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Abstract

We develop a general method to solve models of interactions between multiple and pos-
sibly strategic agents. Our model explains apparently irrational or biased behaviors in a
person. We argue that these actions could result from several rational structures having
different goals. Our main example is a model of three agents, “conscious”, “unconscious”,
and “body”. Our main result states that, for an agent whose unconscious and conscious
goals differ, the unconscious may influence the conscious, either directly or indirectly, via a
third agent, the body. This three-agent model describes behaviors such as craving, exces-
sive smoking, or sleepiness, to delay or dismiss a task. One of the main result shows that
the unconscious’ strategic action crucially depends on whether the conscious’ actions are
complementary in time. When complementary, and if the conscious is not sensitive to un-
conscious’ messages, the unconscious may drive the conscious towards its goals by blurring
physical needs. When not complementary, the unconscious may more easily reach his goal
by influencing the conscious, be it directly or indirectly.

Keywords: dual agent; conscious and unconscious; rationality; multi-rationality; consis-
tency; choices and preferences; multi-agent model.
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1 Introduction

When economics first became identified as a distinct field of study, psychology did not exist as
a discipline. When it finally did, economists distanced themselves from it: psychology was seen
as not sufficiently founded to provide the laws economics needed to impose itself as a natural
science. The discovery of the unconscious, at the turn of the XXth century, further contributed
to this entrenchment.

It was only in the face of the repeated failures of their predictions, that economists were
poised to depart from modeling the “perfect rational man”. Today, the irrationality displayed
by agents is seen as the main culprit of the repeated failures of economic models. By taking
into account the “true” behavior of agents, i.e. by acknowledging the fact that they do not
systematically act as fully rational agents, it is hoped that the flaws of economic predictions
will be corrected. This approach is at the root of behavioral economics. Combining psychology
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and economics, it investigates what happens in markets in which some of the agents display
human limitations and complications [MT01].

By providing economics with more realistic psychological foundations, behavioral economics
attempts to increase the explanatory power of economics. Anomalies in standard economic
normative assumptions are identified, used to create alternative theories that generalize existing
models and, more recently, directly included in economic models of behavior to derive fresh
implications, and test them. The modification of one or two assumptions in standard theory in
the direction of greater psychological realism suffice. It is stated that, often, these departures
are not radical at all because they relax simplifying assumptions that are not central to the
economic approach [CL03].

Yet this approach has a flaw: although pinpointing anomalies is certainly valid to underline
the failures of a model, and using them as stylized facts to modify rational assumptions may
improve the predictive power of economic models, this approach is unlikely to improve our
understanding of our bounded rationality and irrational behaviors.

Most importantly, the behavioral approach does not question the nature of the information
process at the unconscious level. In other words, it fails to question under which conditions
the unconscious could be modeled as fully and plainly rational, and the consequences this
assumption could have. This approach to the unconscious processes is therefore partial. It
represents a shortcut to the true question: to understand human behavior, one has to suppose
it is indeed rational in the plain economic sense of the term.

Merely acknowledging our psyche as rational but somehow “bounded” dismisses the possi-
bility of a specific and fully rational agent, the unconscious, continuously acting alongside the
conscious within ourselves. Needless to say that this reasoning is understandable. One could
argue that, if the unconscious was indeed a rational agent, having the same information as the
conscious, the behavior of the individual as a whole, i.e. the sum of two rational and identi-
cally informed agents, should be unique and rational. Since it is not, one concludes that the
unconscious is not fully rational. Hence the departure from full rationality.

The two first authors have argued elsewhere [Lot11, GL12] that, as long as some unconscious
activity takes place within our minds, it must be modeled as a fully rational agent, in the
economic sense of the term. They furthermore inferred that it should act permanently, i.e. that
it cannot be “dismissed” at will. Finally, its presence and its action must be considered as fully
rational, and in consequence rely on an alternate set of information.

Crucially, irrationality in unconscious-led behavior, in our view, does not arise from the fact
that the unconscious is irrational, but rather from the fact that these two agents evaluate events
through different grids, and act through one single body. This approach has been developed in
[Lot11], who dubbed the resulting agent, i.e. the combination of two fully economically rational
agents, the “dual agent”. Building on the dual-agent approach, [GL12] showed that, under
specific conditions, the dynamics of the conscious and unconscious seen as two autonomous and
interacting structures may display instability, depending on the structures interactions strength.
However, if unconscious has a strategic advantage, greater stability is reached. This result shows
that some switch in the conscious’ objective can appear in our setting. Behaviors that can’t be
explained with a single utility can thus turn out to be rational if a rational unconscious agent
is added. Our results justify our hypothesis of a rational interacting unconscious. It supports
the widening of the notion of rationality to multi-rationality in interaction.

True, the strategy of breaking up the person into interacting sub-agents is being explored to
economically model inconsistent people [Ros10]. Dual or multiple selves acting “synchronically”
and/or “diachronically” on a similar set of information and having different objectives have
already been shown to provide a unified explanation for several behavioral anomalies1, among

1See [Str56, Sch78, Sch80, Sch83, Ain92, Ain01, Ros05, Ros09]
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which cases of procrastination such as Akerlof’s [Ake91]. Ainslie’s picoeconomic framework
represents this situation as a bargaining game between several selves [Ain92] (see [Ros10] and
references therein for an account).

The notion of dual agent must specifically be distinguished from the dual self considered
in Fudenberg and Levin [FL06]. The latter consists of sub-structures, both long run and short
run, to model behaviors of self control. In these authors’ perspective, the long run self imposes
costs on short run selves and controls their behaviors. Their approach differs from ours on two
points. First, they model a successive identification of the agent to several selves, each one
disappearing in turn. We believe, on the contrary, that a pattern of behavior displays a certain
persistency and must, as a consequence, be active at all stage of the decision making.

We argue that the human psyche can be modeled as several agents in complex, simultaneous,
and possibly strategic, interactions. Importantly, in [FL06] and in picoeconomics in general, the
role of the unconscious - inasmuch such a notion can be attributed to the sub-structures they
consider - appears as a mere unknown random modification on the short term utility. Unknown
mechanisms induce a change in the agent utility. These mechanisms are precisely the ones we
want to describe, along with what makes these actions inconsistent or incoherent. Only by
describing some unconscious rational behaviors, can we hope to deal with these problems.

A step in this direction was made in [GL12] where, following [Lot11], two types - dominating
strategic/non strategic - of agents were considered. In particular, [GL12] presented an exam-
ple of a two-agent model of direct interaction between a person’s conscious and unconscious.
However the authors acknowledged that several interacting strategic agents may be at the root
of the decision process. This paper therefore presents a mathematical framework including
several strategic agents linked by complex hierarchical interconnections. It models interactions
where agents can have a strategic advantage over some agents, while being dominated by others.
In particular, the framework includes the possibility of several competing agents with contradic-
tory objectives. As an example, we study a model with three agents, “conscious”, “unconscious”
and “body” respectively, where the unconscious triggers body needs to indirectly alter the per-
son’s conscious goals. We suggest that, under certain conditions, such a model can well describe
several behaviors, such as hyperactivity or depression, etc . . .

The paper is organized as follows. The first section presents a one-period model of three
interacting agents. Several decision centers, i.e., economic agents, are encapsulated in one
agent, and each center has specific autonomy, and potentially conflicting goals and strategies.
A characteristic feature of the model is the strategic advantage some agents have over others,
that provides the description of a person’s behavior when his/her conscious will, unconscious
drive and body’s needs conflict.

The second section solves the model, presents the equilibrium, interprets the solutions and
describe the relevant behaviors that can be described by our formalism. The third section ex-
tends the model to an arbitrary number of interacting agents. Here again some agents have
strategical advantage over some others. An explicit recursive resolution process is provided for
this general setting. As an example we recover the solutions of the three interacting agents
model. The last section concludes. Possible applications of the general model are briefly con-
sidered.

2 The three agents model

This section presents a static model of three interacting agents. Its aim is to describe apparently
irrational and incoherent behaviors, seen as the resulting action of three relatively independent
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sub-structures, i.e agents, among the same psyche. This model will serve as an introductory
example of the general formalism of interacting agents of Section 3.

Practically, we model an agent whose conscious wants to perform a task. However, his
unconscious has other goals and may consider this specific task as non optimal. Moreover,
a third agent, denoted “the body”, has specific needs that have to be satisfied. We assume
that the unconscious manipulates both the body and the conscious by sending signals, such as
discomforts or strains. This models builds on [LG], but here the novelty consists in inspecting
the indirect action of the unconscious on the conscious, via the body and its needs.

Let us consider the hypothetical case, where a student, involved in the precise task of
learning, experiences difficulties in concentrating. Each time he starts working, he is quickly
overwhelmed by sleepiness, boredom or compulsions, such as smoking or eating. We will consider
that these compulsions appear at these specific moments, when the student is both rested and
fed, and as such, cannot correspond to objective physical needs. We see in this “coincidence”
a warning message that signals the action of the unconscious. In our perspective, the unconscious
has other priorities and goals, and moreover his interpretation grid differs from the conscious’ one
(see [GL12] for more details). The conscious actions are read by the unconscious. Interpreted
according to a completely different grid, they are understood as suboptimal or potentially
dangerous by the unconscious. In the case of our student, we can suppose that, for some
reasons, the unconscious perceives learning as harmful, and will use its power to thwart the
conscious action.

The student’s visible behavior is merely the result of the three agents’ interactions. In a
dynamical perspective, it may lead to some incoherent patterns, such as inconsistency in an
agent’s goal .

2.1 The agent’s utility functions

Let us now describe more precisely the model.

Throughout the paper, C, B, and U will respectively stand for the conscious, body and
unconscious agents. We model the body as an automaton whose action is a signal n of a
physical need. By convention, a positive n will describe a need, while negative n will stand for
a satiety signal. The agent C, the conscious, has two possible actions. It performs a task t,
which optimum is arbitrarily normalized to 0. But he can also respond to agent B’s signal with
a second action f , for feeding.

The model considers two possibilities. In the first case, the two actions are non exclusive,
and no constraint is imposed on them. In the second case, a time constraint do exist, and both
action are exclusive and complementary. The agent’s time is divided optimally between the two
actions.

For the unconscious, agent U, the optimum is not t = 0, but an other value t̃. In order to
manipulate C and have its optimum changed, U can send three strains. Two of them, st and
sf , directly affect C in reaction to its actions t and f . The last one, sn influences B in reaction
to n.

Finally, we suppose that, although they are influenced by the unconscious strains, C and a
fortiori B are not aware of the presence, and goals, of U.

To model the situation at stake, the three agents B, U and C utilities will be quadratic and
denoted UB, UU, UC respectively, such that:
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UB = −
1

2
(n+ f)2 − αnsn

UU = −
1

2

(

β
(

f − f̃
)2

+ γ
(

t− t̃
)2

+ s2n + s2f + s2t

)

UC = −
1

2

(

t2 + δn2
)

− νnt− κsf

(

f − f̃
)

− ηst
(

t− t̃
)

As usual in this kind of model, these utilities will be quadratic, and normalized so that the
quadratic terms coefficients in the control variables are −1

2 or 0 (in the utility of each agent).

The body is merely considered as an automaton. It has no specific goals, and its utility func-
tion UB describes its reaction to other agents’ actions. In this setting, endowing the body with
specific goals would have allowed it to manipulate the conscious, which was not our purpose
here. Without any interaction with the unconscious U, the body would react, in first approxi-
mation, linearly to the feeding provided by the conscious C. This led us to state the first term
−1

2 (n+ f)2 in UB. The influence of the unconscious on the body is described as a perturbation
−αnsn, sent by the unconscious as a reaction to the physical signal. Without this term, one
can easily check that B’s optimum is reached for n = −f = 0. This result being suboptimal for
U, he will react to drive the equilibrium toward his own goal f̃ .

The response n of B does not depend directly on the task t performed by C, in line with
our previous hypothesis that this task is not physically demanding. We are not interested in
modeling the physical strain, but will rather study the use of the body by the unconscious
to reach his goal, i.e. how U can break an equilibrium between B and C. By convention, we
will impose the parameter α to be positive, so that a positive strain will respond to a positive
feeding.

Now, consider UC, agent C’s utility. Its first term −1
2t

2 encompasses C’s utility in the
absence of both the unconscious U and the body B. In this - hypothetic - situation, without
any constraint on t, agent C would optimally choose t = 0.

The terms −1
2δn

2 − νnt describe the effect of the hunger signal on C. The higher the need,
the more painful is the task. Let us anticipate here by mentioning that in the absence of U,
agent C will still be able to set t = 0 by adjusting the feeding to the anticipated need.

The term −1
2δn

2 models the fact that, even without any work being involved, the need is,
in itself, painful. As a consequence, we will acknowledge this fact by choosing δ > 0. This a
direct consequence of dismissing any cost to the feeding f . Usually, models would impose costs
to an agent’s tasks, or some constraints between these tasks .

In other word, without U, the body B and the variable f could be discarded from C’s
equilibrium. When included, U indirectly manipulates C through B by assigning a strategic
role to f . We will however consider the inclusion of a binding constraint on the feeding, by
considering two alternative models. In the first one, we will consider f and t as complementary
activities within a given time span, and will set a binding constraint such that f + t = 1. In
the alternative model, the variables f and t will be considered independent.

The terms −κsf

(

f − f̃
)

− ηst
(

t− t̃
)

are the perturbations induced by U, in its attempt to

impose his goals f̃ and t̃ on C. These terms actually drive C’s actions from 0 toward f̃ and t̃.
Some additional technical conditions on UC will be convenient. Setting δ−ν2 > 0 will ensure

that UC is negative definite, and allow the existence of an optimum. Furthermore, imposing
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ν > 0 will imply that for n > 0 and t > 0, agent C suffers a loss in its utility, as one can expect
from a combination of both a need non satisfied associated with excessive working.

Agent U’s utility UU displays two terms −1
2β
(

f − f̃
)2
− 1

2γ
(

t− t̃
)2

that clearly model U’s

goal with respect to C’s activity. U considers certain levels of the conscious’ activity, f̃ , t̃ as
optimal. Let us stress, as explained in [LG], that an agent facing a situation, whether the
conscious or unconscious, builds his interpretation, and thus his utility function, through his
own grid of lecture. As a consequence, U and C have a complete different interpretation of a
current situation. We will impose β and γ to be positive, so that UU can have an optimum.

The remaining terms −1
2

(

s2n + s2f + s2t

)

model the cost incurred by the strains imposed on

other agents. Since we did postulate that the three agents are one single individual, a strain
inflicted by one agent is indeed painful for all of them.

Some additional constraints on the coefficients and the variables are required to have a
realistic model. Because agent U sends a pain if his goals are not reached, sf et st are assumed
positive. We do not impose such a constraint on sn, since no optimum value for n is expected
by U. Being an adjustment variable, sn can be seen as a pain as well as a reward for the body.

To model this pain, the terms −κsf

(

f − f̃
)

and −ηst
(

t− t̃
)

should be negative. We there-

fore impose f̃ and κ (respectively t̃ and η) to have opposite signs. This comes directly from the
fact that the equilibrium values of f and t will obviously lie between 0 and f̃ and respectively
between 0 and t̃.

We will furthermore assume that some agents have a strategical advantage over others.
Recall first that B, the body, has been considered as an automaton, and as such is not a strategic
agent. Given the psychological situation we had in mind (neurosis, phobia, etc) we assume that
the unconscious U has a strategic advantage over the conscious C. Both U and C are strategic
with respect to B, and can thus manipulate him. This situation can be modeled by an oriented
graph whose vertices are B, C, and U. The orientation of the edges of the graphs summarize
the strategic advantages: C →B, U→B, U→ C. Later a formalization with help of graphs will
allow us to describe and solve models for an arbitrary number of interacting agents.

As usual the hierarchy of strategical advantages will determine the order of resolution. This
will be detailed in the next section. As quoted before, we will consider two cases. We first
implement the time binding constraint t + f = 1 for the conscious agent actions. In a second
time, we suppose that there is no such constraint and that n and t are independent.

2.2 The case f + t = 1

We replace directly f = 1− t in the utility functions:

UB= −
1

2
(n+ 1− t)2−αnsn

UU= −
1

2
β
(

1− t− f̃
)2
−
1

2
γ
(

t− t̃
)2
−
1

2
s2n−

1

2
s2n−

1

2
s2t

UC = −
1

2
t2 −

1

2
δn2 − νnt− κsf

(

1− t− f̃
)

− ηst
(

t− t̃
)

We will adopt a matricial formalism for the utility functions. Up to a constant number, the

6



utilities can be written as:

UB = −
1

2
tX1X1 −

tX1A
(1)
12 X2 −

tX1A
(1)
13 X3 −

1

2
tX3A

(1)
33 X3 + (tX3 −

tX1)E1

UU = −
1

2
tX2A

(2)
22 X2 −

1

2
t
(

X3 − X̃3

)

A
(2)
33

(

X3 − X̃3

)

UC = −
1

2
tX3A

(3)
33 X3 −

1

2
tX1A

(3)
11 X1 −

tX3A
(3)
31 X1 −

tX2A
(3)
23 X3 −

tX2Ǎ
(3)
23 X̌3

where the control variables for the agents are concatenated in the following vectors:

X1 =
(

n
)

, X2 =





sn
st
sf



 , X3 =
(

t
)

.

The left upper-script t( · ) denotes the usual transposition of matrices. The goals of U are

enclosed in X̃3 =
(

γt̃+β(1−ñ)
β+γ

)

. Recall that all others goals are normalized to 0. We also set

X̌3 =

(

−t̃

1− f̃

)

. The utilities quadratic relations are commanded by the following parameters

matrices.

A
(1)
12 =

(

α 0 0
)

, A
(1)
13 =

(

−1
)

, A
(2)
33 = (β + γ)

A
(3)
33 =

(

1
)

, A
(3)
11 =

(

δ
)

, A
(3)
31 =

(

ν
)

A
(1)
33 = (1) , E1 =

(

1
)

,

A
(2)
22 =





1 0 0
0 1 0
0 0 1



 , A
(3)
23 =





0
η

−κ



 , Ǎ
(3)
23 =





0 0
η 0
0 κ





By convention, we set A
(i)
ji = t

(

A
(i)
ij

)

.

Since B is dominated by both C and U, and C is dominated by U, the following matricial
formulas will lead to the same equilibrium.

U ′B = −
1

2
tX1X1 −

tX1A
(1)
12 X2 −

tX1A
(1)
13 X3 −

1

2
tX3A

(1)
33 X3 −

tX1E1

U ′U = −
1

2
tX2A

(2)
22 X2 −

1

2
t
(

X3 − X̃3

)

A
(2)
33

(

X3 − X̃3

)

U ′C = −
1

2
tX3A

(3)
33 X3 −

1

2
tX1A

(3)
11 X1 −

tX3A
(3)
31 X1 −

tX2A
(3)
23 X3

2.2.1 Resolution

Let us now solve the optimization problem. Agent B having no strategical advantage, we will
solve his optimization problem first. One obtains directly
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X1 = −
(

A
(1)
12 X2 +A

(1)
13 X3 + E1

)

which expresses X1 as a function of X2 and X3. Replacing this expression in U ′C and U ′U, we
follow the hierarchy of strategical advantages, and optimize U ′C on X3. It yields

A
(3)
33 X3 +A

(3)
32 X2 −A

(1)
31 A

(3)
11 X1 +A

(3)
31 X1 −

tX3A
(3)
31 A

(1)
13 = 0

from which X3 is obtained:
X3 = KX2 + E3

with

K = −
(

A
(3)
33 +A

(1)
31 A

(3)
11 A

(1)
13 −A

(3)
31 A

(1)
13 −A

(1)
31 A

(3)
13

)−1 (

A
(3)
32 +A

(1)
31 A

(3)
11 A

(1)
12 −A

(3)
31 A

(1)
12

)

E3 = −
(

A
(3)
33 +A

(1)
31 A

(3)
11 A

(1)
13 −A

(3)
31 A

(1)
13 −A

(1)
31 A

(3)
13

)−1 (

A
(1)
31 A

(3)
11 −A

(3)
31

)

E1.

Alongside with X3, we rewrite X1 as a function of the sole variable X2 and get

X1 = −
(

A
(1)
12 X2 +A

(1)
13 X3

)

− E1

= LX2 −A
(1)
13 E3 − E1

where
L = −

(

A
(1)
12 +A

(1)
13 K

)

.

Ultimately, the optimization of U ′U leads to a complete resolution of the model in function
of the parameters and the goals X̃3 in the following way:

X2 =
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3 + E2

X3 = K
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3 +KE2 + E3

X1 = L
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3 + LE2 −A

(1)
13 E3 −E1

with E2 = −
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 E3.

Setting

V = ν + 1, W = ν + δ, Γ = γ + β, and R =
κ2 + η2

α2
,

we obtain
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n =
α2(R − V W )

α2Γ(R+W 2) + (V +W )2
( γt̃− βf̃)

t =
α2(R+W 2)

α2Γ(R+W 2) + (V +W )2
(γt̃− βf̃)

sn =
αW (V +W )

α2Γ(R +W 2) + (V +W )2
(γt̃− βf̃)

st =
η(V +W )

α2Γ(R +W 2) + (V +W )2
(−γt̃+ βf̃)

sf =
κ (V +W )

α2Γ(R +W 2) + (V +W )2
(γt̃− βf̃).

2.2.2 Interpretation

The various control variables n, t, f , sn, st, and sf depends linearly on the goals t̃ and f̃ . The
matrices expressing these dependencies are themselves functions of the model parameters α, β,
γ... These results need to be interpreted by analyzing the dependencies in t̃ and ñ. In doing
so, we will emphasize the different channels available for the unconscious U, in driving other
agents in his direction.

In this model, the behavior of the agent is dictated by the complementarity f + t = 1, and

depends crucially on the ratio R = κ2+η2

α2 . This ratio measures the relative efficiency of the two
channels the unconscious agent can use to affect the conscious’ behavior.

Actually, when R is large, the conscious is more sensitive to the “intellectual” direct strains
st and sf and the unconscious will focus on this mean of action. If the ratio is small, the
unconscious will preferably act on the conscious through the indirect strain sn, i.e. body needs.
The necessity to choose between these two channels, and the different results it will lead to, are
the direct consequence of the time complementarity between t and f , as we shall see.

The activity level t is straightforward to analyze. It depends positively on t̃ and negatively
on f̃ . When t̃ raises, the unconscious is able to induce a higher activity through two ways. First
by reducing the strain st, and second by reducing the physical need via a decrease in the strain
sn. For the same reason t depends negatively on f̃ . The unconscious raises f through sf and
sn, which reduces t by complementarity.

However, and interestingly, these unambiguous results can be achieved in two different ways,
leading to an ambiguous sign for the physical need n, as can be seen in the results. As explained
above, the unconscious has two different channels of action on the conscious, and the relative
efficiency of these channels is measured by R.

When R > VW , the direct action of the unconscious on the conscious is more efficient than
the indirect one, i.e. the manipulation of the body, and t depends positively on t̃.

It will prove more efficient for the unconscious to induce a higher strain st on the conscious,
rather than acting through the physical need. As consequence, a higher t̃ implies a higher t,

as seen above, as well as a reduced f . The indirect channel being not efficient enough, the
unconscious is unable to reduce the resulting n through the strain sn, and n rises.

On the other hand, when R < VW , when t̃ increases, the unconscious will rather use the
indirect channel to decrease the need n and induce a higher t.
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For complementarity reasons, when R > VW , the task t depends negatively on f̃ . In this
case, in order to increase n, the unconscious increases the strain sf that reduces t, that in turn
increase f and reduces n. On the contrary, if R < VW , the unconscious will act through the
body and increase the need n, which reduces t and increases f .

This model therefore describes two kinds of agents. The first one (case R > VW ) is driven
away from the conscious equilibrium for the task t. But doing so, he is not able to to satisfy the
physical need n and feels the effect of such an effort. One may conjecture that, in a dynamic
perspective, this equilibrium will not be sustainable in the long run. Symmetrically, it could
also describe an agent prevented from working or performing some activities. This agent will
rather spend his time with the complementary activity such as smoking, eating... This last
possibility is sustainable.

The second type of agent (case R < VW ) can also be driven away from the conscious
equilibrium in an hyperactivity phase, through a kind of “anesthesia”. The rise in his level of
activity, for instance, will not be followed by a feeling of disequilibrium. This may be sustainable
a certain amount of time, but may lead to a breakdown in the longer run.

2.3 Case when f and t are independent

When we relax the time binding condition and allow the control variables f and t to be inde-
pendent, the utility functions

UB = −
1

2
(n+ f)2 − αnsn

UU = −
1

2

(

β
(

f − f̃
)2

+ γ
(

t− t̃
)2

+ s2n + s2f + s2t

)

UC = −
1

2

(

t2 + δn2
)

− νnt− κsf

(

f − f̃
)

− ηst
(

t− t̃
)

lead to the equivalent matricial form

U ′B = −
1

2
tX1X1 −

tX1A
(1)
12 X2 −

tX1A
(1)
13 X3 −

1

2
tX3A

(1)
33 X3

U ′U = −
1

2
tX2A

(2)
22 X2 −

1

2
t
(

X3 − X̃3

)

A
(2)
33

(

X3 − X̃3

)

U ′C = −
1

2
tX3A

(3)
33 X3 −

1

2
tX1A

(3)
11 X1 −

tX3A
(3)
31 X1 −

tX2A
(3)
23

(

X3 − X̃3

)

where the control variables for the agents are now concatenated in the following vectors:

X1 =
(

n
)

, X2 =





sn
st
sf



 , X3 =

(

t

f

)

The matrices are now given by
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A
(1)
12 =

(

α 0 0
)

, A
(1)
13 =

(

0 1
)

, A
(2)
33 =

(

β 0
0 γ

)

A
(3)
33 =

(

1 0
0 0

)

, A
(3)
11 =

(

δ
)

, A
(3)
31 =

(

ν

0

)

A
(3)
23 =





0 0
η 0
0 κ



 , A
(1)
33 =

(

0 0
0 1

)

, A
(2)
22 =





1 0 0
0 1 0
0 0 1



 .

The optimization problem is exactly the same as in the previous case, provided we cancel
all the constant matrices Ei for i = 1, 2, 3. Using the same procedure as before, we get

X2 =
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3

X3 = K
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3

X1 = L
(

A
(2)
22 + tKA

(2)
33 K

)−1
tKA

(2)
33 X̃3

with

K = −
(

A
(3)
33 +A

(1)
31 A

(3)
11 A

(1)
13 −A

(3)
31 A

(1)
13 −A

(1)
31 A

(3)
13

)−1 (

A
(3)
32 +A

(1)
31 A

(3)
11 A

(1)
12 −A

(3)
31 A

(1)
12

)

and
L = −

(

A
(1)
12 +A

(1)
13 K

)

.

A more precise description of the equilibrium can be given by the following formulae. Set

C = κ2 + δη2, B = βα2 + 1, N = ν2η2 + γη2κ2 + κ2, ∆ = δ − ν2, E = η2δ2 + ν2κ2,

and
D = (∆2 + γE)B + βN.

Note that, in our conventions, all these quantities are nonnegative. The solutions are explicitly
given by

n = −

(

γνCB

D

)

t̃−

(

βN

D

)

f̃

t =

(

γ(EB + βη2κ2)

D

)

t̃+

(

βνC

D

)

f̃

f =

(

γνC

D

)

t̃+

(

β
(

N + α2(∆2 + γE)
)

D

)

f̃

sn =

(

αβγνC

D

)

t̃−

(

αβ(∆2 + γE)

D

)

f̃

st = −

(

γη(δ∆B + βκ2)

D

)

t̃+

(

βην(κ2γ −∆)

D

)

f̃

sf =

(

γκν(η2β −∆B)

D

)

t̃−

(

βκ(δγη2 +∆)

D

)

f̃ .
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2.3.1 Interpretation

Removing the constraint f+ t = 1 allows more freedom for the conscious. Without the trade off
between the activity and satisfying the need, n depends negatively on f̃ . This is straightforward:
the unconscious directly drives the body toward his goals. On the other hand, n depends also
negatively on t̃. Actually, the unconscious will lead the conscious to a higher level of activity
by inducing a higher feeding f , and thus reducing the need n.

For similar reasons, t, the conscious’ task, will depend positively on t̃ and f̃ . A higher f̃ will
lead to a higher n, a lower n and in turn a higher task level t.

This departs from the previous model: in the absence trade off between f and t, the un-
conscious is able to manipulate both the activity level and the feeding at the same time. This
possibility would for instance describe a situation in which both feeding and working are possible
at the same time, writing and smoking, or doing some sport and snacking, etc...

This can have enhancement effects: when f̃ and t̃ are non contradictory and have the same
sign, it can induce high worker-high smoker profiles, or depressive effects, such as no task-no
feeding, each effect boosting the other.

However, it can also describe neutralization behaviors, when goals are contradictory, such
as f̃ < 0 and t̃ > 0, for example. Some anorexic pattern could exemplify this type of situa-
tions. Under a dynamic description, a high level of activity could be quickly deterred by the
impossibility for the agent to satisfy the body’s needs.

For the sake of precision, let us detail the mechanisms at stakes here.
whatever the parameters of the model, n depends negatively on f̃ . When U acts, the

magnitude of the dependency increases with β, the weight assigned by U to f . More surprisingly,
n reacts negatively to t̃. This is the clue to U’s underground activity. Actually, when t̃ > 0,
the unconscious aims at raising the conscious’ task t,when C would rather set t = 0. For
this purpose, U uses an indirect channel through the body’s action, when α 6= 0. Inducing a
negative strain on B will result in a lower n, and a higher t, as wanted by U. In other words,
the unconscious is able to calm down the body’ need to stimulate the conscious’ activity. On
the contrary, when t̃ < 0, U can increase the body’s need to damper the conscious’ task. In a
psychological context of neurosis, this a common behavior of hyperactivity or failure: a subject
feels a modification of his physical state, that can either boost or impair a conscious project.

The variable t reacts positively to f̃ and t̃. The unconscious manipulates C to lead his
actions toward U’s goals t̃. The dependence of t in t̃ is straightforward. U influences C directly
through st . The goal t̃ is not fully reached, since the unconscious suffers also a loss from the
strain st. The dependence of t in f̃ is indirect. It results in a crossed interaction between U, B
and C. As a consequence of the strain sf imposed by U on C, when f̃ raises, f will increase as
a consequence. The increase of f will in turn reduce the signal n sent by the body, and allow
the conscious to set a higher level of task t (since the cost of n in UC, that is −νnt, dampens).

The variable f depends positively on f̃ and t̃. The proof is the same as the one for t. It
suffices to exchange the roles of f̃ and t̃.

For α 6= 0, the control variable sn depends positively on t̃ an negatively on f̃ . Indeed, for
ñ > 0, it is beneficial to U to send a higher strain to the body, so that the body’s need n, and
thus f the conscious answer to it will increase. If t̃ > 0, the unconscious agent will reduce the
body need n, through a negative strain sn. It will induce a higher task t for the conscious agent,
as wanted by U. Trivially, if one has α = 0, Agent U has no influence on B and, as expected,
the strain sn is zero.

12



The strain st depends positively on −ηt̃. We remind that one has −ηt̃ > 0 as explained in
Section 1. As expected, more

∣

∣t̃
∣

∣ raises, the more U sends a strain st on the conscious agent to

lead the latter to raise his action t. The dependance of st on f̃ is ambiguous, that is, its sign
depends on the various parameters. For κ = 0, if f̃ raises, Agent U will induce higher need n

for B, through sn, so that f raises. However, the increase in n will lead C to reduce his task t.
Agent U, will thus be led to reduce st to stabilize t. However if κ is set a higher positive level,
Agent U can now directly influence the level of f and thus has the tendency to reduce its use
of st.

For complete similar reasons, sf depends positively on −κf̃ and ambiguously on t̃.

The ambiguous signs on the strain translate the fact that U despite his strategic domination,
has to adapt his behavior to the interaction between B and C. In absence of the term −νnt in
UC, Agent U could set his strains sf and st to adjust f and t independently one from the other.
In the presence of −νnt, as we saw, the strains act on both f and t in a dependent way. The
adjustment has also to be done dependently. As seen above, in order to active U’s goals, it can
be useful to reduce a strain associated to one of the variable to increase indirectly the other
one.

3 General case: Several interacting structures.

Let us now present a model for several interacting agents where some may have strategic ad-
vantages over others. We also give a general resolution method for this type of model.

The relations of strategic domination between agents are described by an oriented graph.
For f agents, let us consider the graph Γ whose vertices are the integers from 1 to f , each
vertex corresponding to an agent. If agent i has a strategic advantage over agent j, we draw
an oriented edge from i to j and write i→ j. For later purpose if there exists an oriented path
from i to j, we write the relation i  j. In this situation, we will state that agent i dominates
directly or indirectly agent j or, equivalently, that agent j is subordinated to agent i. On the
other hand, we will write j 6 i if there is no oriented path from i to j, where it is always
understood that i 6= j.

We will merely consider connected graphs without loops. In the model of Section 2, for
instance, if B is number 1, U is number 2, and C is number 3, we have: 3 → 1, 2 → 1, and
2→ 3. So we also have 3  1, 2  1, and 2  3. Note that here the relation 2  1 is obtained
via the edge 2 → 1, but also by the path 2 → 3 → 1. This means that the unconscious can
manipulate the body directly or indirectly through the conscious agent. We note here that the
model presented in [FL] would be encoded in an unbounded graph of type 1→ 2→ 3→ · · · in
which agent 1 is the “long-run self” and the other ones are the “short-run selves”. Let Xi ∈ Rni

be the agent i’s vector of control variables. The vector X̃
(i)
j ∈ Rni is the vector of the goals for

the variables Xj , as expected by agent i. We normalized the vector X̃
(i)
j to 0. In other terms,

agent i wishes to achieve Xi = 0 and Xj = X̃
(i)
j .

Agent i′s utility is given by:

Ui = −
1

2
tXiA

(i)
ii Xi −

1

2

∑

ji

t
(

Xj − X̃
(i)
j

)

A
(i)
jj

(

Xj − X̃
(i)
j

)

−
∑

ji

tXiA
(i)
ij Xj −

∑

j 6i

t
(

Xi − X̃
(j)
i

)

A
(i)
ij Xj −

tXiEi
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The term −1
2
tXiA

(i)
ii Xi is the utility of Agent i per se, that is to say agent i’s utility in

absence of any interaction. The variables Xi are normalized such that the matrix A
(i)
ii is a

fi × ni diagonal matrix with coefficients equal 1 or 0.

The term
∑

ji

t
(

Xj − X̃
(i)
j

)

A
(i)
jj

(

Xj − X̃
(i)
j

)

models agent i′s loss of utility if the actions Xj

of its subordinate agents depart from X̃
(i)
j . The fj × nj matrix A

(i)
jj of parameters is of course

symmetric.

The next terms
∑

ji

tXiA
(i)
ij Xj −

∑

j 6i

t
(

Xi − X̃
(j)
i

)

A
(i)
ij Xj describe the impact induced on

agent i’s utility by agent j′s action. j  i can be seen as the resulting collateral damage to
agent i induced by agent j′s action . In our model, agent j can’t “see” the agents to whom he
is subordinated. The second term models the strain imposed by agent j to agent i in order to

achieve its own objectives for Xi. Note that it does not matter to write
∑

j 6i

tXiA
(i)
ij Xj instead of

∑

j 6i

t
(

Xi − X̃
(j)
i

)

A
(i)
ij Xj . The linear term inXj disappears during the resolution. By convention,

for the ni × nj parameters matrices A
(i)
ij , we will write tA

(i)
ij = A

(i)
ji .

The last term tXiEi models the loss or gain of utility caused by possible external perturba-
tions summarized by the vector Ei ∈ Rni .

Let us now describe the general process which leads to the resolution of the model. For

all j’s such that j  i, the variable Xj will depend on Xi as agent j is dominated at least
indirectly by agent i. The maximization equation for agent i’s utility yields directly



A
(i)
ii +

∑

ji

t

(

∂Xj

∂Xi

)

A
(i)
ji



Xi +
∑

ji

(

A
(i)
ij + t

(

∂Xj

∂Xi

)

A
(i)
jj

)

Xj +
∑

j 6i

A
(i)
ij Xj

=



Ei +
∑

ji

t

(

∂Xj

∂Xi

)

A
(i)
jj X̃j



 .

To solve the model, the matrices
∂Xj

∂Xi
must be found first. These matrices are zero when

agent j is dominated neither directly nor indirectly by agent i. The non zero matrices can be
computed recursively way back along the paths provided by the graph from the most dominated
agents to the most dominating ones.

We need now to introduce further notations. For two agents i and j such that i  j, we

set M̂ji =
(

∂Xj

∂Xi

)

. If i → j, we define Mji to be the derivative of Xj with respect to Xi in the

case where only the direct domination in considered, i.e. all other paths between i and j have
been removed. We also set Mii = Idni

. This setting lead to the following recursive formula

∂Xj

∂Xi
= M̂ji =

∑

jℓ←i

M̂jℓMℓi

which is merely the chain rule. Moreover, note that if there agent i dominates neither directly
nor indirectly agent j, M̂ji = 0
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We can now proceed to solve the problem. In the last equation above, we replace the
expressions for the derivatives by our recursive formula, and obtain:



A
(i)
ii +

∑

ji

t
(

A
(i)
ij M̂ji

)



Xi +
∑

ji

(

A
(i)
ij + tM̂jiA

(i)
jj

)

Xj +
∑

j 6i

A
(i)
ij Xj

=



Ei +
∑

ji

tM̂jiA
(i)
jj X̃j



 (1)

Let k be such that k → i. We differentiate again the previous equation with respect to Xk,
to obtain:

∑

ℓ←k



A
(i)
ii +

∑

j←i

t
(

A
(i)
ij M̂ji

)



 M̂iℓMℓk +
∑

j←i









(

A
(i)
ij + tM̂jiA

(i)
jj

)

∑

ℓk
jℓ or j=ℓ

M̂jlMlk









+
∑

ℓk,ℓ 6i
j 6i

jℓ or j=ℓ

A
(i)
ij

(

M̂jlMlk

)

= −A
(i)
ik

The last equality leads, for any i← k, to

∑

ℓ←k









(

A
(i)
ii +

∑

ji
t
(

A
(i)
ij M̂ji

))

M̂iℓ

+
∑

ji
jℓ or j=ℓ

(

A
(i)
ij + tM̂jiA

(i)
jj

)

M̂jℓ + (1− δℓi)
∑

j 6i
jℓ or j=ℓ

A
(i)
ij M̂jℓ









Mℓk = −A
(i)
ik

where δℓi stands for the Kronecker symbol.

We thus obtain a linear system of equations, in which the unknowns are the matrices Mℓk

for ℓ ← k and the coefficients are functions of the matrices M̂jℓ and M̂iℓ with j, i ← ℓ. The
system is given by the matricial equation

ΘkMk = −Ak

where we defined Mk and Ak as block vectors by setting

Mk =







Mℓ1k

...
Mℓrkk






and Ak =









A
(ℓ1)
ℓ1k
...

A
(ℓrk)
ℓrkk









.

Here ℓs with 1 ≤ s ≤ rk are the rk agents directly dominated by Agent k. Moreover Θk the
block matrix which block coefficients are given by

(Θk)iℓ =



A
(i)
ii +

∑

ji

t
(

A
(i)
ij M̂ji

)



 M̂iℓ +
∑

ji
jℓ or j=ℓ

(

A
(i)
ij + tM̂jiA

(i)
jj

)

M̂jℓ + (1− δℓi)
∑

j 6i
jℓ or j=ℓ

A
(i)
ij M̂jℓ.
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As the matrix Θk only depends on the matrices Mj with k  j, one can recursively solve
the equations ΘkMk = −Ak if one assumes that the parameters are such that the matrices Θk

are invertible.
When k is one of the penultimate edge (in other terms the edges of agents dominating

directly whose which are themselves not dominating anyone), for any i← k and ℓ← k one has

(Θk)iℓ = A
(i)
ii M̂iℓ + (1− δℓi)A

(i)
iℓ M̂ℓℓ

Given that we have M̂ℓℓ = Mℓℓ = Idnℓ
and M̂iℓ = 0 for ℓ 6= i, one gets

(Θk)iℓ = δℓiA
(i)
ii + (1− δℓi)A

(i)
iℓ = A

(i)
iℓ

which is directly given in terms of the initial data.
It suffice now to let k run backward from penultimate edges of the graph and solve recursively

the equations. When all matrices Mk are determined, one is ultimately able to compute the
solutions Xi thought Equation (1) above.

Our resolution method can be used, as an example, to solve the model of section 2.3. We
considered the graph with 3 → 1, 2 → 1, and 2 → 3. Agents B, U, and C are respectively
denoted by 1, 2, and 3.

The first equation is given for the graph’s penultimate edge k = 3 and i = ℓ = 1.

(Θ3)11 = A
(1)
11 = Idn1

=⇒ M3 = [M13] = −A3 = −[A
(1)
13 ] =⇒ M̂13 = M13 = −A

(1)
13 .

The second and last step for k = 2. For i, ℓ ∈ {1, 3}, one computes (Θ2)iℓ and gets:

(Θ2)11 = A
(1)
11 M̂11 = A

(1)
11 = Idn1

.

(Θ2)13 = A
(1)
11 M̂13 +A

(1)
13 M̂33 = A

(1)
11 M̂13 +A

(1)
13 = −A

(1)
11 A

(1)
13 +A

(1)
13 = 0.

(Θ2)31 =
(

A
(3)
33 + t

(

A
(3)
31 M̂13

))

M̂31 +
(

A
(3)
31 + tM̂13A

(3)
11

)

M̂11

=
(

A
(3)
33 + t

(

A
(3)
31 M̂13

))

× 0 +
(

A
(3)
31 + tM̂13A

(3)
11

)

M̂11

= A
(3)
31 + tM̂13A

(3)
11 = A

(3)
31 −A

(1)
31 A

(3)
11

(Θ2)33 =
(

A
(3)
33 + t

(

A
(3)
31 M̂13

))

+
(

A
(3)
31 + tM̂13A

(3)
11

)

M̂13.

= A
(3)
33 −A

(3)
31 A

(1)
13 −A

(1)
31 A

(3)
13 +A

(1)
31 A

(3)
11 A

(1)
13 .

This leads to the matricial equation: Θ2M2 = −A2 ⇐⇒




Idn1
0

A
(3)
31 −A

(1)
31 A

(3)
11 A

(3)
33 −A

(3)
31 A

(1)
13 −A

(1)
31 A

(3)
13 +A

(1)
31 A

(3)
11 A

(1)
13



·

[

M12

M32

]

= −

[

A
(1)
12

A
(2)
32

]

which itself leads to the solutions detailed in Section 2.
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4 Conclusion

We have developed a general method to solve models of interactions between multiple and possi-
bly strategic agents. Such an approach aims at understanding some of the apparently irrational
or incoherent economic agents’ behaviors. Describing an economic agent as a system of several
rational optimizers may explain why some decisions are biased with respect to a “conscious”
point of view. We considered an agent whose “conscious” and “unconscious” goals differ. In
such a setting, it appears that the unconscious may influence the conscious either directly, or in-
directly via a third agent, the body and its needs. The unconscious may manipulate the body to
prevent or enhance the conscious’ task, depending whether this task is considered beneficial or
undesirable from the unconscious point of view. This three agents model allows the description
of behaviors such as craving, excessive smoking, or sleepiness, to delay or dismiss a task. One
of our main result stands in the fact that the unconscious’ strategic action depends crucially
on whether the conscious’ actions (“task” and “feeding”) are complementary in time. When
they are complementary, and if the conscious is not sensitive to the unconscious’ messages,
the unconscious may drive the conscious towards its goals by blurring physical needs. When
they are not complementary, the unconscious may more easily reach his goal by influencing the
conscious, be it directly or indirectly. He may make the conscious eat and work according to
his goals, and possibly use one variable to enhance the other. For instance, the unconscious
may increase the task of the conscious by stressing the physical needs (smoking, use of psy-
chotropic drugs) which will, in certain situation, boost the conscious task. We will consider in
a future paper the dynamic version of this model, along with the study of the conditions for an
equilibrium and, more interestingly, the possibility of limit cycles leading to cyclic behaviors.
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