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Autonomous Navigation Systems used in missiles and other high dynamic platforms are mostly dependent on the Global
Positioning System (GPS). GPS users face limitations in terms of missile high dynamics and signal interference. Receiver’s tracking
loops bandwidth requirements to avoid these problems are conlicting. he paper presents a novel signal frequency and phase
tracking algorithm for very high dynamic conditions, which mitigates the conlicting choice of bandwidths and reduces tracking
loop measurement noise. It exploits the lexibility of fuzzy control systems for directly generating the required Numerically
Controlled Oscillator (NCO) tuning frequency using phase and frequency discriminators information and is labeled Fuzzy
Frequency Phase Lock Loop (FFPLL). Because Fuzzy Systems can be computationally demanding and an Inertial Navigation System
(INS) is oten onboard the vehicle, an assisted INS Doppler version has been designed and is also proposed. Assessment of the new
GPS trackingmethod is performedwith both simulated and experimental data under jamming conditions.hemain enhancements
of the proposed system consist in reduced processing time, improved tracking continuity and faster reacquisition time.

1. Introduction

It is oten desirable to track carrier phase information for
GPS-based applications that require a high level of mea-
surement accuracy even if carrier phase tracking is more
diicult than tracking the frequency. A Phase Lock Loop
(PLL) can be used to track the incoming GPS carrier phase
and hence extract the modulated navigation data. If the GPS
receiver is expected to perform at high levels of dynamics,
the PLL can be aided by a Frequency Lock Loop (FLL)
as a FLL-assisted PLL structure [1]. Figure 1 [2] shows the
basic block diagram of a standard FLL assisted PLL. he
two irst multiplication stages are required to wipe of the
input signal carrier and Pseudo-Random Noise (PRN) code
required for any Code Division Multiple Access (CDMA)
communication system. A local replica of the PRN code
is provided by the Delay Lock Loop (DLL) and is used to

remove the PRN sequence from the incoming signal. he
frequency and phase loop discriminators are used to estimate
the frequency and phase error, respectively, between local
and incoming carriers. he discriminator’s outputs, which
represent the frequency andphase errors, are then iltered and
used to tune the Numerically Controlled Oscillator (NCO),
which adjusts the frequency of the local carrier wave. In this
way, the local carrier wave tends to be a precise replica of the
input signal carrier. FLL-aided PLL is a typical GPS tracking
loop design.

PLLs are required to have the narrowest bandwidth (BW)
possible to reduce the impact of signal noise and interference
[3]. A conlicting requirement is that the loop bandwidth has
to be as wide as possible to accommodate high dynamics. An
FLL assisted PLL structure can help to increase the dynamics
threshold level to accomplish this. But this threshold will
not be suicient to accommodate high levels of dynamics
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especially if a narrow bandwidth is used, and for that reason
diferent approaches are usually used in the context of GPS-
guided munitions such as external aiding and Kalman ilter-
(KF-) based tracking loops [4].

Kalman ilter-based PLLs constitute a practical solution
commonly used for GPS signal tracking [5]. However, it is
very hard to correctly tune the measurements noise param-
eters in the presence of unexpected interference. Indeed, a
correctly tuned KF provides a better tracking performance
than standard PLLs in normal cases, but unexpected external
disturbances can lead to divergence of the ilter, and loss of
phase lock can occur [6].

he tracking limitation of the abovementioned algo-
rithms motivated the design of a new tracking algorithm that
is capable of maintaining signal tracking in high dynamics
conditions and is also able of coping with signal interference
and providing measurements with reduced noise. his novel
algorithm depends on fuzzy Logic theory [7] and was irst
introduced in [8].

Fuzzy Logic-based Phase Lock Loop algorithms have
shown better performance in terms of dynamic robustness
and associated with Doppler noise as compared with a
standard PLL [8, 9]. A main drawback in the performance
of the Fuzzy based tracking system is its computational load.
Taking advantage of onboard inertial sensors that are com-
monly or becoming available in missiles and other platforms,
system performance can be further improved using inertial
aiding to provide frequency information. he number of
fuzzy inputs is then reduced to only one corresponding to
the phase tuning input, which is deined by the frequency’s
change required for cancelling the phase shit. Consequently,
the computational load of the Fuzzy Logic-based PLL is
drastically diminished. herefore a novel inertial-assisted
Fuzzy Logic-based Frequency Lock Loop is presented herein.

he coupling between GPS and an inertial navigation
system (INS) [10] not only provides a good solution for
high-rate manoeuvring platforms, but also provides a good
and reliable solution for the interference problem, that is,
when typical tracking loop’s designs fail due to the presence
of an external signal perturbation’s source. Indeed INSs
are not afected by external interference. First, GPS can
be used to periodically calibrate the biases in the INS.
Second, INS measurements can assist GPS based navigation
to improve acquisition, track times, and handle multipath
at launch. Classically GPS and INS are coupled via Kalman
techniques [6] to fuse navigation information and handle
short intervals of GPS outage caused by interference or
jamming. he levels of achieved performance depend on
INS accuracy, that is, the grade level of the inertial sensors
and GPS satellite visibility. he tradeof is generally driven
by miss distance requirements. he complexity and cost of
coupling are generally acceptable for missiles to carry both
systems. Furthermore for missile systems, coupling becomes
necessary to handle the extreme dynamics, rapidly changing
GPS visibility, and jamming. Another mathematical tool that
suits coupling of INS and GPS signals is Fuzzy Logic. It
has already been used in some research for enhancing the
performance of an integrated GPS/INS systems but, to the
authors’ knowledge, existing research has not focused on

improving the tracking loop in the context of interference
mitigation [11, 12].

he advantages of GPS/INS integration, relative to either
GPS or INS alone, can be summarized as follows [13, 14]:

(i) a high data rate of complete navigation solutions,
including position velocity and attitude,

(ii) superior short-term and long-term positioning accu-
racies,

(iii) continuous availability,

(iv) smoother trajectories,

(v) greater integrity, and

(vi) nonsigniicant cost specially when used for military
applications.

Depending on the data fusion strategy, it is possible to sort
integratedGPS/INS systems into three diferent types: loosely
coupled GPS/INS, tightly coupled GPS/INS, and ultratightly
coupled GPS/INS. he ultratightly coupled integration tech-
nique [15–17], used herein, combines the INS/GPS solution
and theGPS signal tracking functions into a single estimation
algorithm in which the INSmeasurements are fed back to the
receiver to decrease GPS signal tracking errors and enhance
GPS positioning performance. his scheme also helps the
receiver tracking loop for retrieving signal lock if it is lost due
to interference or jamming. A block diagram illustration of an
ultratightly coupled integration strategy is shown in Figure 2.

Ater describing the original design of the fuzzy fre-
quency Phase Lock Loop in Sections 2 and 3 presents
the necessary modiications needed for integrating inertial
measurements. Section 4 describes the experimental test.
Finally the results and associated conclusions are presented.
It is shown that the main enhancements of the INS-assisted
Fuzzy based tracking loop consist in a reduction of processing
time, better tracking continuity, and faster reacquisition time,
characteristics that are of fundamental importance for the
most high dynamics applications.

2. Fuzzy Frequency Phase Lock Loops

Automatic control methods based on artiicial intelligence
(e.g., Fuzzy Systems, Neural Networks, and Genetic Algo-
rithms) have emerged as an alternative model to analytic
control theory [18]. One of the greatest advantages of fuzzy
controllers is the simple and intuitive design, which is usually
based on the designer experience and experiments. However,
this advantage is sometimes considered a drawback too.
Indeed this simplicity and the lack of theoretical performance
justiications are perhaps the primary cause of their initial
slow acceptance among the control community [7].

he mathematical basis of fuzzy inference/implication
enables fuzzy models to provide similar discrete or deter-
ministic results as the ones obtained from conventional
knowledge-based systems [19]. he operations of transform-
ing discrete values to linguistic variables and vice versa
are called Fuzziication and Defuzziication, respectively. In
Fuzzy Logic applications, linguistic variables are nonnu-
merical elements that are used to enable the expression of
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Figure 2: Block diagram of an ultratightly coupled GPS/INS integration algorithm.

rules and facts. Using a priori knowledge of the problem,
the fuzzy system designer is able to choose the appropriate
membership functions and construct suicient rules to fulill
the correct iltering operation. A schematic illustration of a
fuzzy inference process is shown in Figure 3. he speciic
design of the proposed FFPLL is now described.

he basic structure of the proposed Fuzzy based tracking
system design was irst presented in [8]. In this scheme, the
standard loop FLL assisted PLL ilter is replaced by the pro-
posed Fuzzy Frequency Phase Lock Loop (FFPLL) controller,
which accepts the phase and frequency discriminator output
signals as inputs, as illustrated in Figure 4. Indeed, the FFPLL
design comprises two input fuzzy variables and one control
fuzzy variable. he irst state variable is the phase error from
the phase discriminator output. he second state variable is
the frequency error from the frequency discriminator output.
he control fuzzy variable is the required tuning frequency
of the NCO to generate an exact replica of the incoming
signal.he Fuzzy controller is composed of three consecutive
layers, namely, Fuzziication, Fuzzy Associative Memories
(FAMs), which are also called “Fuzzy rules” or associations,
and Defuzziication layers. A Fuzziication layer is composed
of a number of fuzzy sets characterized by Membership
Functions (MFs). In this work these MFs are chosen to
follow the Gaussian distribution whose parameters depend
on the signal quality, as described explicitly in [20] and now
briely recalled.hese MFs are responsible for converting the
crisp input values into linguistic values. he Defuzziication
layer is related to the Fuzziication layer through the FAM

rules, which composes the second layer. Each input has a
Fuzziication stage composed of nine diferent fuzzy sets.
he total number of fuzzy rule combinations is therefore
9 by 9, hence 81 rules that are all processed in parallel
at diferent degrees. Each FAM translates a fuzzy set into
variables that have been determined in a learning phase. It
represents ambiguous expert knowledge or learned input-
output transformations. he system nonlinearly transforms
exact or fuzzy state inputs to a fuzzy set output.his output is
defuzziiedwith a centroid operation [19] to generate an exact
numerical output, which gives the NCO tuning signal.

Although it has been shown in [8] that the FFPLL
provides better performance than standard tracking using
PLL or FLL/PLL in challenging conditions, a main concern
remains, namely, the reduction of processing time required to
solve for all fuzzy rules in parallel. Taking advantage of the use
of an INS, it was decided to exploit inertial signals to aid the
FFPLL in a new form of GPS/INS ultratight integration. he
proposed method to exploit an INS for assisting the FFPLL is
described in Section 3.

he fuzzy frequency/phase tracking system is designed
to rapidly recover the signal frequency in the presence of
large frequency errors, that is, ater acquisition/reacquisition,
and to behave as a PLL, with precise phase recovery, in
the case of small frequency errors. he fuzziness of the
system inputs is mainly due to the low power of GPS signals
with respect to thermal noise, which is the main source of
phase/frequency jitter, and to the presence of interference
[4]. Noise distribution then plays a major role in the system
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design. his is why an a priori knowledge of expected signal
parameters such as �/�0 is essential. his knowledge can
be achieved during signal acquisition or in the irst stages of
signal tracking. As shown in Figure 5, a signal with a �/�0
of 39 dB-Hz in static conditions and in an interference free
environment is characterized by a phase discriminator output
whose distribution is Gaussian.

Due to the nonlinearity of the arctangent operator used
herein, a theoretical expression of the phase error variance
is not used. Instead it is assumed that the equation, which
is applicable to the dot-product discriminator, also suits the
arctangent discriminator [21]. When using a standard PLL,
the standard deviation (SD) of the phase discriminator output
can be then theoretically calculated from [22] as

�2� = 1
2�/�0� (1 + 1

2�/�0� ) , (1)

where �2� is the variance of the dot-product discriminator,
�(s) is the predetection integration time, and �/�0 gives
carrier to noise power expressed as a ratio (Hz) where

�/�0 = 10(�/�0)/10 for �/�0 expressed in dB-Hz. he
standard deviation for the frequency error is not included in
(1) because only the phase discriminator is used in the new
INS-assisted FFPLL.

Figure 5 shows the time domain representation of the
phase discriminator output during tracking of the incoming
signal received from PRN 5 using a 4Hz third-order PLL
with 1ms coherent integration time and its histogram approx-
imated as Gaussian. he corresponding Gaussian Probability
Density Function (PDF) covers the signal expected values
under standard tracking conditions at a certain �/�0 level,
and it can be linguistically described as zero state if compared
to the ideal phase discriminator output. he mean and
standard deviation, which are the two parameters governing
the Gaussian distribution function, are directly related to
the signal dynamics and signal quality, respectively. Receiver
dynamics can cause a phase tracking error, and hence the
distribution mean will be shited from zero. On the other
hand, the changes in the signal quality will result in changes
in the standard deviation as illustrated in (1). An appropriate
mapping between the signal PDF and fuzzy MFs can be
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Table 1: Distribution of fuzzy membership functions.

Type Fuzzy variable Number of MFs

Input (1) Phase 9

Input (2) Frequency 9

Output Tuning frequency 11
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Figure 5: (a) Time domain representation of a PLL phase discrim-
inator output. (b) Histogram and Gaussian approximation. (c) An
example of mapping between PDF and MF.

made, and in this case the probability of occurrence, which
is described by the PDF, will be replaced by a degree of
occurrence sensed by a number of overlapping GaussianMFs
as shown in Figure 5(c). Using the above approach, both
phase and frequency error inputs in addition to the NCO
tuning frequency output domains are clustered into several
overlapping Gaussian fuzzy sets, each of them describes a
certain linguistic deinition of input or output value (e.g., big,
medium, small, zero, etc.). he number of MFs adopted for
the fuzzy controller is reported in Table 1. It has been ixed
based onmultiple simulations of GPS signals conducted with
the Spirent GSS7700 hardware simulator [23].

he number of fuzzy sets associated with each fuzzy
variable is a design parameter selected according to the
required tracking accuracy. How much these contiguous
sets should overlap is also a design issue depending on the
problem at hand. Too much overlap blurs the distinction
between the fuzzy set values, whereas too little can produce

excessive overshoot and undershoot. he fuzzy rules that
relate all linguistic variables can be expressed as

�� : if � = ��1 & � = ��2 then Δ� = �� for � ∈ {1, �, 81} ,
(2)

where �, �, and Δ� are linguistic variables representing the
input phase, the frequency, and the output NCO tuning

frequency. ��1, ��2, and �� are linguistic labels (or fuzzy sets)
characterized by a MF and used in the rule number “�” or ��.
A defuzziication process is utilized to determine a crisp value
according to the fuzzy output from the inferencemechanism.
he centre-average method [7] or Fuzzy centroid, which
calculates the centre of the area of the inference mechanism
output possibility distribution, is used as Defuzziication
strategy in FFPLL. he output, �, is obtained as follows:

� = ∑��=1 ��� (��)
∑��=1 � (��) , (3)

where � is the number of fuzzy output sets,�� is the numerical
value of the �th output membership function, and �(��)
represents its membership value at the �th quantization level.
he fuzzy rule table providing the human knowledge base of
the controller is shown in Table 2.

Gaussian MFs ended by trapezoidal rules were chosen as
shown in Figure 6. he variance of each Gaussian function
changes according to the signal noise level with �/�0 and �
used as inputs in (1). he “on the ly” adaptation is further
detailed in [24].

he FAMs are designed to act like an FLL for fast
frequency tracking recovery in case of a large frequency error
indicated by the frequency discriminator.hat can be seen in
Table 2 in all the rules except when the frequency error is in
the zero region. In this case the phase error is irst sought,
which is quantiied by the phase discriminator for accurate
phase tracking and to extract the required data message.

he position and width of the output MFs specify the
amount of the required NCO tuning frequency for frequency
and phase tracking. he ease of controlling and changing
fuzzyMFs enables the designer to control the output to satisfy
his own experience and requirements. In this case, fuzzy
MFs with their connecting rules are selected to provide a
small equivalent bandwidth in the case of small errors and
wider equivalent bandwidth, should more signiicant phase
and frequency errors occur.he technique used for designing
and tuning the Fuzzy rules and MFs and to calculate the
equivalent bandwidth is explicitly described in [20].

Using Fuzzy Logic instead of a standard FLL-aided PLL
is performed at the cost of an increased computational load,
as 81 rules have to be processed in parallel. herefore it
is desirable to eliminate some rules in the FFPLL design
for improving computational eiciency. Using INS aiding,
the frequency discriminator and its fuzzy rules can be
dropped.hemodiied FFPLL design using INS aiding is next
presented.
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Table 2: Fuzzy rules.

� �
−B −MB −M −S Ze +S +M +MB +B

−B +B +B +B +B +B +B +B +B +B

−MB +MB +MB +MB +MB +MB +MB +MB +MB +MB

−M +M +M +M +M +M +M +M +M +M

−S +SM +SM +SM +SM +SM +SM +SM +SM +SM

Ze −MB −M −SM −S Ze +S +SM +M +MB

+S −SM −SM −SM −SM −SM −SM −SM −SM −SM
+M −M −M −M −M −M −M −M −M −M
+MB −MB −MB −MB −MB −MB −MB −MB −MB −MB

+B −B −B −B −B −B −B −B −B −B
±B: ±big; ±MB: ±medium big; ±M: ±medium; ±SM: ±small medium; ±S: ±small; Ze: zero.
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Figure 6: Inputs and output membership functions.

3. INS-Assisted FFPLL Design

Coupling GPS and INS signals provides a good solution
for improving guidance of high-rate maneuvering platforms.
he concept links GPS and INS to allow aiding. Aiding
can be performed in several ways. GPS can be used to
periodically update the state vector of the navigation ilter for
calibrating the errors inherent to inertial sensors. he INS
can improve tracking and reacquisition time by providing
a reference signal to the GPS receiver tracking loops. GPS
and inertial signals can be coupled using KF techniques to
fuse navigation information and handle short GPS outages,
signal interferences, or intentional jamming [25]. he levels

of performance achieved depend on the grade of the INS and
the GPS satellites visibility and are driven generally by the
required accuracy or missile-target miss distance. Coupling
becomes necessary onmissile systems and projectiles in order
to mitigate the efects of extreme dynamics, rapidly changing
GPS visibility and potential jamming [26, 27].

Based on diferent data fusion strategies, GPS/INS inte-
grated systems can be classiied into three types: loosely
coupled GPS/INS, tightly coupled GPS/INS, and ultratight
GPS/INS integration [28]. As the main objective of the
proposed research is to aid the GPS tracking loop with
INS data, the coupling ilter corresponds to an ultra-tight
integration architecture [29]. his combines the GPS signal
tracking functions, the INS data, and the integration ilter
into a single estimation algorithm. In this algorithm the INS
measurements are fed back to the receiver as seen in Figure 2
for decreasing GPS signal tracking errors and enhancing the
inal GPS positioning performance.

During GPS outages, the INS-derived Doppler can be
continuously estimated and used for assisting GPS tracking
loops by directly pulling the receiver back to tracking mode
without passing through an acquisition step if signal lock is
lost due to interference or jamming. he INS data of interest
to assist the tracking loop is the INS Doppler, which can
be extracted for the proposed GPS/INS integration scheme
through the sequence now explained. Using ephemeris data
calculated with the incoming data bits extracted during the
signal tracking phase, the satellite positions and velocities
are calculated in the Earth-Centered, Earth-Fixed (ECEF)
coordinate frame. his information is then combined with
the calculated ECEF navigation coordinates using INS only
in a strapdown integration scheme to estimate the associated
Doppler through the steps described below [30].

Firstly, the line of sight (LOS) between the �th satellite and
the INS processed location is calculated as

e� = 1
�� (xINS − x��) ,

�� = √(xINS − x��)� (xINS − x��) ,
(4)
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where �� is the distance between the �th satellite and the INS
coordinates, and e� is the unit vector of the LOS between the
�th satellite and the INS position. xINS represents the INS
coordinates in the ECEF, while x�� represents the �th satellite
position in ECEF. Secondly, INS Doppler (��-INS) is derived
from (4) using

��-INS,� = 1
��1 e
�
� (vINS − v��) , (5)

where vINS and v�� are the INS-derived velocity and the �th
satellite velocity in the ECEF, respectively. ��1 is the GPS L1
frequency wavelength.

he INS-estimated Doppler is inherently corrected for a
small earth rotation through the strapdown mechanization
process. However, other small errors such as satellite and
receiver clock errors and ionospheric errors are neglected
assuming that any errors in frequency aiding to the tracking
loop is compensated using the robust process of fuzzy phase
tuning.

he use of INS-estimatedDoppler reduces the complexity
of the fuzzy tracking loop by using only the phase discrimina-
tor output as a single input to the fuzzy processor and the INS
Doppler for tuning the frequency. he INS Doppler is added
to the IF frequency (�IF) and is then subtracted from theNCO
generated carrier frequency (��-NCO).he resulting frequency
corresponds to a frequency correction signal (Δ�correction)
that is used to adjust the NCO tuning frequency (Δ�).
herefore only 9 fuzzy rules, which correspond to the phase
tuning cells in Table 2, instead of the 81 rules in the FFPLL
original design, are used for the input fuzzy sets.he complete
INS-assisted FFPL is shown in Figure 7.

Before assessing the performance of the FFPLL and
the INS-aided FFPLL with experimental data collections,
simulation tests and comparison with Kalman ilter tracking
(Section 4), it is of interest to perform a qualitative com-
parison with other recently published methods. he general
tracking problem always involves some form of Bayesian
iltering. If the conditional probability density functions are
known to be jointly Gaussian and that the observations relate
linearly to the tracked state variables, then the appropriate
and optimum Bayesian ilter is the standard Kalman ilter
which has been extensively published since the 1960s. If the
observations relate to the state variables in a mildly nonlinear
fashion then the conditional densities are only approximately
Gaussian. A practical implementation of a Bayesian ilter is
then the family of extended Kalman ilters, scented variants,
and so forth. If the relation of the observations to the state
variables deviates signiicantly from being linear, then it
is necessary to use numerical integration to perform the
Bayesian ilter iterations. A practical algorithm that has been
recently adopted for this purpose is the particle ilter [31].
However, the applicability of these methods is based on
the assumption that the conditional density functions are
known. If the density functions are not explicitly known
then a practical alternative is to use Fuzzy Logic-based
Bayesian ilters. Fuzzy Logic membership functions allow
the ilter to be designed in a robust albeit suboptimal way
that is based on reasonable statistical modeling assumptions

Table 3: Error characteristics of Litton LN-200 IMU.

Sources 1-� error Units

Gyro bias 0.35 deg/hr

Gyro scale factor 100 ppm

Gyro misalignment 0.1 mrad

Gyro g drit 0.5 deg/hr/g

Gyro g2 drit 0.05 deg/hr/g2

Gyro random walk 0.05 deg/√hr

Accel. bias 0.07 mg

Accel. scale factor 300 ppm

Accel. misalignment 0.1 mrad

Accel. random walk 0.03 m/s/√hr

[32]. As demonstrated in this paper, good dynamic tracking
performance is achievable with minimal prior modeling
information. Statistical modeling is diicult in the context of
capricious jamming signals which gives impetus to the use of
fuzzy Logic controllers.

4. Experimental Test Description

he main test to assess the proposed INS-assisted FFPLL
was conducted using real GPS signals, which were processed
with real INS data processing and a GPS jammer. However,
because it is very hard to conduct an experimental test that
includes missile level dynamics and that is still consistent
with the scope of the research, simulated GPS and INS
signals are irst used with high dynamics to assess the
performance and the validity of the proposed algorithm for
missile applications.

4.1. Simulator Tests. he proposed algorithm was irst tested
using the Spirent GSS7700 simulator [23]. he simulator
is capable of providing simulated inertial sensors measure-
ments with a controllable output rate that are precisely
synchronized with the GPS RF signals. According to the type
of application adopted in this work, the tactical grade Litton
LN-200 inertial measuring unit (IMU) has been simulated
and used. he error characteristics of this IMU are shown in
Table 3.

Although it is proposed to perform a complete GPS/INS
ultra-tight integration, RF signal processing is developed up
to the level of signal tracking and solved the navigation data
bits to obtain the GPS time for synchronization purposes.
Simulated IMU measurements are processed to calculate the
INS solution through the strapdown mechanization process.
To get close to the ultra-tight integration objective, the IMU
and GPS simulated data are tightly integrated through an
extended Kalman ilter (EKF) [30] to provide a corrected
estimate of the INS solution.he corresponding INSDoppler
is estimated as per (4) and (5) using the GPS data provided
by the simulator. As a inal step, the calculated INS-derived
Doppler is used separately to aid the RF signal tracking
process through FFPLL. his approach is clearly illustrated
in Figure 8 as amodiied version of the ultra-tight integration
scheme introduced in Section 1.
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he test procedure and process algorithm (see Figure 8)
are conducted through a large number of scenarios that show
consistent results. One of these scenarios is presented herein.

he scenario considered here comprises the efect of
missile manoeuvres near an interference source. During the
manoeuvre, the GPS signal �/�0 changes with the distance
from the interference source. he missile velocity in this
scenario is increased to reach 300m/s, performing hard
manoeuvres with acceleration up to 8 g and jerks up to 50 g/s.
he dynamic proile of this scenario is illustrated in Figure 9,
while Figure 10 shows the 3D plot of the missile’s trajectory
and its manoeuvres near the jammer.

A CW jammer producing 45 dB (J/S) of jamming signal
is simulated in this scenario. Estimated �/�0 changes as
the missile performs an evasive manoeuvre to escape this
jamming are shown in Figure 11. As shown in [20], the

FFPLL is capable of maintaining signal lock regardless of the
missile dynamics or if low or moderate interference levels
are applied. Very accurate Doppler estimates, extracted from
tactical grade IMU measurements, are helping to provide
continuous signal tracking even if a high level of interfer-
ence is applied. When tracking is switched from FFPLL
to INS-assisted FFPLL, course frequency tracking is totally
dependent on INS-provided Doppler, and hence the fuzzy
processor is responsible only for tracking frequency errors
by ine tuning and for providing phase tracking. Using a one
input fuzzy processor reduces drastically its complexity and
the number of fuzzy rules processed in parallel. Consequently
the computational load gets reduced as will be described later.

Figures 12 and 13 show the estimated Doppler for PRN
24 for the duration of the entire scenario and a magniied
version for better illustration, respectively. he Doppler is
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estimated during signal tracking using KF + INS, FFPLL,
and FFPLL + INS. Figure 14 shows the estimated Doppler
standard deviation using these three algorithms. At epoch
30, GPS time is extracted under proper signal tracking
using the original FFPLL, and synchronization is performed
with INS aiding data to switch from the original FFPLL to
FFPLL + INS. he Kalman ilter used here is based on the
model described in [26–28] and uses discriminator outputs
as measurement updates. It is also modiied to accept INS
Doppler aiding for a fair comparison with the INS-assisted
FFPLL. he INS-assisted Kalman ilter is labeled KF + INS.

From the previous results, it can be seen that the INS-
assisted FFPLL algorithm has successfully passed the validity
test by providing continuous tracking during combined
incidence of very high dynamics and variable jamming levels.
As shown in Figure 13 for PRN24, thanks to accurateDoppler
estimates from the simulated Litton IMU, the estimated
Doppler is more accurate than the one estimated with
the standalone FFPLL. A more complete assessment of the
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Figure 11: �/�0 estimated for PRN 24 during missile manoeuvres.
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proposed algorithm is given in the next section where real
GPS and IMU signals have been collected and analyzed.

4.2. Experimental Test Description. In order to test the pro-
posed signal tracking architecture using real GPS and INS
data, experimental tests have been conducted in a vehicle.
Photos of the testing equipment are shown in Figures 15 and
16. hey comprise a GPS antenna and the NovAtel SPAN
Honeywell HG1700 system. he lever arm was measured
during the experiment. To remain as close as possible to
the scope of the research, dynamics conditions limited by
the vehicle capability have been reproduced during the data
collection. Logging and control systems were loaded in the
vehicle. he complete test setup is illustrated in Figure 17.

Rover data was collected with a single antenna using two
separate setups. he NovAtel 702GG antenna was used to
collectGPS signals, and its outputwas split between anOEM4
dual frequency GPS receiver, which was connected to a
tactical grade IMU (Honeywell HG1700 [33]), and a National
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Table 4: Equipment used for ield data collection.

Number Equipment

1 NovAtel GPS receiver (2)
2 Honeywell HG1700 IMU

3 National Instruments RF front end

4 NovAtel GPS antenna (2)
5 Handheld commercial GPS jammer

Instruments RF front end. he front end was controlled by
a PC used for RF sample data logging. he post-processed
GPS/INS solution was used as reference for assessing the
performance of the INS-assisted FFPLL. GPS signals were
jammed using a handheld short range GPS jammer through
cabling to the National Instruments RF front end as shown in
Figure 18.he cable connection was used to avoid over the air
jamming. Table 4 lists the equipment used.

4.3. GPS/INS Reference Solution. he Honeywell HG1700
AG58 has a 1-degree per hour gyro bias stability. he other

Figure 15:NovAtel 702GGantennamounted on the vehicle rootop.

Figure 16: Tactical grade IMU (Honeywell HG1700) shown inside
the vehicle.

system speciications are given in Table 5. INSDoppler values
were estimated using postprocessed vehicle positions and
velocities computed with the postprocessing sotware Inertial
Explorer [34]. Tight coupling of GPS dual frequency signals
from a stationary GPS base station and the vehicle-mounted
receiver with inertial data was performed ater solving for
initial static GPS/IMU alignment within the sotware. Fur-
thermore proper stochastic modelling of the HG1700 was set
prior to processing. In the tightly coupled approach, only one
Kalman ilter was used, which enabled the ilter to be updated
using as little as one satellite measurement. Along with the
navigation solution, accelerometers bias and gyroscope drits
were continuously estimated. he lever arm between the
IMU and the GPS rover antenna was surveyed to within a
centimetre level using a Leica relectorless total station [35] as
shown in Figure 19.hemaximum baseline length was about
25 km.

Two approaches have been used for the data post-
processing. he irst approach is the use of diferential GPS
data with forward and backward smoothing using a Rauch-
Tung-Striebel smoother [36] to minimize GPD outage errors
and to obtain the best possible reference INS solution. he
Inertial Explorer sotware internal ilter accuracy estimation
gave mean standard deviations of about 0.01m for the
position solutions and 0.004m/s for the speed.

To test amore realistic scenariowhere it is very hard to use
diferential GPS or smoothing for real time long rangemissile
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Figure 18: Handheld jammer signal combined with GPS signal via
cabling and connected to the logging system.

Table 5: HG1700 IMU system speciications.

Description Units

Output data rate 100/600 Hz

Gyro input range ±1,000 deg/sec

Gyro rate scale factor 150 ppm

Gyro bias (one sigma) 1 deg/hr

Gyro angular random walk 0.125 deg/√hr

Accel. range ±50 g

Accel. linearity 500 ppm

Accel. scale factor 300 ppm

Accel. bias 1.0 mg

applications, the INS solutionwas recalculated using a second
approach where only the vehicle-mounted GPS data was
used in a forward solution with a Precise Point Positioning
(PPP) method [37]. he Inertial Explorer sotware internal
ilter for this approach gave a mean standard deviation of

Figure 19: Lever arm surveying using Leica TCR705 relectorless
total station.

0.17m, a maximum of 1.16m for the position solutions, and
0.01m/s with a maximum of 0.09m/s for the speed. hese
two approaches are described in Figure 20 in term of the
diferences in INS solution estimates for the positions, while
the position and velocity results are shown in Figure 21.

As a following step, the INS Doppler was calculated as
described earlier and used as an aiding signal for the FFPLL,
which is processed separately. An example of INS Doppler
diferences between the two approaches for PRN 16 is shown
in Figure 22.he experiment is also described in the stepwise
low diagram shown in Figure 23.

4.4. INS Doppler. In order to insure that only INS-derived
Doppler were extracted from the tightly coupled solution
during jamming periods, artiicial outages were simulated in
post-processing during the periods of jamming. Indeed the
wired GPS jammer perturbed only the RF samples collected
by the NI front end and not the GPS receiver used for the INS
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Figure 21: Diferences between INS velocity and position solutions obtained with the GNSS diferential approach and the Precise Point
Positioning approach.

equipment. his can be seen in Figure 17, where the jammer
RF signal is combined with GPS signals only ater the splitter
used for feeding the NovAtel receiver.

4.5. RF Data. he RF data was down converted and saved
for post-processing. he GPS signals were collected using
complex sampling of frequency �� = 5MHz at intermediate
frequency �IF = 0.42MHz.

he “over-the-air” jammer, which is part of the test setup
shown in Figure 17, produces a CW signal nearly centered
at L1 but with a 50 dB higher power than the nominal GPS
power. As it is explicitly explained in [20], this power is high
enough to saturate the receiver’s ampliier and distort the
signal during jamming periods. To increase the safety factor
and to avoid any issues with its wireless use, the jammer was
usedwith a proper cable connection and all induced jamming

signal passed through the connecting cables as shown in
Figure 18.

5. Data Processing and Results

GPS RF samples were post-processed and tracked using
diferent algorithms, as described in Table 6.he bandwidths
used for classical tracking schemes correspond to the max-
imum bandwidths for stable tracking, 18 (Hz) in this case
[4], for increasing the chance of signal reacquisition ater the
jamming period and to provide a fair comparison with the
proposed INS-aided FFPPL.

he Kalman ilter used here is based on the model
presented in [38, 39] and uses discriminators outputs as a
measurements update. It was also modiied to accept INS
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Table 6: Algorithms used for comparative analysis of GPS tracking loops.

Standard tracking loop Kalman ilter based Fuzzy Logic INS assisted

(1) PLL (18Hz) ×
(2) FLL (18Hz) assisted PLL (18Hz) ×
(3) INS/KF × ×
(4) INS/PLL (18Hz) × ×
(5) INS/FLL (18Hz) assisted PLL (18Hz) × ×
(6) FFPLL ×
(7) INS/FFPLL × ×

× 105
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Figure 22: Diferences between INS Doppler values obtained with
the GNSS diferential approach and the Precise Point Positioning
approach for PRN 16.
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Doppler aiding for a fair comparison with the INS-assisted
FFPLL.

he chosen criteria for assessing the proposed tracking
scheme are summarized as follows:
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(i) tracking robustness under diferent dynamic condi-
tions;

(ii) tracking quality by measuring noise distribution
modulated on the estimated carrier Doppler;

(iii) ability to mitigate signal interference;

(iv) signal reacquisition ability and time;

(v) Computational load.
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All the above points of assessment, except the computa-
tional load, can be investigated by analyzing the estimated
Doppler during signal tracking, taking into consideration
that, when the system is in tracking mode, it tracks the signal
phase as well. During processing, this estimated Doppler is
irst compared to the INS reference Doppler, calculated using
(5), to ensure that the solution is correct and not biased.

An analysis of the tracking results for two speciic GPS
signals, PRN code 16 and 13, which were tracked at elevations
of about 30 degrees and 60 degrees, respectively, using
standard and nonstandard tracking algorithms, is conducted.
he associated results are assessed in a concise manner, as
all tracking results for the other available GPS signals show
consistent results and lead to the same conclusion.

Ater processing RF data using the approaches listed in
Table 6, it was found that none of them were able to track
the GPS signal phase during jamming periods. Moreover
it was observed that the standard tracking schemes, even
with INS aiding, were not able to reacquire the signal and
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switch back to tracking mode once jamming ended, unless
a new acquisition process was initiated. For this reason,
only nonstandard tracking algorithms are shown later in the
analysis. However, an example of standard tracking results
will irst be shown to illustrate the above. Figure 24 shows
the estimated Doppler of PRN 13 during part of the scenario.
he period started with 55 seconds in static mode followed
by an acceleration period and then two jamming periods of
a few seconds. Although this type of dynamics is not close to
the missile dynamics, features that cannot be assessed with
a simulator can be assessed in this case. In this igure, a
comparison between the standard PLL (BW = 18Hz) and the
original FFPLL is shown. Both tracking loop performances
are directly compared with the reference INS Doppler.

he FFPLL is able to retrieve the tracking mode, and
its estimated Doppler standard deviation, calculated using
10 seconds moving windows, is about 10 times lower than
the standard PLL Doppler standard deviation using the
same approach as that illustrated in Figure 25. Standard PLL
trackingwithwide BW tracking results show that it is not able
to reacquire the signal directly ater the signal interference
period ends. In this case, the receiver has to switch back to
acquisition mode, which consumes time.

Figures 26 and 27 show the Doppler calculated for
PRN 16 and PRN 13 using KF + INS, FFPLL, and INS-
assisted FFPLL, respectively. he fuzzy algorithms are able
to reacquire signal lock ater the jamming period. KF signal
reacquisition operation is not consistent because it diverges
during jamming periods, and if the erroneously estimated
frequency is greater than the pull-in range, it will not be
able to reacquire frequency tracking. herefore, the model
used requires more intensive tuning for this speciic problem.
In addition, it is observed that the estimated Doppler in
the Kalman ilter case is diverging to a greater extent than
FFPLL during the interference period. In the INS-assisted
FFPLL case, the estimated Doppler is only oscillating around
the required phase tuning frequency thanks to the Doppler

measurements provided by the INS. Furthermore, only nine
rules related to the phase input are used, which reduces the
calculated processing time, as compared to that of the FFPLL.
he computational load measured by the processing time is
averaged through the simulated and real data experiments
and found to be reduced by a factor of about 30% between
the standalone and the assisted FFPLL, as shown in Figure 28.
Because the computation of general Fuzzy Logic control can
be complex, it is of particular interest to reduce the processing
time with a reduced set of fuzzy rules in the INS-aided
FFPLL.he results of individual tests, which were performed
to compare the processing times of the original and the
reduced fuzzy processors, are shown in Figure 29. he tests
were applied for diferent number of samples, and an average
of 5 tries is taken for each number/processor type. his
test further conirms that the processing time is drastically
reduced thanks to the INS adding data.

Even though the INS-aided FFPLL is not able to maintain
phase lock during the jamming period, its Doppler frequency
estimate is much accurate than the standalone FFPLL. In
addition, the transient time required to retrieve the correct
signal measurements is much faster as compared to the
standalone FFPLL solution, which is very crucial for missile
applications where the target can be missed or the missile
can be lost in this short time delay. his conclusion, which is
consistent with the tracking results for the 10 satellites signals
that were available during the experiment, is illustrated in
Figures 30 and 31 for PRN 16 and PRN 13, respectively.
Even when the KF is assisted by INS, its divergence during
jamming is obvious due to large and unmodeled noise, which
was assumed to be following a Gaussian distribution.

6. Conclusions

In this paper, a new fuzzy based GPS signal tracking loop is
designed and tested. A new approach for Fuzzy Logic-based
GPS signal tracking using INS-based Doppler aiding is also
presented as a modiication of the original fuzzy tracking
system.

he system is experimentally tested using simulated and
live GPS signals in the presence of intentional jamming.
Experimental assessment shows that by using a good quality
IMU, as is the case for missiles and ighters, the new INS-
assisted fuzzy tracking is providing better tracking perfor-
mance as compared to standard and Kalman ilter based
tracking loops in terms of robustness. Continuous tracking
is provided even during very high dynamics conditions and
recovered quickly if tracking is lost due to jamming. More
accurate and less noisy Doppler estimates are provided.
Because the number of rules is reduced from 81 to 9 when
the INS is used to assist the FFPLL, the fuzzy processor
computation time is reduced by around 30%. Finally, when
the GPS signal is lost during the jamming period, the time
required to reacquire the signal is shorter than the original
fuzzy and Kalman ilter based tracking systems. As a future
work and to generalize the obtained results, more simulated
scenarios will be tested using the proposed algorithm and
under diferent conditions.
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