B=B_{r}\left(x_{0}\right) \subset \mathbb{R}^{N}, 2 B=B_{2 r}\left(x_{0}\right), R>0$ such that $\left\|\mathbf{M}_{p, R}[\mu]\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq 1$.

3 Estimates from below

If G is any domain in \mathbb{R}^{N} with a compact boundary and g is nondecreasing, $g(0)=g^{-1}(0)=0$ and satisfies (1.7), there always exists a maximal solution to (1.3) in G. It is constructed as the limit, when $n \rightarrow \infty$, of the solutions of

$$
\begin{align*}
-\Delta_{p} u_{n}+g\left(u_{n}\right) & =0 & & \text { in } G_{n} \\
\lim _{\rho_{n}(x) \rightarrow 0} u_{n}(x) & =\infty & & \tag{3.1}\\
\lim _{|x| \rightarrow \infty} u_{n}(x) & =0 & & \text { if } G_{n} \text { is unbounded }
\end{align*}
$$

where $\left\{G_{n}\right\}_{n}$ is a sequence of smooth domains such that $G_{n} \subset \bar{G}_{n} \subset G_{n+1}$ for all $n,\left\{\partial G_{n}\right\}_{n}$ is a bounded and $\bigcup_{n=1}^{\infty} G_{n}=G$ and $\rho_{n}(x):=\operatorname{dist}\left(x, \partial G_{n}\right)$. Our main estimates are the following.
Theorem 3.1 Let $K \subset B_{1 / 4} \backslash\{0\}$ be a compact set and let $U_{j} \in C_{l o c}^{1}\left(K^{c}\right), j=1,2$, be the maximal solutions of

$$
\begin{equation*}
-\Delta_{p} u+e^{\lambda u}+\beta=0 \quad \text { in } K^{c} \tag{3.2}
\end{equation*}
$$

for U_{1} and

$$
\begin{equation*}
-\Delta_{p} u+\lambda u^{q}+\beta=0 \quad \text { in } K^{c} \tag{3.3}
\end{equation*}
$$

for U_{2}, where $p-1<q<\frac{p q_{1}}{N}$. Then there exist constants $C_{k}, k=1,2,3,4$, depending on N, p and q such that

$$
\begin{equation*}
U_{1}(0) \geq-C_{1}+C_{2} \int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \tag{3.4}
\end{equation*}
$$

and

$$
\begin{equation*}
U_{2}(0) \geq-C_{3}+C_{4} \int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \tag{3.5}
\end{equation*}
$$

Proof. Step 1. For $j \in \mathbb{Z}$ define $r_{j}=2^{-j}$ and $S_{j}=\left\{x: r_{j} \leq|x| \leq r_{j-1}\right\}, B_{j}=B_{r_{j}}$. Fix a positive integer J such that $K \subset\left\{x: r_{J} \leq|x|<1 / 8\right\}$. Consider the sets $K \cap S_{j}$ for $j=3, \ldots, J$. By [17, Theorem 3.4.27], there exists $\mu_{j} \in \mathfrak{M}^{+}\left(\mathbb{R}^{N}\right)$ such that $\operatorname{supp}\left(\mu_{j}\right) \subset K \cap S_{j}$, $\left\|\mathbf{M}_{p, 1}\left[\mu_{j}\right]\right\|_{L^{\infty}\left(\mathbb{R}^{N}\right)} \leq 1$ and

$$
c^{-1} \mathcal{H}_{1}^{N-p}\left(K \cap S_{j}\right) \leq \mu_{j}\left(\mathbb{R}^{N}\right) \leq c \mathcal{H}_{1}^{N-p}\left(K \cap S_{j}\right) \forall j
$$

Now, we will show that for ε small enough, there holds,

$$
\begin{equation*}
A:=\int_{B_{1}} \exp \left(\frac{2 N}{p} \tilde{c}_{3} \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \varepsilon \mu_{k}\right](x)\right) \leq C \tag{3.6}
\end{equation*}
$$

where $\tilde{c}_{3}=\max \left\{1,2^{\frac{2-p}{p-1}}\right\} \lambda c_{3}, c_{3}$ is the constant in Theorem 2.6, and C does not depend on J. Indeed, define $\mu_{j} \equiv 0$ for all $j \geq J+1$ and $j \leq 2$. We have

$$
A=\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(\frac{2 N}{p} \tilde{c}_{3} \varepsilon^{\frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right)
$$

Since for any j

$$
\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right] \leq c_{p} \mathbf{W}_{1, p}^{1}\left[\sum_{k \geq j+2} \mu_{k}\right]+c_{p} \mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right]+c_{p} \sum_{k=\max \{j-1,3\}}^{j+1} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right]
$$

with $c_{p}=\max \left\{1,5^{\frac{2-p}{p-1}}\right\}$ and $\exp \left(\sum_{i=1}^{5} a_{i}\right) \leq \sum_{i=1}^{5} \exp \left(5 a_{i}\right)$ for all a_{i}. Thus,

$$
\begin{aligned}
A \leq & \sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\sum_{k \geq j+2} \mu_{k}\right](x)\right)+\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p^{-1}}} \mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x)\right) \\
& +\sum_{j=1}^{\infty} \sum_{k=\max (j-1,3)}^{j+1} \int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right):=A_{1}+A_{2}+A_{3}, \text { with } c_{6}=5 c_{p} \frac{2 N}{p} \tilde{c}_{3} .
\end{aligned}
$$

Estimate of A_{3} : We apply Theorem 2.9 for $\mu=\mu_{k}$ and $B=B_{k-1}$,

$$
\int_{2 B_{k-1}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right) \leq c_{5} r_{k-1}^{N}
$$

with $c_{6} \varepsilon^{\frac{1}{p-1}} \in\left(0, c_{4}\right]$, the constant c_{4} is in Theorem 2.9. In particular,

$$
\int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right) \leq c_{5} r_{k-1}^{N} k=j-1, j, j+1,
$$

which implies

$$
\begin{equation*}
A_{3} \leq c_{7} \sum_{j=1}^{+\infty} r_{j}^{N}=c_{8}<\infty \tag{3.7}
\end{equation*}
$$

Estimate of A_{1} : Since $\sum_{k \geq j+2} \mu_{k}\left(B_{t}(x)\right)=0$ for all $x \in S_{j}, t \in\left(0, r_{j+1}\right)$. Thus,

$$
\begin{aligned}
A_{1} & =\sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \int_{r_{j+1}}^{1}\left(\frac{\sum_{k \geq j+2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}\right) \\
& \leq \sum_{j=1}^{\infty} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \frac{p-1}{N-p}\left(\sum_{k \geq j+2} \mu_{k}\left(S_{k}\right)\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}}\right)\left|S_{j}\right| .
\end{aligned}
$$

Note that $\mu_{k}\left(S_{k}\right) \leq \mu_{k}\left(B_{r_{k-1}}(0)\right) \leq r_{k-1}^{N-p}$, which leads to

$$
\left(\sum_{k \geq j+2} \mu_{k}\left(S_{k}\right)\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}} \leq\left(\sum_{k \geq j+2} r_{k-1}^{N-p}\right)^{\frac{1}{p-1}} r_{j+1}^{-\frac{N-p}{p-1}}=\left(\sum_{k \geq 0} r_{k}^{N-p}\right)^{\frac{1}{p-1}}=\left(\frac{1}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}}
$$

Therefore

$$
\begin{equation*}
A_{1} \leq \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} \frac{p-1}{N-p}\left(\frac{1}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}}\right)\left|B_{1}\right|=c_{9} \tag{3.8}
\end{equation*}
$$

Estimate of A_{2} : for $x \in S_{j}$,

$$
\mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x)=\int_{r_{j-1}}^{1}\left(\frac{\sum_{k \leq j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}=\sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i-1}}\left(\frac{\sum_{k \leq j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t}
$$

Since $r_{i}<t<r_{i-1}, \sum_{k \leq i-2} \mu_{k}\left(B_{t}(x)\right)=0, \forall i=1, \ldots, j-1$, thus

$$
\begin{aligned}
\mathbf{W}_{1, p}^{1}\left[\sum_{k \leq j-2} \mu_{k}\right](x) & =\sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i}-1}\left(\frac{\sum_{k=i-1}^{j-2} \mu_{k}\left(B_{t}(x)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \leq \sum_{i=1}^{j-1} \int_{r_{i}}^{r_{i-1}}\left(\frac{\sum_{k=i-1}^{j-2} \mu_{k}\left(S_{k}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \\
& \leq \sum_{i=1}^{j-1}\left(\sum_{k=i-1}^{j-2} r_{k-1}^{N-p}\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \leq c_{10} j, \text { with } c_{10}=\left(\frac{4^{N-p}}{1-2^{-(N-p)}}\right)^{\frac{1}{p-1}} .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
A_{2} & \leq \sum_{j=1}^{\infty} \int_{S_{j}} \exp \left(c_{6} \varepsilon^{\frac{1}{p-1}} c_{10} j\right)=\sum_{j=1}^{\infty} r_{j}^{N} \exp \left(c_{6} c_{10} \varepsilon^{\frac{1}{p-1}} j\right)\left|S_{1}\right| \\
& =\sum_{j=1}^{\infty} \exp \left(\left(c_{6} c_{10} \varepsilon^{\frac{1}{p-1}}-N \log (2)\right) j\right)\left|S_{1}\right|=c_{11} \quad \text { for } \varepsilon \text { small enough. } \tag{3.9}
\end{align*}
$$

Consequently, $A \leq C:=c_{9}+c_{11}+c_{8}$ for ε small enough. This implies

$$
\begin{equation*}
\left\|\exp \left(\tilde{c}_{3} \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \varepsilon \mu_{k}\right]\right)\right\|_{\mathcal{M}^{\frac{2 N}{p}}{ }_{\left(B_{1}(0)\right)}} \leq c_{12}\left(\int_{B_{1}(0)} \exp \left(\frac{2 N}{p} \tilde{c}_{3} \mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \varepsilon \mu_{k}\right](x)\right)\right)^{\frac{p}{2 N}} \leq c_{13} \tag{3.10}
\end{equation*}
$$

where the constant c_{13} does not depend on J. Set $B=B_{\frac{1}{4}}$. For ε small enough, it follows from [2], (3.6) and Theorem 2.6, that there exists a renormalized solution u to equation

$$
\begin{array}{cl}
-\Delta_{p} u+e^{\lambda u}+\beta=\varepsilon \sum_{j=3}^{J} \mu_{j} & \text { in } B \tag{3.11}\\
u=0 & \text { in } \partial B
\end{array}
$$

satisfied (2.10) with $\mu=-\beta+1+\varepsilon \sum_{j=3}^{J} \mu_{j}$ and $u \geq \tilde{u}$ in B where \tilde{u} is a unique solution to equation (3.11) which the right hand side equals zero. By standard regularity theory, $u \in C_{l o c}^{1, \alpha}(B \backslash K)$ for some $\alpha \in(0,1)$. Thus, from Corollary 2.5 and estimate (3.10), we have $\exp (\lambda|u|) \in \mathcal{M}^{\frac{2 N}{p}}(B)$,

$$
u(0) \geq-c_{14}+c_{15} W_{1, p}^{\frac{1}{4}}\left[\sum_{j=3}^{J} \mu_{j}\right](0) .
$$

Therefore

$$
\begin{aligned}
u(0) & \geq-c_{14}+c_{15} \sum_{i=2}^{\infty} \int_{r_{i+1}}^{r_{i}}\left(\frac{\sum_{j=3}^{J} \mu_{j}\left(B_{t}(0)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \geq-c_{14}+c_{15} \sum_{i=2}^{J-2} \int_{r_{i+1}}^{r_{i}}\left(\frac{\mu_{i+2}\left(B_{t}(0)\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \\
& =-c_{14}+c_{15} \sum_{i=2}^{J-2} \int_{r_{i+1}}^{r_{i}}\left(\frac{\mu_{i+2}\left(S_{i+2}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} \geq-c_{14}+c_{16} \sum_{i=2}^{J-2}\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i+2}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \\
& =-c_{14}+c_{17} \sum_{i=4}^{\infty}\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} .
\end{aligned}
$$

From the inequality

$$
\left(\mathcal{H}_{1}^{N-p}\left(K \cap S_{i}\right)\right)^{\frac{1}{p-1}} \geq \frac{1}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i-1}\right)\right)^{\frac{1}{p-1}}-\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}} \quad \forall i
$$

We deduce that

$$
\begin{aligned}
u(0) & \geq-c_{14}+c_{17} \sum_{i=4}^{\infty}\left(\frac{1}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i-1}\right)\right)^{\frac{1}{p-1}}-\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}}\right) r_{i}^{-\frac{N-p}{p-1}} \\
& \geq-c_{14}+c_{17}\left(\frac{2^{\frac{N-p}{p-1}}}{\max \left(1,2^{\frac{2-p}{p-1}}\right)}-1\right) \sum_{i=4}^{\infty}\left(\mathcal{H}_{1}^{N-p}\left(K \cap B_{i}\right)\right)^{\frac{1}{p-1}} r_{i}^{-\frac{N-p}{p-1}} \\
& \geq-c_{18}+c_{19} \int_{0}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{t}\right)}{t^{N-p}}\right)^{\frac{1}{p-1}} \frac{d t}{t} .
\end{aligned}
$$

Since U_{1} is the maximal solution in K^{c}, u satisfies the same equation in $B \backslash K$ and $U_{1} \geq u=0$ on ∂B, it follows that U_{1} dominates u in $B \backslash K$. Then $U_{1}(0) \geq u(0)$ and we derive (3.4).
Step 2. Fix a positive integer J such that $K \subset\left\{x: r_{J} \leq|x|<1 / 8\right\}$. Consider the sets $K \cap S_{j}$ for $j=3, \ldots, J$. By $\left[1\right.$, Theorem 2.5.3], there exists $\mu_{j} \in \mathfrak{M}^{+}\left(\mathbb{R}^{N}\right)$ such that

$$
\mu_{j}\left(K \cap S_{j}\right)=\int_{\mathbb{R}^{N}}\left(G_{p}\left[\mu_{j}\right](x)\right)^{q_{1}}=C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap S_{j}\right) .
$$

We have, for any $a_{k} \geq 0$,

$$
\left(\sum_{k=0}^{\infty} a_{k}\right)^{r} \leq \sum_{k=0}^{\infty} \theta_{k, r} a_{k}^{r}
$$

where $\theta_{k, r}$ has the following expression with $\theta>0$,

$$
\theta_{k, r}= \begin{cases}1 & \text { if } r \in(0,1] \\ \left(\frac{\theta+1}{\theta}\right)^{r-1}(\theta+1)^{k r} & \text { if } r>1\end{cases}
$$

Thus,

$$
\begin{aligned}
\int_{B_{1}(0)}\left(\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right](x)\right)^{q_{1}} \leq & \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} \int_{B_{1}(0)}\left(\mathbf{W}_{1, p}^{1}\left[\mu_{k}\right](x)\right)^{q_{1}} \\
\leq & c_{20} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} \int_{\mathbb{R}^{N}}\left(G_{p} * \mu_{k}(x)\right)^{\frac{q_{1}}{p-1}} \\
& =c_{20} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap S_{k}\right) \\
& \left.\leq c_{21} \sum_{k=3}^{J} \theta_{k, \frac{1}{p-1}}^{q_{1}} \theta_{k, q_{1}} 2^{-k\left(N-\frac{p q_{1}}{q_{1}-p+1}\right.}\right)
\end{aligned}
$$

$$
\leq c_{22} \text { for } \theta \text { small enough, }
$$

Here the second inequality follows from [2, Theorem 2.3] and the constant c_{22} does not depend on J. Hence,

$$
\begin{equation*}
\left\|\left(\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right]\right)^{q}\right\|_{\mathcal{M}^{\frac{q_{1}}{q}}\left(B_{1}(0)\right)} \leq c_{23}\left\|\mathbf{W}_{1, p}^{1}\left[\sum_{k=3}^{J} \mu_{k}\right]\right\|_{L^{q_{1}}\left(B_{1}(0)\right)}^{q} \leq c_{24} \tag{3.12}
\end{equation*}
$$

where c_{23} is independent of J. Take $B=B_{\frac{1}{4}}$. By [2], (3.12), Corollary 2.5 and Theorem 2.6, there exists a renormalized solution u to equation

$$
\begin{array}{cl}
-\Delta_{p} u+\lambda|u|^{q-1} u+\beta=\sum_{j=3}^{J} \mu_{j} & \text { in } B \tag{3.13}\\
u=0 & \text { on } \partial B .
\end{array}
$$

It belongs to $C_{l o c}^{1, \alpha}(B \backslash K)$ for some $\alpha \in(0,1)$ and

$$
u(0) \geq-c_{25}+c_{26} W_{1, p}^{\frac{1}{4}}\left[\sum_{j=3}^{J} \mu_{j}\right](0)
$$

As above, we also get that

$$
u(0) \geq-c_{27}+c_{28} \int_{0}^{1}\left(\frac{C_{p, \frac{q_{1}}{q_{1}-p+1}}\left(K \cap B_{r}\right)}{r^{N-p}}\right)^{\frac{1}{p-1}} \frac{d r}{r}
$$

After we also have $U_{2}(0) \geq u(0)$. Therefore, we get (3.5).

4 Proof of the main results

Here we only prove Theorem 1. Let $u \in C_{l o c}^{1}(\Omega)$ be the maximal solution of

$$
\begin{equation*}
-\Delta_{p} u+e^{\lambda u}+\beta=0 \quad \text { in } \Omega \tag{4.1}
\end{equation*}
$$

 $K=\Omega^{c} \cap \overline{B_{1 / 4}\left(z_{0}\right)}$. Let $U_{1} \in C^{1}\left(K^{c}\right)$ be the maximal solution of (3.2). We have $u \geq U_{1}$ in Ω. By Theorem 3.1,

$$
\begin{aligned}
U_{1}\left(z_{0}\right) & \geq-C_{1}+C_{2} \int_{\delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\left(z_{0}\right)\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \\
& \left.\geq-C_{1}+C_{2} \int_{\delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r-\left|z_{0}\right|}\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \quad\left(\text { since } B_{r-\left|z_{0}\right|} \subset B_{r}\left(z_{0}\right)\right)\right) \\
& \geq-C_{1}+C_{2} \int_{2 \delta}^{1}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{\frac{r}{2}}\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \\
& \geq-C_{1}+C_{2}^{\prime} \int_{\delta}^{1 / 2}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} .
\end{aligned}
$$

We deduce

$$
\inf _{B_{\delta} \cap \Omega} u \geq \inf _{B_{\delta} \cap \Omega} U_{1} \geq-C_{1}+C_{2}^{\prime} \int_{\delta}^{1 / 2}\left(\frac{\mathcal{H}_{1}^{N-p}\left(K \cap B_{r}\right)}{r^{N-2}}\right)^{\frac{1}{p-1}} \frac{d r}{r} \rightarrow \infty \quad \text { as } \delta \rightarrow 0
$$

Therefore, u is satisfied (1.13).

5 Large solutions of quasilinear Hamilton-Jacobi equations

In this section we used our previous results to give sufficient conditions for existence of solutions to the problem

$$
\begin{align*}
-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0 & \text { in } \Omega \tag{5.1}\\
\lim _{\rho(x) \rightarrow 0} u(x)=\infty, &
\end{align*}
$$

where $a>0, b \geq 0$ and $1<p \leq 2,1 \leq q<p, s \geq p-1$ such that $(q-p+1)+b(s-p+1)>0$. First we have the result of existence solutions to equation (5.1).

Proposition 5.1 Let $a>0, b \geq 0$ and $s \geq p-1,1 \leq q \leq p,(q-p+1)+b(s-p+1)>0$ and $1<p \leq 2$. There exists a maximal solution $u \in C_{l o c}^{1}(\Omega)$ to equation

$$
\begin{gather*}
-\Delta_{p} u+a|\nabla u|^{p}+b u^{s}=0 \quad \text { in } \Omega \\
0<u \in C_{l o c}^{1}(\Omega) \tag{5.2}
\end{gather*}
$$

satisfied

$$
\begin{equation*}
u(x) \leq c(N, p, s) b^{-\frac{1}{s-p+1}} d(x, \partial \Omega)^{-\frac{p}{s-p+1}} \quad \forall x \in \Omega \tag{5.3}
\end{equation*}
$$

if $b(s-p+1)>0$ and

$$
\begin{equation*}
u(x) \leq c(N, p, q) a^{-\frac{1}{q-p+1}} d(x, \partial \Omega)^{-\frac{p-q}{q-p+1}} \quad \forall x \in \Omega \tag{5.4}
\end{equation*}
$$

if $p-1<q<p$ and

$$
\begin{equation*}
u(x) \leq c(N, p) a^{-1} \log \left(2 \operatorname{diam}(\Omega) d(x, \partial \Omega)^{-1}\right) \quad \forall x \in \Omega \tag{5.5}
\end{equation*}
$$

if $q=p$.
Proof. Direct calculations show that the function

$$
U_{1}(x)=c_{1} a^{-\frac{1}{q-p+1}}\left(\frac{R^{\beta_{1}}-|x|^{\beta_{1}}}{\beta_{1} R^{\beta_{1}-1}}\right)^{-\frac{p-q}{q-p+1}} \in C^{1}\left(B_{R}(0)\right)
$$

with $a>0$ and $p-1<q<p$ satisfies

$$
\begin{equation*}
-\Delta_{p} U_{1}+a\left|\nabla U_{1}\right|^{q} \geq 0 \text { in } B_{R}(0) \tag{5.6}
\end{equation*}
$$

the function

$$
U_{2}(x)=c_{2} a^{-1} \log \left(\frac{\beta_{2} R^{\beta_{2}}}{R^{\beta_{2}}-|x|^{\beta_{2}}}\right) \in C_{+}^{1}\left(B_{R}(0)\right)
$$

with $a>0$ satisfies

$$
\begin{equation*}
-\Delta_{p} U_{2}+a\left|\nabla U_{2}\right|^{p} \geq 0 \text { in } B_{R}(0) \tag{5.7}
\end{equation*}
$$

and the function

$$
U_{3}(x)=c_{3} b^{-\frac{1}{s-p+1}}\left(\frac{R^{\beta_{3}}-|x|^{\beta_{3}}}{\beta_{3} R^{\beta_{3}-1}}\right)^{-\frac{p}{s-p+1}} \in C^{1}\left(B_{R}(0)\right)
$$

with $b>0$ and $s>p-1$ satisfies

$$
\begin{equation*}
-\Delta_{p} U_{3}+b U_{3}^{s} \geq 0 \text { in } B_{R}(0) \tag{5.8}
\end{equation*}
$$

for some positive constants $c_{1}=c_{1}(N, p, q), c_{2}=c_{2}(N, p), c_{3}=c_{3}(N, p, s)$ and $\beta_{1}=\beta_{1}(N, p, q) \geq$ $1, \beta_{2}=\beta_{2}(N, p) \geq 1, \beta_{3}=\beta_{3}(N, p, s) \geq 1$.
We emphasize the condition $1<p \leq 2$ and $q \geq 1$ so that the equation (5.2) admits the Comparison Principle, see [16, Theorem 3.5.1, corollary 3.5.2]. Take a sequence of smooth domains Ω_{n} satisfied $\Omega_{n} \subset \bar{\Omega}_{n} \subset \Omega_{n+1}$ for all n and $\bigcup_{n=1}^{\infty} \Omega_{n}=\Omega$. For each $n, k \in \mathbb{N}^{*}$, there exist nonnegative solution $u_{n, k}=u \in W_{k}^{1, p}\left(\Omega_{n}\right)=W_{0}^{1, p}\left(\Omega_{n}\right)+k$ of equation (5.2) in Ω_{n}.
Since $-\Delta_{p} u_{k, n} \leq 0$ in Ω_{n}, so using the Maximum Principle we get $u_{n, k} \leq k$ in Ω_{n} for all n. Thus, by standard regularity (see [4] and [11]), $u_{n, k} \in C^{1, \alpha}\left(\overline{\Omega_{n}}\right)$ for some $\alpha \in(0,1)$. After, using the comparison Principle and (5.6)-(5.8), we obtain that $u_{n, k} \leq u_{n, k+1}$ in Ω_{n} and (5.3)-(5.5) are satisfied with $u_{n, k}, \Omega_{n}$ replacing u, Ω respectively. From this, we lead to uniform local bounds for $\left\{u_{n, k}\right\}_{k}$. Thus, by standard interior regularity (see [4]) we obtain uniform local bounds for $\left\{u_{n, k}\right\}_{k}$ in $C_{l o c}^{1, \eta}\left(\Omega_{n}\right)$. It implies that $\left\{u_{n, k}\right\}_{k}$ is pre-compact in C^{1} and hence up to subsequence $u_{n, k} \rightarrow u_{n}$ in $C_{l o c}^{1}\left(\Omega_{n}\right)$. Hence, we can verify that u_{n} is a solution of (5.2) and satisfies (5.3)(5.5) with u_{n}, Ω_{n} replacing u, Ω and $u_{n}(x) \rightarrow \infty$ as $d\left(x, \Omega_{n}\right) \rightarrow 0$.

Next, since $u_{n, k} \geq u_{n+1, k}$ in Ω_{n} thus $u_{n} \geq u_{n+1}$ in Ω_{n}. In particular, $\left\{u_{n}\right\}$ is uniform local bounded in Ω. We can argue as above, to obtain $u_{n} \rightarrow u$ in $C_{l o c}^{1}(\Omega), u$ is a solution of (5.2) in Ω and satisfies (5.3)-(5.5). Clearly, u is a maximal solution of (5.2).

Lemma 5.2 The maximal solution of (4.1) is a large solution with $\lambda=1$ and $\beta=-1$ if and only if for any $a>0$ and $b<b_{a}:=\theta_{1} a^{1-p}$ the maximal solution of

$$
\begin{equation*}
-\Delta_{p} v+e^{a v}+b=0 \quad \text { in } \Omega \tag{5.9}
\end{equation*}
$$

is a large solution, where θ_{1} is a positive constant depending on N, p and Ω.
Proof. Since monotonicity and Vazquez' condition (1.3) hold, it is sufficient to exhibit a large subsolution (i.e. tending to infinity on the boundary) in order to conclude on the existence of a large solution to (5.9).
Assume $u:=u_{1,-1}$ is a large solution of (4.1), then for any $\Lambda \geq 1$

$$
-\Delta_{p} u_{1,-1}+e^{u_{1,-1}}-\Lambda=1-\Lambda \leq 0 \quad \text { in } \Omega,
$$

thus $u_{1,-1}$ is a subsolution of the corresponding solution and there exists a larger solution which is necessarily a large solution $u_{1,-\Lambda}$ of

$$
\begin{equation*}
-\Delta_{p} u+e^{u}-\Lambda=0 \quad \text { in } \Omega \tag{5.10}
\end{equation*}
$$

Set $\min \left\{u_{1,-1}(x): x \in \Omega\right\}=\theta>0$. then, for any $c \in(0,1)$ and $d \geq 0$ there holds

$$
e^{u_{1,-1}}-1 \geq m_{\theta} e^{c u_{1,-1}} \geq m_{\theta} e^{c u_{1,-1}}-d \quad \text { on }[\theta, \infty)
$$

with $m_{\theta}=e^{(1-c) \theta}-e^{-c \theta}$. This implies that $-\Delta_{p} u_{1,-1}+m_{\theta} e^{c u_{1,-1}}-d \leq 0$, therefore $v:=$ $u_{1,-1}+c^{-1} \ln m_{\theta}$ satisfies $-\Delta_{p} u_{1,-1}+e^{c u_{1,-1}}-d \leq 0$. Therefore there exists a large solution $u_{c,-d}$ to

$$
\begin{equation*}
-\Delta_{p} u+e^{c u}-d=0 \quad \text { in } \Omega \tag{5.11}
\end{equation*}
$$

For $\alpha>0$ and $\beta \in \mathbb{R}$, set $u_{c,-d}=\alpha w+\beta$, then $-\Delta_{p} w+\alpha^{1-p} e^{\beta c} e^{\alpha c w}-d \alpha^{1-p}=0$. If we take $\beta=\frac{p-1}{c} \ln \alpha$, then

$$
\begin{equation*}
-\Delta_{p} w+e^{\alpha c w}-d \alpha^{1-p}=0 \quad \text { in } \Omega \tag{5.12}
\end{equation*}
$$

Since $\alpha>0$ and $d \geq 0$ are arbitrary, we see that for any $a>0$ and $b \geq 0$, there exists a large solution $u=u_{a,-b}$ to

$$
\begin{equation*}
-\Delta_{p} u+e^{a u}-b=0 \quad \text { in } \Omega \tag{5.13}
\end{equation*}
$$

We can notice that since $u_{a, 0}=a^{-1} u_{1,0}+(1-p) a^{-1} \ln a$, the minimum $\theta:=\theta_{a}$ of $u_{a, 0}$ satisfies $\theta_{a}=a^{-1} \theta_{1}+(1-p) a^{-1} \ln a$. For $\epsilon>0$, there holds

$$
e^{a u_{a, 0}}-\epsilon e^{a u_{a, 0}}=(1-\epsilon) e^{a u_{a, 0}} \geq(1-\epsilon) \theta_{1} a^{1-p} .
$$

Therefore $-\Delta_{p} u_{a, 0}+\epsilon e^{a u_{a, 0}}+(1-\epsilon) \theta_{1} a^{1-p} \leq 0$. Thus $v=u_{a, 0}-a^{-1} \ln \epsilon$ satisfies

$$
-\Delta_{p} v+e^{a v}+(1-\epsilon) \theta_{1} a^{1-p} \leq 0
$$

which implies that there exists a large solution to the corresponding equation. Since ϵ is arbitrary, it follows that for any $b<b_{a}:=\theta_{1} a^{1-p}$, there exists a large solution $u=u_{a, b}$ to (5.9).
Remark: the constant θ only depends on N, p and $\operatorname{diam}(\Omega)$. In fact, we can see that $\theta \geq \min _{B_{\text {diam }(\Omega)}(0)} U$, where U is a unique solution of $-\Delta_{p} U+e^{U}-1=0$ in $B_{\operatorname{diam}(\Omega)}(0)$ and $U(x) \rightarrow \infty$ as $|x| \uparrow \operatorname{diam}(\Omega)$

Theorem 5.3 Assume $p-1<q<p$ and (1.12) holds. Then there exists $b^{*}=b^{*}(p, q, N, \Omega)>0$ such that for any $b \in\left(-\infty, b^{*}\right)$, problem (5.1) admits a solution.

Proof. If (1.12) holds, for any $a>0$ and $b<b_{a}$, there exists a large solution u to (5.9). We set $u=\alpha \ln w$ with $\alpha>0$, then

$$
\begin{equation*}
-\Delta_{p} w+(p-1) \frac{|\nabla w|^{p}}{w}+\alpha^{1-p} w^{\alpha a+p-1}+b \alpha^{1-p} w^{p-1}=0 \quad \text { in } \Omega \tag{5.14}
\end{equation*}
$$

By Hölder's inequality

$$
(p-1) \frac{|\nabla w|^{p}}{w} \geq|\nabla w|^{q}-\frac{p-q}{p}\left(\frac{q}{p(p-1)}\right)^{\frac{q}{p-q}} w^{\frac{q}{p-q}}
$$

therefore

$$
-\Delta_{p} w+|\nabla w|^{q}+\alpha^{1-p} w^{\alpha a+p-1}+b \alpha^{1-p} w^{p-1}-\frac{p-q}{p}\left(\frac{q}{p(p-1)}\right)^{\frac{q}{p-q}} w^{\frac{q}{p-q}} \leq 0
$$

Since $q>p-1, \frac{q}{p-q}>p-1$. We choose α and a such that

$$
\alpha a+p-1=\frac{q}{p-q} \quad \text { and } \quad \alpha^{1-p}=\frac{p-q}{p}\left(\frac{q}{p(p-1)}\right)^{\frac{q}{p-q}} .
$$

Therefore w satisfies

$$
-\Delta_{p} w+|\nabla w|^{q}+b \alpha^{1-p} w^{p-1} \leq 0 .
$$

This implies that there exists a large solution to (5.1).
Remark: According to [16], we need $1<p \leq 2, q \geq 1$ and $b \geq 0$ in order that the Comparison Principle is applied to the equation $-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0$.

Theorem 5.4 Assume that the equation (1.13) admits a solution for some $\lambda>0$ and $\beta \in \mathbb{R}$. Then for any $a, b \geq 0$ and $q, s \geq p-1,1 \leq q<p, a(q-p+1)+b(s-p+1)>0$ and we will add $1<p \leq 2$ if $a>0$, the equation (5.2) has a large solution and satisfied (5.3),(5.4).
Proof. Assume that the equation (1.13) admits a solution v for some $\lambda>0$ and $\beta \in \mathbb{R}$. Here we only need to prove for case $a(q-p+1)>0$. We set $v=\sigma \ln w$ with $\sigma>0$, then $w>0$ and

$$
-\Delta_{p} w+(p-1) \frac{|\nabla w|^{p}}{w}+\alpha^{1-p} w^{\alpha \lambda+p-1}+\beta \alpha^{1-p} w^{p-1}=0 \quad \text { in } \Omega
$$

Choose $\sigma=\frac{s-p+2}{\lambda}$, we can see that

$$
(p-1) \frac{|\nabla w|^{p}}{w}+\alpha^{1-p} w^{\alpha \lambda+p-1}+\beta \alpha^{1-p} w^{p-1} \geq a|\nabla w|^{q}+b w^{s} \quad \text { in } \quad\{x: w(x) \geq M\}
$$

where a positive constant M depends on $p, q, s, \lambda, \beta, a, b$. Therefore

$$
-\Delta_{p} w+a|\nabla w|^{q}+b w^{s} \leq 0 \quad \text { in } \quad\{x: w(x) \geq M\}
$$

Now we take an open subset Ω^{\prime} of Ω with $\overline{\Omega^{\prime}} \subset \Omega$ such that the set $\{x: w(x) \geq M\}$ contains in $\Omega \backslash \overline{\Omega^{\prime}}$. So w is a subsolution of $-\Delta_{p} u+a|\nabla u|^{q}+b u^{s}=0$ in $\Omega \backslash \overline{\Omega^{\prime}}$ and $w_{\varepsilon}:=\varepsilon w$ is too for any $\varepsilon \in(0,1)$. Let u be as in Proposition 5.1. Set $\min \left\{u(x): x \in \partial \Omega^{\prime}\right\}=\theta_{1}>0$ and $\max \left\{w(x): x \in \partial \Omega^{\prime}\right\}=\theta_{2} \geq M$. So, we have $w_{\varepsilon}<u$ on $\partial \Omega^{\prime}$ with $\varepsilon<\min \left\{\frac{\theta_{1}}{\theta_{2}}, 1\right\}$. Hence, from the construction of u in the proof of Proposition 5.1 and the Comparison Principle we assert $w_{\varepsilon} \leq u$ in $\Omega \backslash \overline{\Omega^{\prime}}$. Therefore, the Theorem follows.
Remark 5.5 From the proof of above Theorem, we can show that under the assumption as in Proposition 5.1, the equation (5.2) has a large solution in Ω if and only if the equation (5.2) has a large solution in $\Omega \backslash K$ for some a compact set $K \subset \Omega$ with smooth boundary.
Now we concern (5.1) in case $q=p$.
Theorem 5.6 Assume that the equation (5.2) has a large solution in Ω for some $a, b>0$, $s>p-1$ and $q=p$. Then for any $a_{1}, b_{1} \geq 0$ and $q_{1}, s_{1} \geq p-1,1 \leq q_{1} \leq p, a_{1}\left(q_{1}-p+1\right)+$ $b_{1}\left(s_{1}-p+1\right)>0$, the equation (5.2) also has a large solution in Ω with $a_{1}, b_{1}, q_{1}, s_{1}$ replacing a, b, q, s respectively, and satisfied (5.3)-(5.5). Here if $a_{2}>0$, we add the condition $1<p \leq 2$.
Proof. For $\sigma>0$ we set $u=v^{\sigma}$ thus

$$
-\Delta_{p} v-(\sigma-1)(p-1) \frac{|\nabla v|^{p}}{v}+a \sigma v^{\sigma-1}|\nabla v|^{p}+b \sigma^{-p+1} v^{(s-p+1) \sigma+p-1}=0
$$

Choose $\sigma=\frac{s_{1}-p+1}{s-p+1}+2$, it is easy to see that

$$
-\Delta_{p} v+a_{1}|\nabla v|^{q_{1}}+b_{2} v^{s_{1}} \leq 0 \quad \text { in } \quad\{x: v(x) \geq M\}
$$

for some a positive constant M only depending on $p, s, a, b, a_{1}, b_{1}, q_{1}, s_{1}$.
Similar to the proof of Theorem 5.4, we get the result as desired.
Remark 5.7 If we set $u=e^{v}$ then v satisfies

$$
\begin{equation*}
-\Delta_{p} v+b e^{(s-p+1) v}=|\nabla v|^{p}\left(p-1-a e^{v}\right) \quad \text { in } \Omega . \tag{5.15}
\end{equation*}
$$

From this, we can construct a large solution of

$$
\begin{equation*}
-\Delta_{p} u+b e^{(s-p+1) u}=0 \quad \text { in } \Omega \backslash K \tag{5.16}
\end{equation*}
$$

for any a compact set $K \subset \Omega$ with smooth boundary such that $v \geq \ln \left(\frac{p-1}{a}\right)$ in $\Omega \backslash K$. In case $p=2$, It would be interesting to see what Wiener type criterion the existence as such a large solution implies. We conjecture that this condition is

$$
\begin{equation*}
\int_{0}^{1} \frac{\mathcal{H}_{1}^{N-2}\left(B_{r}(x) \cap \Omega^{c}\right)}{r^{N-2}} \frac{d r}{r}=\infty \quad \forall x \in \partial \Omega . \tag{5.17}
\end{equation*}
$$

We now consider the function

$$
\begin{equation*}
U_{4}(x)=c\left(\frac{R^{\beta}-|x|^{\beta}}{\beta R^{\beta-1}}\right)^{\frac{p}{\gamma+p-1}} \quad \text { in } B_{R}(0), \gamma>0 \tag{5.18}
\end{equation*}
$$

It is easy to see that $\Delta_{p} U_{4}+U_{4}^{-\gamma} \geq 0$ for some positive constants β large and c small enough. From this, we get the existence of minimal solution to equation $\Delta_{p} u+u^{-\gamma}=0$ in Ω.
Proposition 5.8 For $\gamma>0$, there exists a minimal solution $u \in C_{l o c}^{1}(\Omega)$ to equation $\Delta_{p} u+$ $u^{-\gamma}=0$ in Ω and satisfied $u(x) \geq C d(x, \Omega)^{\frac{p}{\gamma+p-1}}$ in Ω.
We can verify that if the boundary of Ω is satisfied (1.3), then above minimal solution u is a singular solution this means $u \in C(\bar{\Omega})$ and $u=0$ on $\partial \Omega$.

Theorem 5.9 Let $\gamma>0$. Assume that there exists a singular solution to equation $\Delta_{p} u+u^{-\gamma}=$ 0 in Ω. Then for any $a, b \geq 0$ and $q, s \geq p-1,1 \leq q \leq p, a(q-p+1)+b(s-p+1)>0$, the equation (5.2) has a large solution in Ω and satisfied (5.3)-(5.5). Here if $a>0$, we add the condition $1<p \leq 2$.

Proof. We set $u=e^{-\frac{a}{p-1} v}$, then v is a large solution of

$$
\begin{equation*}
-\Delta_{p} v+a|\nabla v|^{p}+\left(\frac{p-1}{a}\right)^{p-1} e^{\frac{a}{p-1}(\gamma+p-1) v}=0 \quad \text { in } \Omega \tag{5.19}
\end{equation*}
$$

So

$$
-\Delta_{p} v+a|\nabla v|^{q}+b v^{s} \leq 0 \quad \text { in }\{x: v(x) \geq M\}
$$

for some a positive constant M only depending on p, q, s, a, b, γ.
Similar to the proof of Theorem 5.4, we get the result as desired.

References

[1] D. R. Adams, L. I. Hedberg, Function spaces and potential theory. Grundlehren der Mathematischen Wissenschaften 314, Springer-Verlag, Berlin, 1996. xii+366 pp.
[2] M.F. Bidaut-Véron, H. Nguyen Quoc, L. Véron: Quasilinear Lane-Emden equations with absorption and measure data, submitted.
[3] G. Dal Maso, F. Murat, L. Orsina, A. Prignet: Renormalized solutions of elliptic equations with general measure data, Ann. Sc. Norm. Sup. Pisa 28, 741-808 (1999).
[4] E. DiBenedetto, $C^{1+\alpha}$ local regularity of weak solutions of degenerate elliptic equations, Nonlinear Analysis 7, 827-850(1983).
[5] A. Friedman, L. Véron: Singular Solutions of Some Quasilinear Elliptic Equations, Arch. Rat. Mech. Anal. 96, 259-287 (1986).
[6] P. Honzik, B. Jaye: On the good- λ inequality for nonlinear potentials, Proc. Amer. Math. Soc. 140, 4167-4180 (2012).
[7] T. Kilpelainen, J. Malý: The Wiener test and potential estimates for quasilinear elliptic equations, Acta Math. 172, 137-161 (1994).
[8] J. B. Keller: On solutions of $\Delta u=f(u)$, Comm. Pure Appl. Math. 10, 503-510 (1957).
[9] D. Labutin: Wiener regularity for large solutions of nonlinear equations, Ark. Mat. 41, no. 2, 307-39 (2003).
[10] J.M. Lasry and P.L. Lions:Nonlinear elliptic equations with singular boundary conditions and stochastic control with state constraints: 1. The Model problem, Math. Ann. 283, 583630(1989).
[11] G.M. Liebernam Boundary regularity for solution of degenerate elliptic equations, Nonlinear Analysis 12, 1203-1219(1988).
[12] M. Marcus, L. Véron: Maximal solutions for $-\Delta u+u^{q}=0$ in open and finely open sets, J. Math. Pures Appl. 91, 256295 (2009).
[13] V. Maz'ya: On the continuity at a boundary point of solutions of quasilinear equations, Vestnik Leningrad Univ. Math. 3, 225-242 (1976).
[14] J. Maly, W.P. Ziemer: Fine Regularity of Solutions of Elliptic Partial Differential Equations, A.M.S (1997).
[15] R. Osserman: On the inequality $\Delta u \geq f(u)$, Pacific J. Math. 7, 1641-1647 (1957)
[16] P. Pucci, J. Serrin, The Maximum Principle, Progress in Nonlinear Differential Equations and Their Applications, 2007.
[17] B. O. Turesson: Nonlinear Potential Theory and Sobolev Spaces, Lecture Notes in Mathematics 1736, Springer-Verlag Berlin, Heidelberg (2000).
[18] J. L. Vazquez: An a priori interior estimate for the solution of a nonlinear problem representing weak diffusion, Nonlinear Anal. T. M. A. 5, 95103 (1981).
[19] J. L. Vazquez, L. Véron: Removable singularities of some strongly nonlinear elliptic equations, Manuscripta Math. 33, 129-144 (1980).
[20] L. Véron: On the equation $-\Delta u+e^{u}-1=0$ with measures as boundary data, Math. Z. 273 1-2, 1-17 (2013).
[21] N. Wiener: The Dirichlet problem, J. Math. Phys. 3, 127-146 (1924).
[22] W. Ziemer: Weakly Differentiable Functions, Graduate Texts in Mathematics 120, Springer-Verlag, Berlin (1989).

[^0]: *E-mail address: Hung.Nguyen-Quoc@lmpt.univ-tours.fr
 ${ }^{\dagger}$ E-mail address: Laurent.Veron@lmpt.univ-tours.fr

