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Ancestral lineages and limit theorems

for branching Markov chains

Vincent Bansaye ∗

November 10, 2014

Abstract

We consider a branching model in discrete time for structured population in vary-
ing environment. Each individual has a trait, which belongs to some general state
space and both the reproduction law and the trait inherited by the offsprings may
depend on the trait of the mother and the environment. We study the long time
behavior of the population and the ancestral lineage of typical individuals under gen-
eral assumptions. We focus on the growth rate and the trait distribution among the
population for large time and provide some estimations of the local densities. A key
role is played by well chosen (possibly non-homogeneous) Markov chains. It relies in
particular on an extension of many-to-one formula [G07, BDMT11] and the analysis
of the genealogy, in the vein of the spine decomposition of [LPP95, KLPP97, GB03].
The applications use the spectral gap of the mean operator, the Harris ergodicity or
the large deviations of this auxiliary Markov chain.
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A.M.S. Classification. 60J80, 60J05, 60F05, 60F10

1 Introduction

We are interested in a branching Markov chain, which means a multitype branching
process whose number of types may be infinite. The environment may evolve (randomly)
but when the environment is given, each individual evolves independently and the
quenched branching property hold.

Let (E,T ) be a pair consisting of a set E of environments and an invertible map T
on E. One can keep in mind the case when the environment is e = (ei : i ∈ Z) and
Te = (ei+1 : i ∈ Z).

∗CMAP, Ecole Polytechnique, CNRS, route de Saclay, 91128 Palaiseau Cedex-France; E-mail:
vincent.bansaye@polytechnique.edu
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Let (X ,BX ) be a measurable space. It gives the state space of the branching Markov
chain. The example X ⊂ R

d endowed with Borelian sets will be relevant for the
applications.
For each k ∈ N and e ∈ E, let P (k)(., e, .) be a function from X × BXk into [0, 1] which
satisfies
a) For each x ∈ X , P (k)(x, e, .) is a probability measure on (X ,BXk).
b) For each A ∈ BXk , P (k)(., e, A) is a BX measurable function.

In the whole paper, we use the classical following notations for discrete trees.
Each individual in the population is an element of {∅} ∪

⋃

n≥1(N
∗)n and is denoted by

u = u1u2...un with ui ∈ N
∗ = {1, 2, . . . } . We denote by |u| = n the generation of the

individual u, by N(u) the number of offsprings of the individual u and by X(u) ∈ X the
trait (or position) of the individual u.

For any generation, each individual with trait x ∈ X which lives in environment e ∈ E
gives birth independently to a random number of offsprings, whose law both depend on x
and e. This number of offsprings is distributed as a r.v. N(x, e) whose mean is denoted
by

m(x, e) = E(N(x, e)).

In the whole paper, we assume that m(x, e) > 0 for each x ∈ X , e ∈ E. For the models
mentioned here, one can keep in mind e = (ei : i ∈ Z) and N(x, e) depends only on x
and e0.
If the environment is e, we denote by Pe the associated probability. The distribution of
the traits of the offsprings of the individual u living in generation n (|u| = n) is given by

Pe(Xu1 ∈ dx1, . . . ,Xuk ∈ dxk | (X(v) : |v| ≤ n), N(u) = k)

= P (k)(X(u), T ne, dx1 . . . , dxk).

Thus, one individual with trait x living in environment e gives birth to a
set of individuals (X1, · · · ,XN(x,e)) whose trait are specified by the transition

kernels(P (k)(e, x, .) : k ∈ N, e ∈ E).
The process X is a multitype branching process in varying environment where the types
take value in X . They have been largely studied for finite number of types, whereas
much less is known or understood in the infinite case, but some results due to Seneta,
Vere Jones, Moy, Kesten for countable many types.
The case of branching random walk has also attracted lots of attention from the
pioneering works of Biggins. Then X = R

d and the transitions P (k) are invariant by
translation, i.e. P (k)(x, e, x+ dx1 · · · , x+ dxk) does not depend on x ∈ X . Recently, fine
results have been obtained about the extremal individuals and their genealogy for such
models, see e.g. [HS09, AS10]. and branching random walk in random environment have
been investigated. In particular the recurrence property [?, CP07a], the survival and
the growth rate [GMPV10, CP07b, CY11], central limit theorems [Y08, N11] and large
deviations results [HL11] have been obtained.
As far as I see, the classical methods relying on the spectral theory and the martingale
arguments are not easily adaptable to the general framework we consider. We are
motivated by applications to models for biology and ecology such as cell division models
for cellular aging [G07] or parasite infection [B08] and reproduction-dispersion models in
non-homogeneous environment [BL12]. Thus, we are also inspired by the utilization of
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auxiliary Markov chains, branching decomposition and L2 computations, in the vein of
the works of Athreya and Khang [AK98a, AK98b] and Guyon [G07]. The applications
and references will be given along the paper.

We are interested in the evolution of the measure associated to the traits of the
individuals:

Zn :=
∑

|u|=n

δX(u)

and more specifically by Zn(An) = #{u : |u| = n, X(u) ∈ An}. We also define

Zn(f) =
∑

|u|=n

f(X(u)), fn.Zn =
∑

|u|=n

δfn(X(u)).

First, we want to know if the process may survive globally and how it would then
grow. Thus, Section 2 yields an expression of the mean growth rate of the population
relying on the dynamic of the trait and the offspring laws, see [BL12] for motivations for
metapopulations. Then (Section 3), we study the repartition of the population and focus
on the asymptotic behavior of the proportions of individuals whose trait belongs to A,
i.e. Zn(X )/Zn(A). It is inspired by [AK98a, G07, BH13] and extends the law of large
numbers to both varying environment and trait dependent reproduction. It is achieved
by introducing a non-homogeneous auxiliary Markov chain (Section 3.1). We add that
we take into account some possible renormalization of the traits via a function fn to
cover non recurrent positive cases. Finally, in Section 4, we provide some asymptotic
results about Zn(An), outside the range of law of large numbers. It relies on the large
deviations of the auxiliary process and the trajectory associated with. As an application
we can derive the position of the extremal particles in some monotone models motivated
by biology, where new behaviors appear.

We end up the introduction with recalling some classical notations. If u = u1 · · · un
and v = v1 · · · vm, then uv = u1 · · · unv1 · · · vm. For two different individuals u, v of a tree,
write u < v if u is an ancestor of v, and denote by u ∧ v the nearest common ancestor of
u and v in the means that |w| ≤ |u ∧ v| if w < u and w < v. Moreover, we note M(X),
resp. Mf (X) and M1(X) the set of (non-negative) measures, resp. finite measure and
probability distribution of a measurable space X.

2 Growth rate of the population

We denote by ρe = limn→∞ n−1 logEe(Zn(X )) the growth rate of the population in
the environment e, when it exists.
We are giving an expression of this growth rate in terms of a Markov chain associated
with a random lineage. Its transition kernel is defined by

P (x, e, dy) :=
1

m(x, e)

∑

k≥1

P(N(x, e) = k)
k
∑

i=1

P (k)(x, e,X i−1dyX k−i)

so that the auxiliary Markov chain X is given by

Pe(Xn+1 ∈ dy |Xn = x) = P (x, T ne, dy).
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It means that we follow a linage by choosing uniformly at random one of the offsprings
at each generation, biased by the number of children.

We assume now that X is a locally compact polish space endowed with a complete
metric and its Borel σ field. Moreover E is a Polish Space and T is an homomorphism. In
the rest of the paper, we endow M1(X ×E) with the weak topology, where M1(X ×E) is
the space of probabilities on X×E. It is the smallest topology such that µ ∈ M1(X×E) →
∫

X×E f(z)µ(dz) is continuous as soon as f is continuous and bounded.

Definition 1. We say that X satisfies a Large Deviation Principle (LDP) with good
rate function Ie in environment e when there exists a lower semi-continuous function
I : X × E → R with compact level subsets1 for the weak topology such that

Le

n =
1

n+ 1

n
∑

k=0

δXk,T k
e

satisfies for every x ∈ X

lim sup
n→∞

1

n
log Pe,x(Ln ∈ F ) ≤ − inf

z∈F
Ie(z)

for every closed set F of M1(X ×E), and

lim inf
n→∞

1

n
log Pe,x(Ln ∈ O) ≥ − inf

z∈O
Ie(z)

for every open set O of M1(X × E).

The existence of such a principle is classical for fixed environment E = {e}, finite X ,
under irreducibility assumption. We refer to Sanov’s theorem, see e.g. chapter 6.2 in
[DZ98]. We note that the principle can be extended to periodic environments, taking
care of the irreducibility. Besides, we are using an analogous result for stationary random
environment to get forthcoming Corollary 2, which is due to [S94].

The first question that we tackle now is the mean growth rate of the population. The
branching property yields the linearity of the operator µ→ m(µ) = Ee,µ(Z1(.)) for some
measurable set A.
In the case of fixed environment, P and N do not depend on e, so m is also fixed and the
mean growth rate of the process Z is the limit of log ‖ mn ‖ /n, with ‖ . ‖ an operator
norm. If X is finite, it yields the Perron-Frobenius eigenvalue under strong irreducibility
assumption, with a min-max representation due to Collatz-Wielandt. Krein-Rutman
theorem gives an extension to infinite dimension space requiring compactness of the
operator m and strict positivity, see also Section 3.4.2.
In the random environment case, it corresponds to the Lyapounov exponent and
quenched asymptotic results can be obtained in the case X is finite [FK60]. Then, the
process is a branching process in random environment and we refer to [AK71, K74] for
extinction criteria and [C89, T88] for its growth rate.

To go beyond these assumptions and get an interpretation of the growth rate in terms
of reproduction-dispersion dynamics, we provide here an other characterization.

1It means that {µ ∈ M1(X × E) : I(µ) ≤ l} is compact for the weak topology
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This is a functional large deviation principle relying on Varadhan’s lemma (see also mul-
tiplicative ergodicity in [MT09]). It allows to decouple the reproduction and dispersion
in the dynamic. Thus, it yields an extension of Theorem 5.3 in [BL12] both for varying
environment and infinite state pace X . We refer to this latter article for motivations in
ecology, more specifically for metapopulations. The next Corollary then puts in light the
dispersion strategy followed by typical individuals of the population for large times.

Theorem 1. Assume that X satisfies a LDP with good rate function Ie in environment
e and logm : X × E → (−∞,∞) is continuous and bounded. Then, for every x ∈ X ,

lim
n→∞

1

n
logEe,δx(Zn(X )) = sup

µ∈M1(X×E)

{∫

X×E
log(m(x, e))µ(dxde) − Ie(µ)

}

:= ̺e

and

Me :=

{

µ ∈ M1(X × E) :

∫

log(m(x, e))µ(dxde) − Ie(µ) = ̺e

}

is compact and non empty.

In particular, lim supn→∞
1
n logZn(X ) ≤ ̺e a.s. The limit can hold only on the survival

event. It is the case under classical N logN moment assumption for finite state space
X , see e.g. [LPP95] for one type of individual and fixed environment and [AK71] in ran-
dom environment. But it is a rather delicate problem when the number of types is infinite.

We assume now ̺e > 0 and introduce the event

S :=

{

lim inf
n→∞

1

n
logZn(X ) ≥ ̺e

}

.

Conditionally on S, we let Un be an individual uniformly chosen at random in generation
n. Let us then focus on its trait frequency up to time n and the associated environment :

νn(A) :=
1

n+ 1
#{0 ≤ i ≤ n : (Xi(Un), T

ie) ∈ A} (A ∈ BX×E).

where Xi(u) is the trait of the ancestor of u in generation i. We check now that the
support of νn converges in probability to Me on the event S.

Corollary 1. Under the assumptions of Theorem 1, we further suppose that ̺e > 0 and
S has positive probability. Then, for every x ∈ X ,

Pe,δx(νn ∈ C|S)
n→∞
−→ 0

for every closed set C of M1(X × E) which is disjoint of Me.

This result deals with the pedigree [JN96, NJ84] or ancestral lineage of a typical individ-
ual. It ensures that the trait frequency along the lineage of a typical individual converges
to one of the argmax of ̺e. We are going a bit farther in the next section, with a de-
scription of this ancestral lineage via size biased random choice, see in particular Lemma
2.

Let us now specify the theorem for some stationary ergodic environment E ∈ E.
Following [S94], let π be a T invariant ergodic probability, i.e. π ◦T−1 = π and if A ∈ BE
satisfies T−1A = A, then π(A) ∈ {0, 1}. Moreover let us require :
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Assumption A. There exist a positive integer b, a T invariant subset E′ of E and a
measurable function M : E → [1,∞) such that logM ∈ L1(π), π(E′) = 1 and for all
x, y ∈ X , A ∈ BX and e ∈ E′,

P b(x, e, A) ≤M(e)P b(y, e, A).

We denote by Vb(X × E) the set of bounded continuous functions that map X × E into
[1,∞) to state the result.

Corollary 2. Under Assumption A, we further suppose that logm(., E) is π a.s. bounded
and continuous. Then π a.s., for every x ∈ X ,

lim
n→∞

1

n
logEE,δx(Zn(X )) = sup

µ∈M1(X×E)

{∫

log(m(x, e))µ(dx, de) − I(µ)

}

,

where I is defined by

I(µ) := sup

{∫

X×E
log

(

u(x, e)
∫

X P (x, e, dy)u(y, Te)

)

µ(dx, de) : u ∈ Vb(X × E)

}

.

To prove these results, we need the following lemma, where B(S) is the set of measur-
able functions on S. With a slight abuse we note Eν when the process is initiated with
one single individual whose trait is distributed as ν. We recall that that Xi(u) is the trait
of the ancestor of u in generation i.

Lemma 1. Let F ∈ B(X k) non-negative. Then, for every ν ∈ M1(X ),

Ee,ν





∑

|u|=n

F (X0(u), . . . ,Xn(u))



 = Ee,ν

(

F (X0, . . . ,Xn)
n−1
∏

i=0

m(Xi, T
ie)

)

.

Proof. For every f0, . . . , fn ∈ B(X ) non-negative, by branching property

Ee,ν





∑

|u|=n

f0(X0(u)) · · · fn(Xn(u))





=

∫

ν(dx0)f0(x0)

∫

m1(x0, e, dx1)ETe,δx1





∑

|u|=n−1

f1(X0(u)) · · · fn(Xn−1(u))



 ,

where

m1(x0, e, dx1) = Ee,x0 (#{|u| = 1 : X(u) ∈ dx1}) = m(x0, e)P (x0, e, dx1).

So by induction

Ee,ν





∑

|u|=n

f0(X0(u)) · · · fn(Xn(u))





=

∫

Xn×A
ν(dx0)f0(x0)

n−1
∏

i=0

m(xi, T
ie)P (xi, T

ie, dxi+1)fi+1(xi+1).

It completes the proof.
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Proof of Theorem 1. The previous lemma applied to F = 1 ensures that

Ee,ν(Zn(X )) = Ee,ν

(

n−1
∏

i=0

m(Xi, T
ie)

)

.

Thus

Ee,ν(Zn(X )) = Ee,ν

(

exp

(

n

∫

X×E
log(m(x, e))Le

n−1(dx, de)

))

.

As logm is bounded and continuous by assumption, so is

µ ∈ M1(X × E) → φ(µ) =

∫

X×E
log(m(x, e))µ(dx, de).

Using the LDP principle satisfied by Le

n, we can apply Varadhan’s lemma (see [DZ98]
Theorem 4.3.1) to the previous function to get the first part of the Theorem.

Let us now consider a sequence µn such that
∫

X×E
log(m(x, e))µn(dxde) − Ie(µn)

n→∞
−→ ̺e.

Then Ie(µn) is upper bounded, which ensures that µn belongs to a sublevel set. By
Definition 1, such a set is compact so can extract a subsequence µnk

which converges
weakly in M(X , E). As Ie is lower semicontinuous, the limit µ of this subsequence
satisfies

lim inf
k→∞

Ie(µnk
) ≥ Ie(µ).

Recalling that φ is continuous, we get

̺e = lim
n→∞

{∫

X×E
log(m(x, e))µφ(n)(dxde)− Ie(µφ(n))

}

≤

∫

log(m(x, e))µ(dxde) − Ie(µ)

and µ is a maximizer. That ensures that Me is compact and non empty.

Proof of Corollary 1. We define for any individual u in generation n

νn(u)(A) =
1

n+ 1

∑

0≤i≤n

δXi(u).

Using Lemma 1 with F (x0, . . . , xn) = 1l( 1
n+1

∑

0≤i≤n δxi ∈ C), we have

Ee,ν (#{u : |u| = n, νn(u) ∈ C}) = Ee,ν

(

exp

(

n

∫

X×E
log(m(x, e))Le

n−1(dx, de)

)

1Le

n∈C

)

Applying again Varadhan’s to any bounded continuous function φ : M1(X × E) → R

such that, for every µ ∈ C,

φ(µ) ≤

∫

X×E
log(m(x, e))µ(dx, de) (1)

we get,

lim sup
n→∞

1

n
logEe,ν (#{u : |u| = n, Fn(u) ∈ F}) ≤ sup{φ(µ) − Ie(µ) : µ ∈ M1(X × E)}.
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Let us now check that we can find φ such that the right hand side is strictly less than
̺e. We proceed by contradiction and assume that for every φ continuous and bounded
which satisfies (1), we have sup{φ(µ) − Ie(µ) : µ ∈ M1(X × E)} = ̺e. Then using
that Ie is a good rate function, we obtain that there exists µ(φ) such that φ(µ(φ)) −
Ie(µ(φ)) = ̺e, using the same arguments as the end of the previous proof. Recalling
that M1(X ×E) can be metrizable by a distance d, we define now φn(µ) := −nd(µ, F )+
∫

X×E log(m(x, e))µ(dx, de). We use again the compactness of sublevel sets of Ie to extract
a sequence µ(φnk

) of µ(φn) which converges to µ0. Then µ0 ∈ C ∩Me, which yields the
contradiction with C ∩Me = ∅.

Thus we can choose ρ′ such that

lim sup
n→∞

1

n
logEe,ν (#{u : |u| = n, νn(u) ∈ C}) < ̺′ < ̺e.

Adding that

P(νn(Un) ∈ F |S) ≤ E (#{u : |u| = n, νn(u) ∈ C}/Zn(X )|S)

≤ e−̺
′n
E (#{u : |u| = n, νn(u) ∈ C}) /P(S)

for n large enough by definition of S and that the left hand side goes to 0 ends up the
proof.

Proof of Corollary 2. Under Assumption A, Theorem 3.3 [S94] ensures that there exists
a function I which satisfies π a.s. the Definition 1 (uniformly with respect to x ∈ X ).
The result is then a direct application of Theorem 1.

We have given above an expression of the mean growth rate and specified the ancestral
lineage of surviving individuals. We are now wondering : does the process grows like its
mean when it survives ?
How is the population spread for large times ?

3 Law of large numbers

We consider the mean measure under the environment e:

mn(x, e, A) := Ee,δx (Zn(A)) = Ee,δx (#{u : |u| = n,X(u) ∈ A}) (A ∈ BX ).

It yields the mean number of descendant in generation n, whose trait belongs to A, of an
initial individual with trait x. By now, we assume that for all x ∈ X , e ∈ E and n ≥ 0,

mn(x, e,X ) <∞.

We define a new family of Markov kernel Qn by

Qn(x, e, dy) := m1(x, e, dy)
mn−1(y, Te,X )

mn(x, e,X )
.

The fact that Qn(x, e,X ) = 1 for all n ∈ N, x ∈ X , e ∈ E comes directly from the
branching property. We introduce the associated semigroup, more precisely the successive
composition of Qj between the generations i and n :

Qi,n(x, e, A) = Qn−i(x, T
ie, .) ∗Qn−i−1(., T

i+1e, .) ∗ · · · ∗Q1(., T
n−1e, .)(A),

where we recall the notation Q(x, .) ∗ Q′(., .)(A) =
∫

X Q(x, dy)Q′(y,A) and ν(f) =
∫

X f(y)ν(dy). The next section links the semigroups mn and Q0,n.
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3.1 The auxiliary process and the many-to-one formula

The following many-to-one formula links the expectation of the number of individuals
whose trait belongs to A to the probability that the Markov chain associated to the kernel
Qn belongs to A.

Lemma 2. For all n ∈ N, x ∈ X and F ∈ B(X n+1) non-negative, we have

Ee,δx





∑

|u|=n

F (X0(u), . . . ,Xn(u))



 = mn(x, e,X )Ee,x(F (Y
(n)
0 , . . . , Y (n)

n )),

where (Y
(n)
i : i = 0, . . . , n) is a non-homogeneous Markov chain with transition kernels

(Qn−i(., T
ie, .) : i = 0, . . . , n− 1). In particular for each f ∈ B(X ) non-negative,

mn(x, e, f) = mn(x, e,X )Q0,n(x, e, f).

We note that mn(x, e,X ) is the mean number of individuals in generation n considered
in the previous section. Here, combining the branching property and the lemma above
yields the following expression of the growth rate:

mn+1(x, e,X )

mn(x, e,X )
=

∫

X
m(y, T ne)Q0,n(x, e, dy).

The many-to-one formula yields the first step of a spine decomposition of the size-biased
tree. We have proved that the dynamic of the trait along the spine follows the non-
homogeneous Markov chain Y . Going further, we could check that the reproduction of the
individuals along the spine is a size biased law and that independent process then grow
following the original distribution. Such a decomposition has been firstly achieved for
Galton-Watson processes in [LPP95]. We refer to [KLPP97] for an extension to multitype
Galton-Watson processes, when the number of types is finite and the environment is fixed,
using the eigenvector associated to the maximal eigenvalue of the mean operator. Let us
defer to section 3.4.2 some details on this framework and mention [GB03] for continuous
time and [G99] for related results in varying environment.
The second part of the Lemma is an extension of the many one-to-one formula for binary
tree [G07], Galton-Watson trees [DM10] and Galton-Watson trees in stationary random
environments [BH13]. In continuous time, many-to-one formula and formula for forks
can been found in [BDMT11]. But these later do not let the reproduction depend on the
trait. We refer to [C11, HR12, HR13] for other many-to-one formulas and asymptotic
results when reproduction law depend on the trait in some particular cases.
Let us finally mention in this vein the induced random walk eliminating the branching
for branching random walk in random environment, see e.g. [CP07a].

Proof. By a telescopic argument :

n−1
∏

i=0

Qn−i(xi, T
ie, dxi+1) =

m0(xn, e,X )

mn(x0, e,X )

n−1
∏

i=0

m1(xi, T
ie, dxi+1).

Adding that m1(xi, T
ie, dxi+1) = m(xi, T

ie)P (xi, T
ie, dxi+1), the first part of the lemma

is a consequence of Lemma 1. We then deduce the second part by applying the identity
obtained to F (x0, . . . , xn) = f(xn).
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Our aim is now to get ride of the expectation and obtain the repartition of the
population for large times. We want to derive it from the asymptotic distribution of this
auxiliary Markov chain with kernel Qn and prove a law of large number on the proportions
of individuals whose trait belongs to A. Usual methods rely on martingales (see [A00]
for infinite number of types) but the assumptions required are not easily fulfilled, at least
regarding the motivations from biology and ecology we give in this work. Moreover the
generalization to varying environment seems more adapted to the technicals described
here. Thus, we are here inspired by ideas and techniques developed in [AK98a, AK98b]
using the branching property for suitable large times or that in [G07] relying on L2

computations. That’s why, before preoceeding, we consider the variance of the size of the
population and for that purpose we use:

Vi := {(wa,wb) : a 6= b, |wa| = |wb| = |w| + 1 = i}.

Lemma 3. Let e ∈ E, x ∈ X and 0 ≤ k ≤ n. We have

Ee,δx(#{u, v : |u| = |v| = n, |u ∧ v| ≥ k})

= mn(x, e) +

n
∑

i=k+1

Ee,δx





∑

(u1,u2)∈Vi

mn−i(X(u1), T
ie)mn−i(X(u2), T

ie)



 .

In particular, defining

Vi(e, u1, u2) = sup
k≥0

mk(X(u1), T
ie,X )mk(X(u2), T

ie,X )

mi+k(x, e,X )2

and assuming that for some sequence en ∈ E,

lim inf
n→∞

mn(x, en,X ) > 0; sup
n≥0

∑

i≥1

Een,δx





∑

(u1,u2)∈Vi

Vi(en, u1, u2)



 <∞, (2)

then Zn(X )/mn(x, en,X ) is bounded in L2
en,δx

.

Proof of Lemma 3. We omit the initial state δx in the notations and write mn(x, e) for
mn(x, e,X ). Using the branching property and distinguishing if the common ancestor of
two individuals lives before generation n or in generation n, we have

Ee(#{u, v : |u| = |v| = n, |u ∧ v| ≥ k})

= Ee





∑

|u|=|v|=n,|u∧v|≥k

1





= Ee(Zn(X )) + Ee









∑

k+1≤i≤n

∑

|w|=i−1, a6=b
|wa|=|wb|=i

∑

|u|=n:u≥wa
|v|=n:v≥wb

1









= mn(x, e) +
∑

k+1≤i≤n

Ee









∑

|w|=i−1, a6=b
|wa|=|wb|=i

mn−i(X(wa), T ie)mn−i(X(wb), T ie)









.

10



This yields the first part of the Lemma. Then, letting k = 0 and dividing by mn(x, e)
2

ensures that

Ee(Zn(X )2)

mn(x, e)2
≤

1

mn(x, e)
+
∑

i≤n

Ee





∑

(u1,u2)∈Vi

Vi(X(u1),X(u2))



 ,

which ends up the proof.

3.2 Branching decomposition

In this part, we focus on the particular case when extinction does not occur and actu-
ally assume that the population has a positive growth rate. We have then the following
strong law of large numbers, on the following event ensuring the geometric growth of the
size of the population :

T :=

{

∀n ≥ 0, Zn(X ) > 0; lim inf
n→∞

Zn+1(X )

Zn(X )
> 1

}

.

Theorem 2. Let e ∈ E and f ∈ B(X ) bounded. We assume that there exists a measure
ν with finite first moment such that for all x ∈ X , k, l ≥ 0,

P(N(x, T ke) ≥ l) ≤ ν[l,∞). (3)

Assume also that there exists a sequence of probability measure µn such that

sup
λ∈M1(X )

n≥0

∣

∣Qn,n+p(λ, T
ne, f ◦ fp+n)− µn+p(f)

∣

∣ −→ 0 (4)

as p→ ∞. Then,

fn.Zn(f)

Zn(X )
− µn(f)

n→∞
−→ 0 Pe,δx a.s. on the event T . (5)

This result is inspired by [AK98a, AK98b]. It extends their approach to the non neutral
framework (the reproduction law may depend on the trait) and to time varying environ-
ment. It yields a strong law of large numbers relying on the uniform ergodicity of the
auxiliary Markov chain Qi,n. The restriction to the event where the size of the population
has positive growth rate will be relaxed in the next part using L2 assumptions. We here
simply mention that the previous convergence can be stated on the (a priori larger) event

T ′ :=

{

∀n ≥ 0, Zn(X ) > 0; lim inf
n→∞

1

n
log(Zn(X )) > 0

}

.

This extension may be useful for applications in random environmnent, when subcritical
environments occur i.o. To prove this, one need to replace (3) by a stronger assumption
(uniform L2 bound) and adapt the Lemma below.

We first state a law of large numbers, which is being used several time. It is an easy
extension of Lemma 1 in [AK98a], which itself is proved using [K72].
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Lemma 4. Let {Fn}
∞
0 be a filtration contained in (Ω,B,P). Let {Xn,i : n, i ≥ 1} be

r.v. such that for each n, conditionally on Fn, {Xn,i : i ≥ 1} are centered independent
r.v. Let {Nn : n ≥ 1} be non-negative integer valued r.v. such that for each n, Nn is Fn
measurable.
We assume that there exists a random measure ν with finite first moment such that

∀t > 0, sup
n,i≥1

P(|Xn,i| > t|Fn) ≤ ν(t,∞) a.s.

Then

1

Nn

Nn
∑

i=1

Xn,i
n→∞
−→ 0

a.s. on the event {∀n ≥ 0 : Nn > 0, lim infn→∞Nn+1/Nn > 1}.

Proof. The proof can be simply adapted from the proof of Lemma 1 in [AK98a]. For any
δ > 0, n0 ≥ 1 and l > 1, we define

An :=

{∣

∣

∣

∣

∣

1

Nn

Nn
∑

i=1

Xn,i

∣

∣

∣

∣

∣

> δ; ∀k = n0, . . . , n :
Nk

Nk−1
≥ l

}

and prove similarly that
∑

n≥n0
P(An|Fn) <∞. This yields the expected a.s. convergence

on the event {∀n ≥ n0, Nn+1/Nn ≥ l} by conditional Borel Cantelli Lemma [Chow and
Teicher, 1988, p249] and the result follows by monotone limit.

We use this lemma to prove the following result.

Lemma 5. Under the assumptions of Theorem 2, we have

1

Zn+p(X )

∑

|u|=n

mp(X(u), T ne,X )
n→∞
−→ 1 Pe,δx a.s on T .

Proof. The branching property gives a natural decomposition of the population in gen-
eration n+ p:

Zn+p(X ) =
∑

|u|=n

Z(u)
p (X ),

where Z(u) is the branching Markov chain whose root is the individual u and whose
environment is T ne. Moreover,

Zn+p(X )−
∑

|u|=n

mp(X(u), T ne,X ) =
∑

|u|=n

[

Z(u)
p (X )−mp(X(u), T ne,X )

]

= Zn(X )ǫn,p,

where

ǫn,p :=
1

Zn(X )

∑

|u|=n

X(n)
p,u , X(n)

p,u := Z(u)
p (X )−mp(X(u), T ne,X ).

We note that (X
(n)
p,u : |u| = n) are independent conditionally on Fn = σ(X(v) : |v| ≤

n), E(X
(n)
p,u ) = 0 and |X

(n)
p,u | ≤ |Z

(u)
p (X )| + mp(X(u), T ne,X ), so that the stochastic

domination assumption (3) ensures that there exists a measure with finite first moment
ν ′ such that

sup
u∈T

Pe,δx(|X
(n)
p,u | > t|F|u|) ≤ ν ′(t,∞),

12



where we recall that T is the set of all individuals. We can then apply the law of large
number of Lemma 5 to get that for every p ≥ 0, ǫn,p → 0 a.s. on the event An0,l, as
n→ ∞. Recalling that Zn+p(X ) ≥ Zn(X ) for n large enough ends up the proof.

We can now prove the Theorem.

Proof of Theorem 2. We use again the branching decomposition in generation n to write
∣

∣

∣

∣

fn+p.Zn+p(f)

Zn+p(X )
− µn+p(f)

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

1

Zn(X )

∑

|u|=n

Zn(X )

Zn+p(X )
fn+p.Z

(u)
p (f)− µn+p(f)

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

∑

|u|=n

Xu,n,p

Zn(X )

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∑

|u|=n

Yu,n,p
Zn+p(X )

∣

∣

∣

∣

∣

∣

+ µn+p(f)

∣

∣

∣

∣

∣

∣

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )
− 1

∣

∣

∣

∣

∣

∣

,

where

Xu,n,p =
Zn(X )

fn+p.Zn+p(X )

[

fn+p.Z
(u)
p (f)−mp(X(u), T ne, f ◦ fn+p)

]

and
Yu,n,p = mp(X(u), T ne,X )[Q0,p(X(u), T ne, f ◦ fn+p)− µn+p(f)].

We want to prove that these quantities go to zero. First we note that

Xu,n,p ≤ fn+p.Z
(u)
p (f) +mp(X(u), T ne, f ◦ fn+p)

≤ ‖ f ‖∞ [Z(u)
p (X ) +mp(X(u), T ne,X )],

so that Assumption (3) ensures that the r.v. Xu,n,p are stochastically dominated. Then,
we can apply the law of large numbers of Lemma 5 and get that for each p ≥ 0,
∑

|u|=nXu,n,p/Zn(X ) tends to zero as n→ ∞.
Moreover the many-to-one formula (Lemma 2) ensures that

Yu,n,p = mp(X(u), T ne,X )[Q0,p(X(u), T ne, f ◦ fn+p)− µn+p(f)] ≤ mp(X(u), T ne,X )Mp

where
Mp := sup

n≥0
|Q0,p(X(u), T ne, f ◦ fn+p)− µn+p(f)|.

Combining these results, we get

lim sup
n→∞

∣

∣

∣

∣

fn+p.Zn+p(f)

Zn+p(X )
− µn+p(f)

∣

∣

∣

∣

≤Mp lim sup
n→∞

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )

+ ‖ f ‖∞ lim sup
n→∞

∣

∣

∣

∣

∣

∣

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )
− 1

∣

∣

∣

∣

∣

∣

≤Mp.

by means of Lemma 5. Using now that Mp → 0 as p→ ∞ by (4), we have

lim sup
p→∞

lim sup
n→∞

∣

∣

∣

∣

Zn+p(f)

fn+p.Zn+p(X )
− µn+p(f)

∣

∣

∣

∣

= 0

and the proof is complete.
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3.3 L
2 convergence

In this section, we state weak and strong law of large numbers by combining L2

computations, the ergodicity of the auxiliary Markov chain Y and the position of the
most recent common ancestor of the individuals in generation n.
We recall the notations Q(λ, e, f)(x) =

∫

X 2 λ(dx)Q(x, e, dy)f(y) and B(X ) for the set of
measurable functions from X to R. We note Bb(X ) the set of measurable functions from
X to R, which are bounded by a same constant b ≥ 0.

The main assumption we are using concern the ergodic behavior of the time non-
homogeneous auxiliary Markov chain Y .

Assumption 1. Let en ∈ E, F ⊂ B(X ), fn ∈ B(X ) and µn ∈ M1(X ) for each n ∈ N.
(a) For all λ ∈ M1(X ) and i ∈ N,

sup
f∈F

∣

∣Qi,n(λ, en, f ◦ fn)− µn(f)
∣

∣

n→∞
−→ 0.

(b) For every kn ≤ n such that n− kn → ∞,

sup
λ∈M1(X ),f∈F

∣

∣Qkn,n(λ, en, f ◦ fn)− µn(f)
∣

∣

n→∞
−→ 0.

We note that we can set µn(f) := Q0,n(λ, en, f ◦ fn) in this assumption, for any fixed
λ ∈ M1(X ). The second assumption (uniform ergodicity) clearly implies the first one.
Sufficient conditions will be given in the applications. In particular, they are linked to
Harris ergodic theorem and more specifically they will be formulated in terms of Doeblin
and Lyapounov type conditions. The function fn is bound to make the process ergodic
if it is not originally. We have for example in mind the case when the auxiliary Markov
chain Xn satisfies a central limit theorem, fn(x) = (x − an)/bn and f(Xn) converges
to the same distribution whatever the initial value X0 is. Such convergence hold for
example for branching random walks.

We consider now the genealogy of the population and the time of the most recent
common ancestor of two individuals chosen uniformly.

Assumption 2. (a) For every ǫ > 0, there exists K ∈ N, such that for n large enough,

Een,δx(#{u, v : |u| = |v| = n, |u ∧ v| ≥ K})

mn(x, en,X )2
≤ ǫ. (6)

Moreover there exists Ci ∈ B(X 2) such that for all i ∈ N, x, y ∈ X ,

sup
n≥i

mn−i(y, T
ien,X )

mn(x, en,X )
≤ Ci(x, y), with E

(

max{Ci(x,X(w))2 : |w| = i+ 1}
)

<∞.

(b) For every K ∈ N,

Een,δx(#{u, v : |u| = |v| = n, |u ∧ v| ≥ n−K})

mn(x, en,X )2
n→∞
−→ 0. (7)

Moreover,
sup
n∈N

Een,δx(Zn(X )2)/mn(x, en,X )2 <∞.
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These expressions can be rewritten in terms of normalized variance of Zn(X ) and more
tractable sufficient assumptions can be specified, using Lemma 3, see also the applica-
tions below. We also observe that these assumptions require that each reproduction law
involved in the dynamic has a finite second moment. Moreover mn(x, en,X ) has to go to
+∞.
The assumption (6) says that the common ancestor is at the beginning of the genealogy.
It is the case for Galton-Watson trees, branching processes in random environment and
many others “regular trees”. The assumption (7) says that the common ancestor is not
at the end of the genealogy, so it is weaker. For a simple example where (6) is fulfilled
but (7) is not, one can consider the tree Tn which is composed by a single individual until
the generation n − kn and equal to the binary tree between the generations n − kn and
n, with kn → ∞. One can also construct examples of branching Markov chain with time
homogeneous reproduction. As an hint, we mention the degenerated case when the tree
is formed by a spine where each individual has exactly one offsprings, but the individu-
als of the spine which have two offsprings. More generally, such a genealogy may arise
by considering increasing Markov chains and increasing mean reproduction m(x, e) with
respect to x ∈ X .

Theorem 3 (Weak LLN). Let en ∈ E, x ∈ X , fn : X → X and F be a subset of B(X )
such that supf∈F ‖ f ‖∞<∞.

We assume either that Assumptions 1(a) and 2(a) hold or that Assumptions 1(b) and
2(b) hold. Then, uniformly for f ∈ F ,

fn.Zn(f)− µn(f)Zn(X )

mn(x, en,X )

n→∞
−→ 0 (8)

in L2
en,δx

and for all ǫ, η > 0,

Pen,δx

(∣

∣

∣

∣

fn.Zn(f)

Zn(X )
− µn(f)

∣

∣

∣

∣

≥ η ; Zn(X )/mn(x, en,X ) ≥ ǫ

)

n→∞
−→ 0.

We first note that fn.Zn(1l(A))/Zn(X ) is the proportion of individuals in generation
n whose trait belongs to f−1

n (A). The assumptions require either weak ergodicity and
early separation of lineages or strong ergodicity and non-late separation of lineages.
We refer to the next section for various applications.
We also mention that the Theorem holds if fn : X → X ′ and can be extended to
unbounded f with domination assumptions following [G07]. Finally, let us mention that
the a.s. convergence may fail in the theorem above, even in the field of applications we
can have in mind. One can think for example of an underlying genealogical tree growing
very slowly and each individual is attached with i.i.d. random variable, as appears in
tree indexed random walks, using the rate function of the associated random walk.

Proof. Let us prove the first part of the Theorem under Assumptions 1(a) and 2(a). In
the whole proof, x is fixed and we omit δx in the notation of the probability and of the
expectation. For convenience, we also write m(x, en) := m(x, en,X ), b := supf∈F ‖ f ‖∞
and denote

gn(x) := f(fn(x))− µn(f).
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We compute for K ≥ 1,

Een

(

Zn(gn)
2
)

= Een





∑

|u|=|v|=n

gn(X(u))gn(X(v)





= Een









∑

|u|=|v|=n
|u∧v|<K

gn(X(u))gn(X(v))









+ Een









∑

|u|=|v|=n
|u∧v|≥K

gn(X(u))gn(X(v))









The second term of the right hand side is smaller than

2 ‖ f ‖2∞ E(#{|u| = |v| = n : |u ∧ v| > K}) ≤ 2b2m(x, en)
2.ǫK,n,

where lim supn→∞ ǫK,n → 0 as K → ∞ using the first part of Assumption 2(a). So we
just deal with the first term and consider i = 1, . . . ,K. Thanks to the branching property,

Een









∑

|u|=|v|=n
|u∧v|=i−1

gn(X(u))gn(X(v))









= Een









∑

|w|=i−1
|wa|=|wb|=i

∑

|u|=n
u≥wa

∑

|v|=n
v≥wb

gn(X(u))gn(X(v))









= Een









∑

|w|=i−1
|wa|=|wb|=i

Ri,n(X(wa))Ri,n(X(wb))









,

where the many-to-one formula of Lemma 2 allows us to write

Ri,n(x) := ET i
en,δx





∑

|u|=n−i

gn(X(u))



 = mn−i(x, T
ien)Q0,n−i(x, T

ien, gn). (9)

Then

m(x, en,X )−2
Een









∑

|u|=|v|=n
|u∧v|≤K

gn(X(u))gn(X(v))









= Een









∑

i≤K,|w|=i−1
|wa|=|wb|=i

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien)mn−i(X(wb), T ien,X )

mn(x, en)2









.

and Assumption 1(a) ensures that

Fi,n(u) := Ri,n(X(u))/mn−i(X(u), T ien)

goes to 0 a.s. for each i ∈ N and u ∈ T such that |u| = i. Moreover this convergence is
uniform for f ∈ F . Adding that Fi,n is bounded by b, we have

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien)mn−i(X(wb), T ien)

mn(x, en)2

≤ b2 sup
n

mn−i(X(wa), T ien)

mn(x, en)
. sup
n

mn−i(X(wb), T ien)

mn(x, en)
.
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By bounded convergence, the second part of Assumption 2(a) ensures that
Zn(gn)/mn(x, en) converges to 0 in L2

en
uniformly for f ∈ F . It ends up the

proof of (8) under Assumptions 1(a) and 2(a) .

The proof of (8) under Assumptions 1(b) and 2(b) is almost the same, replacing K
by n−kn with kn → ∞. Indeed, Assumption 2(b) ensures that there exists kn → ∞ such
that

Een,δx (#{|u| = |v| = n : |u ∧ v| > n− kn})

mn(x, en)2
n→∞
−→ 0,

whereas

Een









∑

i≤n−kn,|w|=i−1
|wa|=|wb|=i

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien)mn−i(X(wb), T ien)

mn(x, en)2









≤

(

sup
n−i≥kn,x∈X

Fi,n(x)

)2
E(Zn(X )2)

mn(x, en)2
.

Assumption 1(b) ensures that supn−i≥kn,x∈X Fi,n(x) → 0 as kn → ∞ and the second part
of Assumption 2(b) ensures that Een(Zn(X )2)/mn(x, en)

2 is bounded. The conclusion is
thus the same.

The proof of the last part of the Theorem comes simply from Cauchy-Schwarz in-
equality :

Een

(

1lZn(X )/m(x,en)≥ǫ

[

fn.Zn(f)

Zn(X )
− µn(f)

])2

≤ Een

(

mn(x, en)
2

Zn(X )2
1Zn(X )/mn(x,en)≥ǫ

)

Een

(

[

fn.Zn(f)− Zn(X )µn(f)

mn(x, en)

]2
)

.

The first term of the right-hand side is bounded with respect to n. So applying the
first part of the Theorem to the second term and using Markov inequality ends up the
proof.

We give now a strong law of large numbers.

Theorem 4 (Strong LLN). Let e ∈ E, x ∈ X and f ∈ Bb(X ).
Assume that

lim inf
n→∞

mn(x, e,X ) > 0;
∑

i≥1

Ee,δx





∑

(u1,u2)∈Vi

Vi(e, u1, u2)



 <∞, (10)

and that there exists a sequence of probability measure µn on X such that

sup
i∈N

∑

n≥i

sup
λ∈M1(X )

∣

∣Qi,n(λ, T
ie, f ◦ fn)− µn(f)

∣

∣

2
<∞. (11)

Then Zn(X )/mn(x, e,X ) is bounded in L2
e,δx

and

fn.Zn(f)− µn(f)Zn(X )

mn(x, e,X )

n→∞
−→ 0 Pe,δx a.s.
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The first assumption is related to the genealogy of the population and the second one is
linked to the ergodic property of the auxiliary Markov chain Y . Both assumptions are
stronger that their counterpart of the previous theorem.
As Zn(X )/mn(x, e,X ) is bounded in L2

e
, the event {Zn(X )/mn(x, e,X ) ≥ ǫ} is positive

for ǫ small enough and every n ≥ 1. On this event, we note that fn.Zn(f)/Zn(X ) −
µn(f) → 0 goes to 0 as n→ ∞, as in Theorem 2.

Proof. The fact that Zn(X )/mn(x, e,X ) is bounded in L2
e,δx

comes directly from the
second part of Lemma 3. To get the a.s. convergence, we prove that

Ee





∑

n≥1

[

fn.Zn(f)− µn(f)Zn(X )

mn(x, e)

]2


 <∞.

For that purpose, we use the notations of the proof of the previous Theorem, in particular

gn(x) := f(fn(x))− µn(f)

and we are inspired by L2 computations for Markov chain indexed by trees, see e.g. [G07].
Using Fubini inversion, the branching property and (9), we have

∑

n≥0

mn(x, e)
−2

Ee(Zn(gn)
2)

= Ee





∑

n∈N

∑

|u|=|v|=n

mn(x, e)
−2gn(X(u))gn(X(v))





= Ee









∑

n∈N

∑

i≤n

∑

|u|=|v|=n
|u∧v|=i

mn(x, e)
−2gn(X(u))gn(X(v))









= Ee









∑

n∈N
i≤n

∑

|w|=i−1
|wa|=|wb|=i

∑

|u|=n:u≥wa
|v|=n:v≥wb

mn(x, e)
−2gn(X(u))gn(X(v))









+Ee





∑

n∈N,|u|=n

mn(x, e)
−2gn(X(u))2



 .
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Then
∑

n≥0

mn(x, e)
−2

Ee(Zn(gn)
2)

≤ Ee









∑

n∈N
i≤n

∑

|w|=i−1
|wa|=|wb|=i

mn−i(X(wa), T ie)mn−i(X(wb), T ie)

mn(x, e)2
Fi,n(X(wa))Fi,n(X(wb))









+2 ‖ gn ‖∞ Ee

(

∑

n∈N

mn(x, e)
−2Zn(X )

)

≤ Ee









∑

i∈N,|w|=i−1
|wa|=|wb|=i

Vi(X(wa),X(wb))Hi









+ b
∑

n∈N

mn(x, e)
−1,

where b := (2 ‖ f ‖∞)2 and

Hi = sup
y,z

∑

n≥i

Fi,n(y)Fi,n(z), Vi(x0, x1) = sup
n≥i

mn−i(x0, T
ie)mn−i(x1, T

ie)

mn(x, e)2
.

The assumptions (10) and (11) ensure that
∑

n≥0

mn(x, e,X )−2
Ee(Zn(gn)

2) ≤

b
∑

n≥0

mn(x, e)
−1 + sup

i∈N
Hi.

∑

i∈N

E





∑

(u1,u2)Vi

Vi(X(u1),X(u2))



 <∞.

Then, Zn(gn)/mn(x, e) → 0 a.s., which completes the proof.

3.4 Applications based on the spectral theory of the mean operator

and geometric ergodicity

We aim now at providing sufficient tractable conditions to apply the law of large
numbers stated in the previous sections. We focus here on strong law of large numbers
we can derive from Theorem 4 using the ergodicity of the (one-dimensional) auxiliary
Markov chain. Analogous results could be stated using Theorem 2 but seem to be more
restrictive when considering applications in varying environment. More precisely, we first
focus on the neutral case and the separation of the growth term and the dynamic of the
trait is very natural. We then use classical spectral theory and the spectral gap of mean
operator to state a result which can be applied in the time homogeneous framework.
Finally we use focus on the geometric Harris ergodicity of the auxiliary Markov chain
and check that the assumptions of the previous Theorems can be fulfilled and applied to
non-neutral branching processes in varying environment.

We refer to the next subsection for additional applications. Let us begin with a lemma,
which provides a convenient sufficient condition for Assumption 2. It will be be satisfied
in the following applications. We recall that it ensures that the common ancestor of two
individuals chosen independently lives at the beginning of the tree.
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Lemma 6. Assume that there exists (C(e) : e ∈ E) such that for all x, y ∈ X and n ≥ 0,

mn(y, e,X ) ≤ C(e)mn(x, e,X ) (12)

and a sequence en ∈ E such that

sup
n≥0

n
∑

i=1

1 ∧D(x, T i−1en)

mi(x, en,X )
<∞, (13)

where

σ(e) := sup
y∈X

E(N(y, e)2), D(x, e) :=
σ(e)C(e)

m(x, e)
C(Te)2.

Then (2) holds and Zn(X )/mn(x, en,X ) is bounded in L2
en,δx

. Moreover, if en = e, then
(10) also holds.

Proof. Using the branching property in generation i and (12), we have for all y ∈ X ,

mi+k(x, e) ≥ mi(x, e)C(T ie)−1mk(y, T
ie). (14)

Then

Vi(e, u1, u2) ≤
C(T ie)2

mi(x, e,X )2

and

Een





∑

(u1,u2)∈Vi

Vi(u1, u2)



 ≤ Een (Vi)
C(T ie)2

mi(x, e,X )2
.

Adding that
Ee (Vi) ≤ mi−1(x, e,X )σ(T i−1e)

and using again (14) with k = 1, we get

Een,δx





∑

(u1,u2)∈Vi

Vi(u1, u2)



 ≤
σ(T i−1e)C(T i−1en)

m(x, T i−1e)

C(T ien)
2

mi(x, en,X )
.

Thus, (2) and (10) hold. Applying Lemma 3 ends up the proof.

3.4.1 Weak law of large numbers along branching trees (neutral case)

First, we consider the neutral case, which means that the reproduction law of an
individual does not depend on their trait. Thus the underlying genealogy is a single typ
branching process (which may be time non-homogeneous) and Assumption 2(a) can be
easily checked. Moreover mn := mn(x, e,X ) = Πn−1

j=0m(x, T je) does not depend on x.
The law of large numbers of the Theorems given in the two previous section then rely
(only, up to some moment assumptions) on the weak ergodicity of the auxiliary Markov
chain Yn whose kernel transition simplifies as

Qn(x, e, dy) := m1(x, e, dy)
1

m1(x, e,X )
= P (x, e, dy).
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Moreover Wn = Zn/mn is (a.s. with respect to the environment) a martingale which
converges to a positive finite limit on the non extinction event, since we have here L2

assumptions. Then we obtain

Pe

(∣

∣

∣

∣

fn.Zn(f)

Zn(X )
− µn(f)

∣

∣

∣

∣

≥ η ;∀n ∈ N, Zn(X ) > 0

)

n→∞
−→ 0.

We recover here classical weak law of large numbers for proportions of individuals with a
given trait for Markov chains along trees, such as Galton-Watson trees [G07] (Section 2.2),
[DM10] (Theorem 1.3) and branching processes in random environment [BH13] (Theorem
3.2).

3.4.2 Using the spectral gap of the mean operator (in fixed environment).

In this section, the environment is fixed, so we can set P := Pe and

mn(x, .) := mn(x, e, .), mn(µ, .) =

∫

X
µ(dx)mn(x, .)

for any x ∈ X and µ ∈ M(X ). We consider a subspace X of M(X ) stable by addition
which contains M1(X ). We endow X with a norm ‖ . ‖X and assume that there exists
c > 0 such that ‖ µ ‖X≤ cµ(X ) for any µ ∈ X and that µ → m1(µ, .) is a bounded
endomorphism on (X, ‖ . ‖X). We denote by X ′ the topological dual of X and we assume
that (µ→ m1(.,X )) ∈ X ′ and the following spectral properties.

Assumption 3. There exists (λ, µ0, f0) ∈ (1,∞]×M1(X )×X ′ such that f0(µ) > 0 for
any non zero measure µ of X and

m1(µ0, .) = λµ0(.), f0(m1(., dx)) = λf0(.).

Moreover, there exists a < λ and c > 0 such that

‖ mn(µ, .) − λnf0(µ)µ0(.) ‖X≤ can ‖ µ− f0(µ)µ0(.) ‖X .

When X is finite, M(X ) and X ′ are identified to vectors and f0 has positive coefficients.
Then, Perron Frobenius theory ensures that the previous Assumptions hold if the matrix
given by the mean operator m1 is aperiodic and irreducible. We refer to [S01] for details
and extension to a denumerable state space X . Moreover Krein Rutman Theorem allows
to tackle the non-denumerable framework when the mean operator is compact and posi-
tive. A usual case corresponds then to identify f0 with a (positive) measurable function
and f0(m1(., dx)) = m(., f0). Let us finally note that several technics in analysis allow to
go beyond these assumptions via the decompositions of the operator, see [MS14], where
an overview in of the results in the continuous time framework is given.
The previous assumption ensures that for any non-negative function f such that µ0(f) ∈
(0,∞) and any µ ∈ X,

mn(µ, f) ∼ λnf0(µ)µ0(f) and mn(µ,X ) ∼ f0(µ)λ
n (n → ∞).

Moreover f0(Zn)/λ
n is a martingale, so it converges a.s. to a finite r.v. Checking that the

limit is non-degenerated is delicate in general. Classical N logN moment assumptions
for single type population [LPP95] can be extended to the case #X < ∞ [KLPP97]
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and to more general framework. We refer to [A00] for extension of the N logN moment
assumption and to [M67] for L2 asymptotic behavior of Zn(.) when X is denumerable
and to [C11] for a counterpart in continuous time. Here, we can use the L2 computations
of the previous section to derive the following statement for a general state space X .
Similarly, one could derive a strong law of large number from Theorem 2.

Corollary 3. Let f ∈ B(X ) bounded and x ∈ X . If Assumption 3 hold and
supy∈X E(N(y)2) <∞, then
i) Zn(X )/mn(x,X ) is bounded in L2;
ii) f0(Zn)/λ

n converges a.s. to W ∈ [0,∞) and P(W > 0) > 0;
iii) Zn(f)/Zn(X )−→µ0(f) as n→ ∞, Pδx a.s. on the event {W > 0}.

Proof. Using Assumption 3, we obtain (12). Recalling λ > 1, (13) is satisfied. Then we
can apply Lemma 6 and (2) hold. It ensures that Zn(X )/mn(x,X ) is bounded in L2 and
so does f0(Zn)/λ

n since f0 ∈ X ′ is bounded and ‖ Zn ‖X≤ cZn(X ). We deduce that
the martingale limit of f0(Zn)/λ

n is non-degenerated and i− ii) are proved. Let us now
focus on

Qn(x, f) = mn(δx, f)/mn(δx,X ).

Using the second part of Assumption 3 with f0 bounded, there exist constant c′, c′′ such
that for every y ∈ X

|Qn(y, f)− µ0(f)| ≤ c′(a/λ)n ‖ δy − f0(δy)µ0 ‖X≤ c′′(a/λ)n

and
|Qn(y, f)−Qn(z, f)| ≤ 2c′′(a/λ)n.

It ensures that condition (11) hold since a < λ and we can apply Theorem 4 to get

Zn(f)− Zn(X )µ0(f)

mn(x,X )

n→∞
−→ 0 Pδx a.s.

Adding that lim infn→∞ Zn(X )/mn(x,X ) > 0 a.s. on the event {W > 0} since f0 is
bounded ends up the proof.

3.4.3 Geometric ergodicity (in potentially varying environment).

We need here an additional assumption on the transition semi-groups, namely we
require a contraction property, which can be handled by classical technics relying on
Doeblin and Lyapounov type assumptions, see in particular [MT09, HM08, M13]. We
consider the space of probabilities M1(X ), which we endowed with a distance d bounded
by 1 such that for every bounded measurable function f , there exists C > 0 such that
|µ(f)− ν(f)| ≤ Cd(µ, ν).

Corollary 4. Assume that there exist C,An such that for any e ∈ E, x, y ∈ X , λ, µ ∈
M1(X ) and n ≥ 0,

mn(y, e,X ) ≤ C(e)mn(x, e,X ), d(Qn(λ, e, .), Qn(µ, e, .)) ≤ An(e)d(λ, µ) (15)

and
∑

n≥1

1 ∧D(x, T n−1e)

mn(x, e,X )
<∞,

∑

n≥0

n
∏

k=0

Ak(T
n−ke)2 <∞.
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Then, for each e ∈ E, Zn(X )/mn(x, e,X ) is bounded in L2
e,δx

and for every measurable
bounded function f ,

Zn(f)− µn(f)Zn(X )

mn(x, e,X )

n→∞
−→ 0 Pe,δx a.s.

Proof. The proof is an application of Lemma 6 and Theorem 4. Indeed, we first use
Lemma 6 to check that (10) hold and Zn(X )/mn(x, e,X ) is bounded in L2

e,δx
. Moreover,

by induction we obtain

d(Qi,n(λ, e, .) −Qi,n(µ, e, .)) ≤ Πn−1
k=iAn−k(T

ke)d(λ, µ) ≤ Πn−1
k=iAn−k(T

ke),

since d is bounded by 1. Then

|Qi,n(λ, e, f)−Qi,n(µ, e, f)| ≤ CΠn−1
k=iAn−k(T

ke).

Adding that the right-hand-side is summable allows us to get (11) and apply Theorem 4
and conclude.

Let us provide now some tractable sufficient conditions to apply this result.

If there exists M : E → [1,∞) such that for all x, y ∈ X , e ∈ E,

m1(x, e, .) ≤M(e)m1(y, e, .),

then (15) hold and the corollary can be applied. Such an assumption is motivated in
particular by reproduction-dispersion model on islands (i.e. compact set). Indeed, we
obtain the first part of (15) using

mn(x, e) =

∫

X
m1(x, e, dz)mn−1(z, Te) ≤ M(e)

∫

X
m1(y, e, dz)mn−1(z, Te)

≤ M(e)mn(y, e),

whereas the second part of (15) comes from

Qn(x, e, A) =

∫

X

m1(x, e, dz)

mn(x, e)
mn−1(z, Te, A)

≤ M(e)2
∫

X

m1(y, e, dz)

mn(y, e)
mn−1(z, Te, A) ≤M(e)2Qn(y, e, A)

and d can be chosen as the total variation distance d(λ, µ) = sup‖f‖∞≤1

∣

∣

∫

X f(x)λ(dx)−
∫

X f(x)µ(dx)
∣

∣.

As a more general framework and motivation for further works, we can rewrite
the second part of (15) in terms of the kernel transition P of the original model. Indeed,
we can use the first part of (15) and the branching property to write

C(e)−1m(x, e)mn−1(y, Te) ≤ mn(x, e) ≤ C(e)m(x, e)mn−1(y, Te).

Recalling that Qn(x, e, dy) = m(x, e)P (x, e, dy)mn−1(y, Te)/mn(x, e), we get

C(e)−1P (x, e, dy) ≤ Qn(x, e, dy) ≤ C(e)P (x, e, dy),

so that the second part of (15) can be derived from control on the semigroup P .
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3.5 Further comments and applications

We now mention some links with classical branching models and provide few other
applications.

3.5.1 About multitype branching processes

When the state space X is finite, the process Z is a multitype branching process and
much finer results can be obtained. In particular, the limit behavior of Zn/mn(x, e,X )
is known, see e.g. [KLPP97] in fixed environment and [C89] in random environment.
Let us yet stress that we provide in Lemma 2 a slightly different spine decomposition
than [KLPP97], without projection with respect to the eigenvector associated to the
mean operator. In particular, in a work in progress, we are using such an expression for
controlling the distribution of sampled cells at a fixed times and deriving estimations of
parameters for cell division. Finally, we note that the previous results (and in particular
Corollary 4) can be applied to branching processes in varying environment, when for
example the mean growth rate decreases to 1 to mimic the effect of resources limitation.

In the two next subsections, we focus on the neutral case, which means that the
reproduction law does not depend on the trait (see also Section 3.4.1). Let us deal with
the good renormalizing function fn which allows to get law of large numbers.

3.5.2 About branching random walks and random environment

Branching random walks have been largely studied from the pioneering works of Big-
gins (see e.g. [B77]) and central limit theorems have been obtained to describe the
repartition of the population for large times [B90].
For branching random walks (possibly in varying environment in time and space), the
auxiliary Markov chain Y is a random walk (possibly in varying environment in time and
space). To get law of large numbers for Zn, one can then check that some convergence in
law

(Yn − an)/bn ⇒W

where the limit W does not depend on the initial state x ∈ X . Then we can use Theorem
3 with fn(x) = (x − an)/bn to obtain the asymptotic proportion of individuals whose
trait x satisfies fn(x) ∈ [a, b]. It is given by P(W ∈ [a, b]) as soon as P(W ∈ {a, b}) = 0.
Thus it can be used when the auxiliary process satisfies a central limit theorem. We
refer to [BH13] Section 3.4 for some examples in the case when the reproduction law
does not depend on the trait x ∈ X and the environment is stationary ergodic in time.
One can actually directly derive some (rougher) law of large numbers directly from the
speed of random walk (in environment), i.e. use Yn/an ⇒ v. As as example, we recall
that in dimension 1 the random walk in random environment Y may be sub-ballistic
and bn = nγ with γ ∈ (0, 1).
We finally mention [N11] when the offspring distribution is chosen in an i.i.d. manner
for each time n and location x ∈ Z.
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3.5.3 About Kimmel’s cell infection model and non-ergodicity

In the Kimmel’s branching model [B08] for cell division with parasite infection, the
auxiliary Markov chain Yn is a Galton-Waston in (stationary ergodic) random environ-
ment. For example, in the case when no extinction is possible, i.e. P1(Y1 > 0) = 1, under
the usual integrability assumption we have

Yn/Π
n−1
i=0mi

n→∞
−→ W ∈ (0,∞) a.s.

where mi is the (random) mean number of offsprings in a cell line in generation i. We
note that the distribution of W depends on the initial value of Y . But

log(Yn)/n
n→∞
−→ E(logm0) a.s.

and the limit here does not depend on Y0 any longer. So we get the ergodic property
required to use use Theorem 3 with fn(x) = log(x)/n. We obtain that the proportion
of cells in generation n whose number of parasites is between exp([E(logm0)− ǫ]n) and
exp([E(logm0) + ǫ]n) goes to 1 in probability, for every ǫ > 0. This yields some first new
result on the infection propagation, which could be improved by additional work.
Soon as the number of parasites in a cell can be equal to zero, i.e. P1(Y1 = 0) > 0,
ergodicity is failing and some additional work is needed. Using monotonicity argument,
one may still conclude, see [B08] for an example.

4 Local densities and extremal particles.

We deal now with local densities and the associated ancestral lineages. More precisely,
we focus on the number of individuals whose trait belongs to some set An in generation
n, when n→ ∞.
We have proved the many-to-one formula

E(Zn(An)) = mn(x, e,X )Q0,n(x, e, An)

in the previous section. We have then checked that the ergodicity of Q0,n ensures that
for fixed A ∈ BX , Zn(A)/Zn(X )−Q0,n(x, e, A) → 0 under some conditions.
Now we wish to compare the asymptotic behaviors of

Zn(An) and mn(x, e,X )Q0,n(x, e, An), when Q0,n(x, e, An) → 0.

In particular, we are studying the links between the local densities Zn(An) for large
times and the large deviations events of Q0,n, i.e. with the asymptotic behavior of
Q0,n(x, e, An).
Such questions have been well studied for branching random walks from the pioneering
work of Biggins [B77]. We we refer to [R93, HS09] for related results and to [S08]
for reviews on the topic. We also mention [CP07b, N12] for the random environment
framework.
The upper bound for such results comes directly from Markov inequality and we are
working on the lower bound. As usual, we could then derive the rough asymptotic
behavior of the extremal (minimal or maximal position) individual. It covers classical
(rough) results for branching random walks on the speed of the extremal individual (at
the log scale). We provide some other examples motivated by cell’s infection model,
where the associated deviation strategy is more subtle. We finally mention that Zn(An)
may be negligible compared to mn(x, e,X )Q0,n(x, e, An).
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4.1 A general lower-bound

Let us derive a counterpart of Lemma 4 to get an a.s. lower bound for the number
of individuals in generation n whose trait belong to An. We need here a more subtle
construction than the subpopulation constructed by keeping the individuals whose trait
is in some Ank

for suitable generations nk. This way works e.g. for branching random
walks (see the pioneering works of Biggins) but the applications below are providing
different pictures.
Let x ∈ X , e ∈ E, (ti : i ≥ 0) be an increasing sequence of integers, Di ⊂ {ti, ti+1, . . .}
and Ai, Bi ⊂ X . We set the event

T :=

{

∀i ≥ 0 : Zti(Bi) > 0; lim inf
i→∞

Zti+1(Bi+1)

Zti(Bi)
> 1

}

.

We assume now that P(T ) > 0 so the following statement makes sense.

Lemma 7. Assume that there exist measures (νi : i ≥ 0) and ν and positive integers
(mi,n : i, n ≥ 0)such that

∫∞
0 lν(dl) <∞ and for all i ≥ 0, x ∈ Bi, l ≥ 0, n ∈ Di,

Pδx,T tie

(

Zn−ti(An)

mi,n
≥ l

)

≥ νi[l,∞], νi[l,∞) ≤ ν[l,∞). (16)

Then

lim inf
i→∞

inf
n∈Di

Zn(An)

Zti(Bi)mi,n

∫∞
0 lνi(dl)

≥ 1

Pδx,e a.s. on the event T .

In the applications we have in mind (see below), lim inf i→∞

∫∞
0 lνi(dl) > 0, ∪iDi = N,

mi,n ∼ mn−ti(xi, T
ie, An) for some xi ∈ Bi and

Zn(An) ≈ Zti(Bn)mti,n−ti ≈ mn(x, e, An)

where ≈ is meaning an equivalence at a logarithm scale.

Proof. We use that for i ≥ 0 and n ∈ Di, the branching property and (16) ensure that

Zn(An) ≥ mi,n

Zti
(Bi)
∑

k=1

Xi,k,

where (Xi,k : k ≥ 0) are i.i.d. r.v. distributed as νi. Then,

Zn(An) ≥ Nimi,n
1

Ni

Ni
∑

k=1

Xi,k

with Ni := Zti(Bi). Thanks to the domination of νi by ν, we can use Lemma 4 to get

1

Ni

Ni
∑

k=1

Xi,k −

∫ ∞

0
lνi(dl)

i→∞
−→ 0 a.s.

on the event T . It ends up the proof.
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4.2 Logarithm estimates of local densities

Let us derive the asymptotic behavior of the number of individuals in generation
n whose trait belong to An. For safe of simplicity of the statement and regarding the
applications below, we focus on the logarithm scale.

Proposition 1. Let An be a sequence of subsets of X . Then,

(i) lim sup
n→∞

1

n
logZn(An) ≤ lim sup

n→∞

1

n
logmn(x, e, An) Pe,δx a.s.

(ii) We assume that there exist ti ≥ 0, mn > 0, a non-zero measure with finite first
moment ν and i(n) ∈ N such that for every n ∈ N, ti(n) ≤ n and

Pδbi(n)
,T i(n)

e

(

Zn−ti(n)
(An)

mn
≥ l

)

≥ ν[l,∞]. (17)

Then

lim inf
n→∞

1

n
logZn(An) ≥ lim sup

n→∞

1

n
logmn

Pe,δx a.s. on the event T =
{

∀i ≥ 0 : Zti(Bi) > 0, lim inf i→∞Zti+1(Bi+1)/Zti(Bi) > 1
}

.

Proof. As for branching random walks, the upper bound comes directly from Markov
inequality. Indeed, for all ̺, η > 0,

Pe,δx(Zn(An) ≥ exp((̺+ η)n)) ≤ exp(−(̺+ η)n)mn(x, e, An).

So letting ̺ = lim supn→∞
1
n logmn(x, e, An) ensures that the right hand side is

summable. Then Borel-Cantelli lemma yields the a.s. upper bound (i).
The second part comes by applying Lemma 7 with Di := {n : i(n) = i}, mi,n := mn

and νi := ν. Taking the logarithm and using
∫

lν(dl) > 0 with ∪iDi = N yields the
results

This result ensures that at the logarithm scale, Zn(An) behaves as its mean. In partic-
ular, it allows to derive the speed of the extremal individuals in the population, following
the standard arguments used e.g. for Branching random walks.
To explain how to check the assumptions required in this Theorem, let us provide L2 suf-
ficient conditions, in the same vein as Section 3.3. For safe of simplicity and applications,
the results are given for monotone models.

4.3 L
2 computations, monotone branching Markov chains and large de-

viations

By now we assume that X is ordered by ≤ and with a slight abuse, we are denoting
[b,∞] := {x ∈ X : x ≥ b}.

Definition 2 (Monotonicity). We say that the branching Markov chain Z is monotone
if for all x ≤ y, e ∈ E and a ∈ X , we have

Pδx,e(Z1([a,∞)) ≥ l) ≤ Pδy ,e(Z1([a,∞)) ≥ l) (l ≥ 0).
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We consider the event

T :=

{

∀i ≥ 0 : Zti([bi,∞]) > 0, lim inf
i→∞

Zti+1([bi+1,∞])

Zti([bi,∞])
> 1

}

for some fixed increasing sequence (ti : i ≥ 0) and elements bi of X .

We define the following measure for k, n ≥ 0 and a, b ∈ X ,

µ(k, n, a, b) := Pδa,T k
e
(Zn−k([b,∞)) ∈ .)

which counts the number of individuals with trait larger than b in generation n, which
come from one single individual with trait a in generation k. For some measure µ, we
note µ̄ its mean and µ̂ its normalized variance. Thus,

µ̄(k, n, a, b) = mn−k(a, T
ke, [b,∞)), µ̂(k, n, a, b) = Eδa,T k

e

(

[

Zn−k([b,∞))

µ̄(k, n, a, b)

]2

− 1

)

.

Theorem 5. Assume that Z is monotone and there exists ̺ > 0 such that

lim
n→∞

1

n
logmn(x, e, [an,∞)) = ̺.

In addition, we assume that

(i) lim inf
i→∞

µ̄(ti, ti+1, bi, bi+1) > 1,
∑

i≥0

µ̂(ti, ti+1, bi, bi+1)
∏i−1
j=0 µ̄(tj , tj+1, bj , bj+1)

<∞.

(ii) for every ǫ > 0, there exists i(n) ∈ N going to ∞, ψ(n) ∈ N, increasing
sequences (tn,j)j≥0, bn,j ∈ X such that tn,ψ(n) = n, bn,ψ(n) = bn,

lim inf
n→∞

1

n

∑

j<ψ(n)

log µ̄(tn,j, tn,j+1, bn,j, bn,j+1) ≥ ̺− ǫ

and

sup
n

∑

j<ψ(n)

µ̂(tn,j, tn,j+1, bn,j , bn,j+1)
∏j−1
l=0 µ̄(tn,l, tn,l+1, bn,l, bn,l+1)

<∞.

Then P(T ) > 0 and

lim
n→∞

1

n
logZn(An) = ̺ Pe,δx a.s. on the event T .

The proof relies on a coupling with two branching processes in varying environment.
We note that the environment of the branching process may be varying even if that of
orginial process does not. The finiteness of the series in (i) ensures that the associated
martingale is non-degenerate, so that P(T ) > 0. We recall the classical L logL criterion
for the non-degenerescence of the martingale limit in the homogeneous case [LPP95].
Here, we use L2 moment conditions in varying environment and refer to [G76] for more
general (but less tractable) conditions.
For the applications, we shall use E(Zti+1−ti(Bi+1)

2) ≤ E(Zti+1−ti(X )2) and the estimates
of Lemma 3 to check that the series above is finite.
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Proof. We recall that a branching process in varying environment is an extension of
Galton-Watson process X where the reproduction law µi in generation i may depend on
i. Then, assuming that µ̄i ∈ (0,∞),

Xn

Πi<nµ̄i

is a martingale and by orthogonality

E

(

[

Xn

E(Xn)

]2

− 1

)

≤
∑

i<n

µ̂i
∏i−1
j=0 µ̄j

. (18)

We use now a coupling argument by considering a subpopulation whose trait in gen-
eration ti is larger than bi. It is obtained simply by deleting the individuals (and their
descendants) whose trait in generation i is not larger than bi. Using the monotonicity
assumption, the number of individuals Yi that remain in generation i satisfies

Yi+1 ≥

Yi
∑

j=1

Ni,j a.s.

for some r.v. (Ni,j : j ≥ 1) which can be chosen i.i.d. with common distribution
µ(ti, ti+1, bi, bi+1) and independent of (Nk,j : k < i, j ≥ 1). Then, Y is a.s. larger than
a branching process in varying environment with reproduction law µ(ti, ti+1, bi, bi+1) and
the martingale

Yn
Πi≤nµ(ti, ti+1, bi, bi+1)

converges a.s. to a non-negative r.v W . This martingale is bounded in L2 due to As-
sumption (i) and (18). Then E(W ) = 1 and P(T ) > 0 since

lim inf
i→∞

Zti+1([bi+1,∞])

Zti([bi,∞])
≥ lim inf

i→∞
µ(ti, ti+1, bi, bi+1) > 1

a.s. on the event {W > 0}. Now we use similarly that

under Pδbi(n)
,T i(n)

e
, Zn−ti(n)

([an,∞]) ≥ Rnψ(n) a.s.,

where (Rnl : l = 0, . . . , ψ(n)) is a branching process in varying environment started with
one individual and successive reproduction laws µ(tn,l, tn,l+1, bn,l, bn,l+1). Combining (18)
and the second part of (ii), we obtain that

Wn :=
Rnψ(n)

∏

j<ψ(n) µ̄(tn,j, tn,j+1, bn,j, bn,j+1)

is bounded L2. Adding that E(Wn) = 1, Paley-Zygmund inequality ensures that there
exists a non-zero measure ν such that

P(Wn ≥ l) ≥ ν[l,∞).

Then

Pδbi(n)
,T i(n)

e

(

Zn−ti(n)
([an,∞))

∏

j<ψ(n) µ̄(tn,j, tn,j+1, bn,j, bn,j+1)
≥ l

)

≥ ν[l,∞)
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and we can apply Proposition 1 i − ii). With our assumptions, it ensures that
lim supn→∞ log(Zn(An))/n ≥ ̺ a.s. and lim infn→∞ log(Zn(An))/n ≤ ̺ − ǫ a.s. on
the event T for each ǫ > 0. Then T ⊂ {limn→∞

1
n logZn(An) = ̺} and the proof is

complete.

In the applications below, we consider the neutral case with fixed environment and

mn(x, e, A) = mnQ0,n(x, e, A) = mnPn(x,A),

where Pn is the nth convolution of the kernel P introduced in Section 2. To check
the conditions of the previous Theorem, we consider ti = ip and a subdivision (tn,j :
j = 1, . . . , ψ(n)) of [i(n), n] with step p and require that the second moment of the
reproduction law is bounded (σ := σ(e, x) < ∞). Then the conditions for (i) − (ii) are
satisfied as soon as

lim inf
i→∞

mpP p(bi, [bi+1,∞)) > 1, lim inf
i,n→∞

mpP p(bn,i, [bn,i+1,∞)) > 1

The applications which follow show how to find (bi, bi,n) for some relevant An = [an,∞]
or An = [−∞, an]. It underlines the natural link between the local density Zn([an,∞])

and the trajectory (bn,i : i ≤ ψ(n)) associated to the large deviation event {Y
(n)
n ≥ an}.

4.4 Motivations and applications

We first give some details on a motivating example for which straight line and non
straight line may appear for the large deviation strategy (bn,i : i ≤ ψ(n)). We then
mention other challenging questions.

4.4.1 Kimmel’s branching model

We refer to [B08] for a complete description of the model and the motivations. The
population of individuals is a binary tree of cells and the trait is the number of para-
sites of the cell. The auxiliary Markov process Y is then a branching process in random
environment. Monotonicity (see Definition 2) is a direct consequence of the branching
property of Y . Tackling the local densities by means of the previous Theorem (only)
requires to control the event {Yn ∈ [an,∞]}.
A first motivating question in [B08] is to count the number of infected cells in the sub-
critical case, which means that Y is a.s. absorbed in finite time. Three regimes appear
in this case [GKV03] and in the weak subcritical case

P(Yn > 0) ∼ cn−3/2γn,

where γ < E1(Y1). Let us denote by N∗
n = Zn({1, 2, . . .}) the number of infected cells

in generation n. The mean number of infected cells E(N∗
n) is equal to 2nP(Yn > 0) and

obtaining a.s. results on the asymptotic behavior of Nn∗ was left open is this regime.
Theorem 5 ensures that if 2γ > 0, the number N∗

n of infected cells in generation n satisfies

1

n
log(N∗

n)
n→∞
−→ log(2γ) a.s.

on the event when the whole population of parasites survives. Indeed, this Theorem is
applied for p large enough such that 2pP1(Yp > 0) > 1 and log P1(Yp > 0) ≥ p(log(γ)− ǫ),

30



An = [1,∞], bi = 1, bn,l = 1, i(n) = o(n) chosen such that .
Second, when counting the number of cells infected less than the typical cell in the
supercritical regime, the problem is now linked to the lower large deviation of branching
processes in random environment Yn, i.e. to

P(1 ≤ Yn ≤ exp(nθ)), where θ < E(logm(E))

and the way this large deviation event is realized. We refer to [BB12] for detailed results.
Here again Theorem 5 allows to determine the a.s. behavior of the number of cells whose
number of parasites is between 1 and exp(θn). It is worth noting that for this question
the associated trajectory is not a straight line and bn,l indeed depend on n. It is given
by a continuous function which is piecewise affine.

4.4.2 Comments on branching random walks and random environment

We can recover here the classical convergence

1

n
logZn[an,∞)

n→∞
−→ log(m)− Λ(a)

where a ≥ E(X), log(m) > Λ(a) and Λ is the rate function associated to the random
walk S =

∑n−1
i=0 Xi, see e.g. [S08].

One can extend this result to offsprings distribution in time varying environment and
random walks in varying environment using the last Corollary and large deviations of
random walks in varying environment. Here bi = aip, bn,l = alp + bi(n), i(n) = o(n).
We refer in particular to [Z04] for results on quenched and annealed large deviations of
random walk in random environment.

4.4.3 Perspectives and Extremal individuals

A main motivation for the last results is the control of local densities in cell division
models for aging [G07, DM10], for damages [ES07] or infection. In particular, we are now
considering with Valère Biteski Penda the local densities for bifurcating autoregressive
processes [G07]. More precisely, we are deriving the number of cells whose growth rate
is becoming large when the generation is going to ∞.
The results given should also help to handle the non neutral framework. More precisely,
the trait space is the age of the cell (and maybe some additional aging factor, such as the
number of ERCs), which influences the mortality of the cell.
Finally, let us recall that determining the asymptotic behavior of Zn([an,∞)) at the
logarithm scale allows to derive the speed of the maximal trait in generation n among
the population. Indeed, roughly speaking if an(x) satisfies the assumptions of Theorem
5 with some rate ρ(x) :

lim
n→∞

1

n
logmn(x, e, [an(x),∞)) = ̺(x).

Then, for every x such that ρ(x) > logm,

lim sup
n→∞

max{X(u) : |u| = n}

an(x)
≤ 1 Pδx,e a.s.
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and for every x such that ρ(x) < logm,

lim inf
n→∞

max{X(u) : |u| = n}

an(x)
≥ 1 Pδx,e a.s.

on some event whose probability is positive.
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