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Ancestral lineages and limit theorems

for branching Markov chains

Vincent Bansaye ∗

August 13, 2013

Abstract

We consider a branching model in discrete time where each individual has a trait
in some general state space. Both the reproduction law and the trait inherited by
the offsprings may depend on the trait of the mother and the environment. We study
the long time behavior of the population and the ancestral lineage of typical indi-
viduals under general assumptions, which we specify for applications to some models
motivated by biology. Our results focus on the growth rate, the trait distribution
among the population for large time, so as local densities and the position of extremal
individuals. The approach consists in comparing the branching Markov chain to a
well chosen (possibly non-homogeneous) Markov chain. It relies in particular on an
extension of many-to-one formula [G07, BDMT11] and spine decomposition in the
vein of [LPP95, KLPP97, GB03]. The applications use properties of the underlying
genealogy and sufficient conditions for the ergodic convergence of Markov chains.
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1 Introduction

We are interested in a branching Markov chain in a time varying environment,
which means a non homogeneous multitype branching processes with possibly infinite
number of types. Conditionally on the environment (quenched), this process satisfies the
branching property, which means that each individual evolves independently.

Let (E,T ) be a pair consisting of a set E of environments and an invertible map T
on E. One can keep in mind the case when the environment is e = (ei : i ∈ Z) and
Te = (ei+1 : i ∈ Z).

∗CMAP, Ecole Polytechnique, CNRS, route de Saclay, 91128 Palaiseau Cedex-France; E-mail:
vincent.bansaye@polytechnique.edu
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Let (X ,BX ) be a measurable space which gives the state space of the branching Markov
chain. The example X ⊂ R

d will be relevant for the applications.
For each k ∈ N and e ∈ E, let P (k)(., e, .) be a function from X × BXk into [0, 1] which
satisfies
a) For each x ∈ X , P (x, e, .) is a probability measure on (X ,BX ).
b) For each A ∈ BX , P (., e, A) is a BX measurable function.

In the whole paper, we use the classical notation u = u1u2...un with ui ∈ N
∗ to

identify an individual in the population. We denote by |u| = n the generation of the
individual u, by N(u) the number of offsprings of the individual u and by X(u) ∈ X the
trait (or position) of the individual u.

Each individual with trait x ∈ X which lives in environment e ∈ E gives birth
independently to a random number of offspring, whose law both depend on x and e.
The number of offsprings is distributed as a r.v. N(x, e) whose mean is denoted by

m(x, e) = E(N(x, e)).

In the whole paper, we assume that m(x, e) > 0 for each x ∈ X , e ∈ E for convenience. A
natural framework for our models will be given e = (ei : i ∈ Z) and N(x, e) depends only
on x and e0, so that ei yields the environment in generation i and and the reproduction
law in environment in generation n just depends on en.

If the environment is e, we denote by Pe the associated probability. The distribution
of the traits of the offsprings of the individual u living in generation n (|u| = n) is given
by

Pe(Xu1 ∈ dx1, · · · ,Xuk ∈ dxk | (X(v) : |v| ≤ n,N(u) = k)

= P (k)(X(u), T ne, dx1 · · · , dxk).

In other words, one individual with trait x living in environment e gives birth to a set of
individuals (X1, · · · ,XN(x,e)) whose trait are specified by (P (k)(e, x.) : k ∈ N, e ∈ E).
This process is t a multitype branching process in varying environment where the types
take value in X . They have been largely studied for finite number of types, whereas
much less is known or understood in the infinite case, but some results due to Seneta,
Vere Jones, Moy, Kesten for countable types.
The case of branching random walk has also attracted lot of attention from the pioneering
works of Biggins. Then X = R

d and the transitions P (k) are invariant by translation, i.e.
P (k)(x, e, x + dx1 · · · , x + dxk) does not depend on x ∈ X . Recently, fine results have
been obtained about the extremal individuals and their genealogy for such models, see
e.g. [HS09, AS10]. Such methods and results have been extended to branching random
walk in random environment. In particular the recurrence property [M08], the survival
and the growth rate [GMPV10, CP07, CY11], central limit theorems [Y08, N11] and
large deviations results [HL11] have been obtained.
As far as I see, the methods used for such models and in particular the martingale
arguments are not easily adaptable to the general case considered here. We are motivated
by applications to models for biology and ecology such as cell division models for cellular
aging [G07] or parasite infection [B08] and reproduction-dispersion models in non-
homogeneous environment [BL12]. For that purpose, we are inspired by the utilization
of auxiliary Markov chains, branching decomposition and L2 computations, in the vein

2



of the works of Athreya and Khang [AK98a, AK98b], Guyon [G07]. The applications
and references will be given along the paper.

We are interested in the evolution of the measure associated to the traits of the
individuals:

Zn :=
∑

|u|=n

δX(u)

and more specifically by Zn(An) = #{u : |u| = n, X(u) ∈ An}. We also define

Zn(f) =
∑

|u|=n

f(X(u)), fn.Zn =
∑

|u|=n

δfn(X(u)).

First, we want to know if the process may survive globally and how it would grow.
Thus, Section 2 extends the growth rate characterization of [BL12] for metapopulations
to infinite number of patches and varying environment. Then (Section 3), we study the
repartition of the population and focus the asymptotic behavior of the proportions of
individuals whose trait belongs to A, i.e. Zn(X )/Zn(A). It generalizes [AK98a, G07] to
both varying and space dependent reproduction. It extends [BH13] to space dependent
reproduction and complete the results by giving strong law of large numbers. We add
that we take into account some possible renormalization of the traits via a function fn
to cover non recurrent positive cases. Finally, in Section 4, we provide some asymptotic
results about Zn(An), outside the range of law of large numbers. It relies on the large
deviations of the auxiliary process and the trajectory associated with. As an application
we can derive the position of the extreme particles in some monotone models motivated
by biology, where new behaviors appear.
The probabilistic approach we follow yields a way to simulate the long time distribution
of the population and will be applied to some biological models motivated by cell division
or reproduction - dispersion dynamics.

We end up the introduction with recalling some classical notations. The individuals If
u = u1 · · · un and v = v1 · · · vm, then uv = u1 · · · unv1 · · · vm. For two different individuals
u, v of a tree, write u < v if u is an ancestor of v, and denote by u∧v the nearest common
ancestor of u and v in the means that |w| ≤ |u ∧ v| if w < u and w < v.

2 Growth rate of the population

We denote by ρe = limn→∞ n−1 logEe(Zn) the growth rate of the population in the
environment e, when it exists.
We are giving an expression of this growth rate in terms of a Markov chain associated
with a random lineage. Its transition kernel is defined by

P (x, e, dy) :=
1

m(x, e)

∑

k≥1

P(N(x, e) = k)

k−1
∑

i=0

P (k)(x, e,X i−1dyX k−i)

so that the auxiliary Markov chain X is given by

Pe(Xn+1 ∈ dy |Xn = x) = P (x, T ne, dy).

It means that we follow a linage by choosing uniformly at random one of the offspring at
each generation.

3



We assume now that X is a locally compact polish space endowed with a complete
metric and its Borel σ field. Moreover E is a Polish Space and T is an homeomorphism.
We can then consider the weak topology associated to M1(X × E), which means the
smallest topology such that µ ∈ M1(X × E) →

∫

X×E f(z)µ(dz) is continuous soon as f
is continuous and bounded.

Definition 1. We say that X satisfies a Large deviation principle (PGD) with good
rate function Ie in environment e when there exists a lower semi continuous function
I : X × E → R with compact level subsets1 for the weak topology such that

Le

n =
1

n

n
∑

k=0

δXk,T k
e

satisfies for every x ∈ X

lim sup
n→∞

1

n
log Pe,x(Ln ∈ F ) ≤ − inf

z∈F
Ie(z)

for every closed set F of M1(X ×E), and

lim inf
n→∞

1

n
log Pe,x(Ln ∈ O) ≥ − inf

z∈O
Ie(z)

for every open set O of M1(X × E).

The existence of such a principle is classical for fixed environment E = {e}, finite X ,
under irreducibility assumption. We refer to Sanov’s theorem, see e.g. chapter 6.2 in
[DZ98]. We note that the principle can be extended to periodic environments, taking
care of the irreducibility. We are using an analogous result for stationary random en-
vironment to get forthcoming Corollary 2, under Doeblin conditions, which is due to [S94].

The first question that we tackle now is the mean growth rate of the population. The
branching property yields the linearity of the operator µ→ m(µ) = Ee,µ(Z1(.)) for some
measurable set A.
In the case of fixed environment, P and N do not depend on e, so m is also fixed and the
mean growth rate of the process Z is the limit of log |mn|1/n. In the case X is finite, it
is Perron Frobenius eigenvalue under strong irreducibility assumption, with a min max
representation due to Collatz Wielandt. Krein-Rutman theorem gives an extension to
infinite dimension space requiring compactness of the operator m and strict positivity.
In the random environment case, it is the Lyapounov exponent and quenched asymptotic
results can be obtained in the case X is finite [FK60]. Then, we get here branching
processes in random environment and we refer to [AK71, K74] for extinction criteria and
[T88] for the growth rate of this process.

To go beyond these assumptions and get an interpretation of the growth rate in terms
of reproduction-dispersion dynamics, we provide here an other characterization.
This is a functional large deviation principle relying on Varadhan’s lemma. It allows to
decouple the reproduction and dispersion. It yields an extension of Theorem 5.3 in [BL12]
both for varying environment and infinite state pace X . We refer to this latter article for

1It means that {µ ∈ M1(X × E) : I(µ) ≤ l} is compact for the weak topology
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motivations in ecology, more specifically for metapopulations. The next Corollary then
puts in light the dispersion strategy followed by typical individuals of the population for
large times.

Theorem 1. Assume that X satisfies a PGD with good rate function Ie in environment
e and logm : X × E → (−∞,∞) is continuous and bounded. Then, for every x ∈ X ,

lim
n→∞

1

n
logEe,δx(Zn(X )) = sup

µ∈M1(X×E)

{
∫

X×E
m(x, e)µ(dxde) − Ie(µ)

}

:= ̺e

and

Me :=

{

µ ∈ M1(X × E) :

∫

logm(x, e)µ(dxde) − Ie(µ) = ̺e

}

is compact and non empty.

In particular, lim supn→∞
1
n logZn(X ) ≤ ̺e a.s. The limit can hold only on the survival

event. It is the case under classical N logN moment assumption for finite state space
X , see [LPP95] for fixed environment and [AK71] in random environment. But it is a
rather delicate problem when the number of types is infinite.

We introduce now the event

S :=

{

lim inf
n→∞

1

n
logZn(X ) ≥ ̺e

}

.

Conditionally on S, we let Un be an individual uniformly chosen at random in generation
n and the trait frequency up to time n and the associated environment :

νn(A) :=
1

n+ 1
#{0 ≤ i ≤ n : (Xi(Un), T

ie) ∈ A} (A ∈ BX×E).

where Xi(u) the position of the ancestor of u in generation i. We prove that the support
of νn converges in probability to Me on the event S.

Corollary 1. Under the assumptions of Theorem 1, we further suppose that ̺e > 0 and
S has positive probability. Then,

Pe(νn ∈ F |S)
n→∞
−→ 0

for every closed set F of M1(X ×E) which is disjoint of Me.

This result yields an information on the pedigree [JN96, NJ84] or ancestral lineage of a
typical individual. It says that the trait frequency of the lineage of a typical individual
converges to one of the argmax of ̺e. We are going a bit farther in the next Section,
with a description of this ancestral lineage via size biased random choice. Seeing the
population from a typical individual via spine decomposition has been firstly achieved
for Galton-Watson processes in [LPP95]. We refer to [KLPP97] for an extension to
multitype Galton Watson processes, [GB03] for continuous time and [G99] for related
results in varying environment.

Let us now specify the theorem for stationary ergodic environment E ∈ E, under
Doeblin assumptions. Following [S94], we let π be a T invariant ergodic probability, i.e.
π ◦ T−1 = π and if A ∈ BE satisfies T−1A = A, then π(A) ∈ {0, 1}. Then we need :
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Assumption A. There exist a positive integer b, a T invariant subset E′ of E and a
measurable function M : E → [1,∞) such that logM ∈ L1(π), π(E′) = 1 and for all
x, y ∈ X , A,B ∈ BX and e ∈ E′,

P b(x, e, A) ≤M(e)P b(y, e, A).

We denote by Vb(X × E) the set of bounded continuous functions that map X × E into
[1,∞) to state the result.

Corollary 2. Under Assumption A, we have π a.s., for every x ∈ X ,

lim
n→∞

1

n
logEE,δx(Zn(X )) = sup

µ∈M(X×E)

{
∫

log(m(x, e))µ(dx, de) − I(µ)

}

,

where I is defined by

I(µ) := sup

{
∫

X×E
log

(

u(x, e)
∫

X P (x, e, dy)u(y, Te)

)

µ(dx, de) : u ∈ Vb(X × E)

}

.

Proof of Theorem 1. We first note that by Markov and branching property

Ee,ν(Zn+1(A)) =

∫

X
Ee,ν(Zn(dy))ETn

e,δy(Z1(A)). (1)

As

ETn
e,δy(Z1(A)) =

∑

k≥1

P(N(y, T ne) = k)
k
∑

i=1

P (k)(y, T ne,X k−i ×A× X i)

= m(y, T ne)P (y, T ne, A),

we get

Ee,ν(Zn+1(A)) =

∫

X
Ee,ν(Zn(dy))m(y, T ne)P (y, T ne, A)

By induction,

Ee,ν(Zn(A)) =

∫

Xn×A
ν(dy0)

n−1
∏

i=1

m(yi, T
ie)P (yi, T

ie, dyi+1) (2)

and in particular

Ee,ν(Zn(X )) = Ee,ν

(

n
∏

i=0

m(Xi, T
ie)

)

.

Thus

Ee,ν(Zn(X )) = Ee,ν

(

exp

(

n

∫

X×E
log(m(x, e))Le

n(dx, de)

))

As logm is bounded and continuous, so is

µ ∈ M1(X × E) → φ(µ) =

∫

X×E
log(m(x, e))µ(dx, de).

Using the LDP principle satisfied by Le

n, we can apply Varadhan’s lemma (see [DZ98]
Theorem 4.3.1) to the previous function to get the first part of the Theorem.
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Let us now consider a sequence µn such that

∫

X×E
log(m(x, e))µn(dxde) − Ie(µn)

n→∞
−→ ̺e.

Then Ie(µn) is upper bounded, which ensures that µn belongs to a sublevel set. By
Defintion 1, such a set is compact so can extract a subsequence µφ(n) which converges
weakly inM(X , E). As Ie is lower semicontinuous, the limit µ of this subsequence satisfies

lim inf
n→∞

Ie(µφ(n)) ≥ Ie(µ).

Recalling that µ→
∫

logmµ is continuous, we get

̺e = lim
n→∞

{∫

X×E
m(x, e)µφ(n)(dxde) − Ie(µφ(n))

}

≤

∫

m(x, e)µ(dxde) − Ie(µ)

and µ is a maximizer. That ensures that Me is compact and non empty.

Proof of Corollary 1. Let us consider a closed subset of F of M1(X ×E) which is disjoint
of Me. Then, using again the continuity of µ→

∫

mµ, we have

̺F := sup
µ∈F

{
∫

X×E
m(x, e)µ(dxde) − Ie(µ)

}

< ̺e.

We define for any individual u in generation n

νn(u)(A) =
1

n+ 1

∑

i≤n

δXi(u).

Following the computation (2),

Ee,ν (#{u : |u| = n, νn(u) ∈ F}) = Eν

(

exp

(

n

∫

X×E
m(x, e)Le

n(dx, de)

)

1Le

n∈F

)

Applying again Varadhan’s to the bounded continuous function φ : M1(X × E) → R

defined by every µ ∈ F ,

φ(µ) = min

(∫

X×E
m(x, e)Le

n(dx, de), ̺F

)

,

we get,

lim
n→∞

1

n
logEe,ν (#{u : |u| = n, Fn(u) ∈ F}) ≤ sup{φ(µ)− Ie(µ) : µ ∈ M1(X × E)}

≤ ̺F .

Adding that if ρ′ ∈ (ρF , ρe),

P(νn(Un) ∈ F |S) ≤ E (#{u : |u| = n, νn(u) ∈ F}/Zn(X )|S)

≤ e−ρ
′n
E (#{u : |u| = n, νn(u) ∈ F}) /P(S)

for n large enough by definition of S, we get that the left hand side goes to 0.
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Proof of Corollary 2. Under Assumption A, Theorem 3.3 [S94] ensures that there exists
a function I which satisfies Definition 1 π a.s. and uniformly in x ∈ X . The result is
then a direct application of the previous Theorem.

We have given above an expression of the mean growth rate and specify the ancestral
lineage of surviving individuals. It leaves several open questions and we are considering
the following ones in the next Section, which are linked :
Does the process grows like its mean when it survives ?
How is the population spread for large times ?

3 Law of large numbers

We consider the mean measure under the environment e :

mn(x, e, A) := Eδx,e (Zn(A)) = Eδx,e (#{u : |u| = n,X(u) ∈ A) (A ∈ BX ).

It yields the mean number of descendant in generation n of an initial individual with
trait x, whose trait belongs A. Similarly we consider its mean descendance in generation
n We define a new family of Markov kernel Qn by

Qn(x, e, dy) := m1(x, e, dy)
mn−1(y, Te,X )

mn(x, e,X )
.

The fact that Qn(x, e,X ) = 1 for all n ∈ N, x ∈ X , e ∈ E comes directly from the branch-
ing property (1). We introduce the associated semigroup, more precisely the successive
composition of Qj between the generations i and n :

Qi,n(x, e, A) = Qn−i(x, T
ie, .) ∗Qn−i−1(., T

i+1e, .) ∗ · · · ∗Q1(., T
n−1e, .)(A),

where we recall the notation Q(x, .) ∗Q′(., .)(A) =
∫

X Q(x, dy)Q′(y,A). The next section
links the semigroups mn and Q0,n.

3.1 The auxiliary process and the many to one formula

The following many to one formula links the expectation of the number of individuals
whose trait belongs to A to the probability that the Markov chain associated to the kernel
Qn belongs to A. We recall the notation Q(x, e, f)(x) =

∫

X f(y)Q(x, e, dy).

Lemma 1. For all n ∈ N, x ∈ X and f ∈ B(X ), we have

mn(x, e, f) = mn(x, e,X )Q0,n(x, e, f).

We note that mn(x, e,X ) is the mean number of individuals in generation n considered
in the previous Section. Here, combining the branching property and the lemma above
yields an other expression of the growth rate, linked with the ergodic behavior of Q0,n

we are considering below :

mn+1(x, e,X )

mn(x, e,X )
=

∫

X
m(y, T ne)Q0,n(x, e, dy).

The many-to-one formula is linked to the spine decomposition mentioned above and Q0,n

yield the dynamic of the trait of a typical individual in a size biased tree, ”along the
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spine”. More explicitly, it is in the same vein as the many one to one formula for binary
tree [G07], Galton -Watson trees [DM10] and Galton- Watson trees in stationary random
environments [BH13]. In continuous time, many- to- one formula and formula for forks
can been found in [BDMT11]. But these later do not let the reproduction depend on the
position.
In continuous time, we refer to [C11, HR12, HR13] for other many to one formulas and
asymptotic results with reproduction law depend on the trait in some particular cases.

Proof. We recall the notation of the previous Section 2 and the Markov chain X. Fol-
lowing the computations of the proof of Theorem 1 to obtain (2), we get

Eν,e





∑

|u|=n

f(X(u))



 = Eν,e

(

f(Xn)
n−1
∏

i=0

m(Xi, T
ie,X )

)

=

∫

Xn+1

f(xn)ν(dx0)

n−1
∏

i=0

m(xi, T
ie, dxi+1).

Moreover

n−1
∏

i=0

Qn−i(xi, T
ie, dxi+1) =

m0(xn, e,X )

mn(x0, e,X )

n−1
∏

i=0

m1(xi, T
ie, dxi+1).

As m0(xn, e,X ) = 1, we get

Eν,e





∑

|u|=n

fn(X(u))



 = mn(x, e,X )

∫

X
f(xn)

∫

Xn

n−1
∏

i=0

Qn(xi, T
ie, dxi+1),

which completes the proof by the definition of Q0,n.

Our aim is now to get ride of the expectation and obtain the repartition of the
population for large times. We want to derive it from the stationary distribution of
this auxiliary Markov chain with kernel Qn and prove a law of large number on the
proportions of individuals whose trait traited belongs to A. One approach would be
to a find a martingale via maximal eigenvalue and eigenvector, as for finite type and
fixed environment. It has been extended to branching processes with infinite number of
types in [A00] but the assumptions required are not easily fulfilled, at least regarding the
biological and ecological we give in motivations in this work. Moreover the generalization
to varying environment seems more adapted to the technicals described here. Thus, we
are here following ideas developed in [AK98a, AK98b] using the branching property and
the growth of the population or that in [G07] relying on L2 computations and control of
the underlying genealogy.

3.2 Branching decomposition

In this part, we focus on the particular case when extinction does not occur and actu-
ally assume that the population has a positive growth rate. We have then the following
strong law of large numbers.
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Theorem 2. Let us fix e ∈ E and F ⊂ B(X ). We assume that

Pe

(

∀n, Zn(X ) > 0; lim inf
n→∞

Zn+1(X )

Zn(X )
> 1

)

= 1

and that the exists a measure Q with finite first moment such that for all x ∈ X , k, l ≥ 0,

Pe(N(x, T ke) ≥ l) ≤ Q[l,∞). (3)

Assume also that there exists a sequence of probability measure µn such that

sup
λ∈M1(X )

∣

∣Qi,n(λ, T
ie, f ◦ fn)− µn(f)

∣

∣ −→ 0, (4)

uniformly for n− i→ ∞ and f ∈ F . Then,

fn.Zn(f)

Zn(X )
− µn(f)

n→∞
−→ 0 Pe a.s. (5)

This result extends [AK98a, AK98b] to the case when the reproduction law may
depend on the trait, the Markov kernel P (k) is not a direct product of the same kernel
and to time varying environment. It yields a strong law of large numbers relying on the
uniform ergodicity of the auxiliary Markov chain Qi,n. The assumption of a.s. survival
and positive growth rate will be relaxed in the next part using L2 assumptions.

Proof. The branching property gives a natural decomposition of the population in gen-
eration n+ p, as already used in [AK98b] :

Zn+p(X ) =
∑

|u|=n

Z(u)
p (X ),

where Z(u) is the branching Markov chain whose root is the individual u and environment
is T ne. First, we check that

1

Zn+p(X )

∑

|u|=n

mp(X(u), T ne,X ) → 1 a.s. (6)

as n goes to ∞. Indeed,

Zn+p(X )−
∑

|u|=n

mp(X(u), T ne,X ) =
∑

|u|=n

[

Z(u)
p (X )−mp(X(u), T ne,X )

]

= Zn(X )ǫn,p,

where

ǫn,p :=
1

Zn(X )

∑

|u|=n

Xp,u, Xp,u = Z(u)
p (X )−mp(X(u), T ne)

We note that (Xp,u : |u| = n) are independent conditionally on Fn = σ(X(v) : |v| ≤ n),

E(Xp,u) = 0 and |Xp,u| ≤ |Z
(u)
p (X )| +mp(X(u), T ne), so that the stochastic domination

assumption (3) ensures that there exists a probability distribution with finite first moment
Q′ such that

sup
u∈T

Pe(|Xp,u| > t|F|u|) ≤ Q′(t,∞),
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where we recall that T is the set of all individuals. We can then apply the law of large
number of Lemma 1 in [AK98a] to get that for every p ≥ 0, ǫn,p → 0 as n → ∞ Pe a.s.
and obtain (6).
Let ǫ > 0. The strong ergodicity assumption (4) ensures that there exists p ∈ N such
that for every n ∈ N,

sup
λ∈M1

∣

∣Qn,n+p(λ, T
ne, f ◦ fn)− µn+p(f)

∣

∣ ≤ ǫ. (7)

Then, using the same branching decomposition, we are proving

lim sup
n→∞

∣

∣

∣

∣

Zn+p(f)

Zn+p(X )
− µn+p(f)

∣

∣

∣

∣

= lim sup
n→∞

∣

∣

∣

∣

∣

∣

1

Zn(X )

∑

|u|=n

Zn(X )

Zn+p(X )
Z(u)
p (f)− µn+p(f)

∣

∣

∣

∣

∣

∣

≤ ǫ a.s

For that purpose, we split the last term and use the many-to-one formula (Lemma 1)

∣

∣

∣

∣

∣

∣

1

Zn(X )

∑

|u|=n

Zn(X )

Zn+p(X )
Z(u)
p (f)− µn+p(f)

∣

∣

∣

∣

∣

∣

≤
1

Zn(X )

∣

∣

∣

∣

∣

∣

∑

|u|=n

Zn(X )

Zn+p(X )

[

Z(u)
p (f)−mp(X(u), Te, f)

]

∣

∣

∣

∣

∣

∣

+
1

Zn+p(X )

∣

∣

∣

∣

∣

∣

∑

|u|=n

mp(X(u), T ne,X )[Qp(X(u), T ne, f)− µn,n+p(f)]

∣

∣

∣

∣

∣

∣

+µn,n+p(f)

∣

∣

∣

∣

∣

∣

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )
− 1

∣

∣

∣

∣

∣

∣

.

To prove that the first term go to zero a.s. as n → ∞, we use again the law of large
numbers of Lemma 1 in [AK98a] with now

Xu,n =
Zn(X )

Zn+p(X )

[

Z(u)
p (f)−mp(X(u), Te, f)

]

.

We note that Xu,n ≤ Z
(u)
p (f) +mp(X(u), T ne, f) ≤ Z

(u)
p (X ) +mp(X(u), T ne, f) yields

the stochastic domination of Xu,n required as above for Xp,u. Thus, using (7),

lim sup
n→∞

∣

∣

∣

∣

∣

1

Zn(X )

∑

u∈Gn

Zn(X )

Zn+p(X )
Z(u)
p (f)− µn+p(f)

∣

∣

∣

∣

∣

≤ ǫ lim sup
n→∞

1

Zn(X )

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )
+ µ(f) lim sup

n→∞

∣

∣

∣

∣

∣

∣

∑

|u|=n

mp(X(u), T ne,X )

Zn+p(X )
− 1

∣

∣

∣

∣

∣

∣

≤ ǫ.1 + 0,

recalling (6). It ends up the proof by letting ǫ→ 0.
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3.3 L
2 approach

In this Section, we state weak and strong law of large numbers using L2 computations
with ergodicity of the auxiliary Markov chain and a control on the most recent common
ancestor of the individuals.
We recall the notations Q(λ, e, f)(x) =

∫

X 2 λ(dx)Q(x, e, dy)f(y) and B(X ) for the set of
measurable functions from X to R. We note Bb(X ) the set of measurable functions from
X to R, which are bounded by b.

The main assumption we are using concern the ergodic behavior of the time non-
homogeneous auxiliary Markov chain associated to the transitions kernels Qi,n.

Assumption 1. Let en ∈ E, F ⊂ B(X ), fn ∈ B(X ) and µn ∈ M(X ) for each n ∈ N.
(a) For all λ ∈ M(X ) and i ∈ N,

sup
f∈F

∣

∣Qi,n(λ, en, f ◦ fn)− µn(f)
∣

∣

n→∞
−→ 0

(b) For every kn ≤ n such that n− kn → ∞,

sup
λ∈M(X ),f∈F

∣

∣Qkn,n(λ, en, f ◦ fn)− µn(f)
∣

∣

n→∞
−→ 0.

The second assumption (uniform ergodicity) clearly implies the first one. Sufficient
conditions will be given in the applications, such as Doeblin’s conditions. The function
fn is bound to make the process ergodic if it is not originally. We have for example in
mind the case when the auxiliary Markov chain Xn satisfies a central limit theorem, i.e.
fn(x) = (x− an)/bn when f(Xn) converges to the same distribution whatever the initial
value X0 is. It will be the case for the applications to branching random walks.

We consider now the genealogies of the population and the time of the most recent
common ancestor of two individuals chosen uniformly.

Assumption 2. (a) For every ǫ > 0, there exists K ∈ N, such that for n large enough,

Een,δx(#{u, v : |u| = |v| = n, u ∧ v ≥ K})

mn(x, en,X )2
≤ ǫ. (8)

Moreover there exists Ci ∈ B(X 2) such that for all i ∈ N, x, y ∈ X ,

sup
n≥i

mn−i(y, T
ien,X )

mn(x, en,X )
≤ Ci(x, y), with E

(

max{Ci(x,X(w))2 : |w| = i+ 1}
)

<∞.

(b) For every K ∈ N,

Een,δx(#{u, v : |u| = |v| = n, u ∧ v ≥ n−K})

mn(x, en,X )2
n→∞
−→ 0. (9)

Moreover
sup
n∈N

E(Zn(X )2)/mn(x, en,X )2 <∞.

12



These expressions can be rewritten in terms of variance of Zn(X ) and more tractable
sufficient assumptions can be specified, see the applications. We observe also that these
assumptions require that Zn(X ) has a finite second moment, so each reproduction law
involved in the dynamic has a finite second moment. Moreover mn(x, en,X ) has to go to
∞.
The assumption (8) says that the common ancestor is at the beginning of the genealogy.
It is the case for Galton-Watson trees, branching processes in random environment and
many others “regular trees”. The assumption (9) says that the common ancestor is not
at the end of the genealogy, so it is weaker. For a simple example where (8) is fulfilled
but (9) is not, one can consider the tree Tn which is composed by a single individual until
generation n − kn and equal to the binary tree between the generations n − kn and n,
with kn → ∞. One can construct also examples of branching Markov chain with time
homogeneous reproduction. It can be achieved for example by considering increasing
Markov chains and increasing mean reproduction (which may be deterministic) with
respect to x ∈ X .

Theorem 3 (Weak LLN). Let en ∈ En, x ∈ X , fn : X → X and F ⊂ Bb(X ).
We assume either that Assumptions 1(a) and 2(a) hold or that Assumptions 1(b) and

2(b) hold. Then, uniformly for f ∈ F ,

fn.Zn(f)− µn(f)Zn(X )

mn(x, en,X )

n→∞
−→ 0 (10)

in L2
en,δx

and for all ǫ, η > 0,

Pen,δx

(∣

∣

∣

∣

fn.Zn(f)

Zn(X )
− µn(f)

∣

∣

∣

∣

≥ η ; Zn(X )/mn(x, en,X ) ≥ ǫ

)

n→∞
−→ 0.

We note that fn.Zn(1A)/Zn(X ) is the proportion of individuals in generation n whose
trait belongs to f−1

n (A).
We recover the classical weak law of large numbers for Markov chains along Galton-
Watson trees [DM10] and along branching processes in random environment [BH13].
Indeed, in these cases Wn = Zn/mn(x, e,X ) is (a.s. with respect to the environment) a
martingale which converges to a positive limit on the non extinction event thanks to L2

assumptions, so that we obtain

P

(∣

∣

∣

∣

fn.Zn(f)

Zn(X )
− µn(f)

∣

∣

∣

∣

≥ η ;∀n ∈ N, Zn(X ) > 0

)

n→∞
−→ 0.

We give also new law of large numbers in the forthcoming applications. Finally, we note
that the Theorem holds also if fn : X → X ′ and can be extended to unbounded f with
domination assumptions following [G07].

Proof. Let us prove the first part of the Theorem under Assumptions 1(a) and 2(a). In the
whole proof, x is fixed and we omit δx in the notation of the probability and expectation.
For convenience, we also write m(x, en) := m(x, en,X ) and denote

gn(x) := f(fn(x))− µn(f).
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Let us compute for K ≥ 1,

Een

(

Zn(gn)
2
)

= Een(
∑

|u|=|v|=n

gn(X(u))gn(X(v))

= Een









∑

|u|=|v|=n
|u∧v|<K

gn(X(u))gn(X(v))









+ E









∑

|u|=|v|=n
|u∧v|≥K

gn(X(u))gn(X(v))









The second term of the right hand side is smaller than

2 ‖ f ‖2∞ E(#{|u| = |v| = n : |u ∧ v| > K}) ≤ 2b2m(x, en)
2.ǫK,n,

where lim supn→∞ ǫK,n → 0 as K → ∞ using the first part of Assumption 2(a). So we
just deal with the first term and consider i = 1, · · ·K. Thanks to the branching property,

Een









∑

|u|=|v|=n
|u∧v|=i−1

gn(X(u))gn(X(v))









= Een









∑

|w|=i−1
|wa|=|wb|=i

∑

|u|=n
u≥wa

∑

|v|=n
v≥wb

gn(X(u))gn(X(v))









= Een









∑

|w|=i−1
|wa|=|wb|=i

Ri,n(X(wa))Ri,n(X(wb))









,

where the many-to-one formula of Lemma 1 allows us to write

Ri,n(x) := ET i
en,δx





∑

|u|=n−i

gn(X(u))



 = mn−i(x, T
ien)Qn−i(x, T

ien, gn).

Assumption 1 (a) ensures that

Fi,n(u) := Ri,n(X(u))/mn−i(X(wa), T ien)

goes to 0 a.s. for each i ∈ N, |u| = i uniformly for f ∈ F . We also note that this quantity
is bounded by b. Then,

m(x, en,X )−2
Een









∑

|u|=|v|=n
|u∧v|≤K

gn(X(u))gn(X(v))









= Een









∑

i≤K,|w|=i−1
|wa|=|wb|=i

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien)mn−i(X(wb), T ien,X )

mn(x, en)2









.
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As

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien,X )mn−i(X(wb), T ien)

mn(x, en)2

≤ sup
n

mn−i(X(wa), T ien)

mn(x, en)
. sup
n

mn−i(X(wb), T ien)

mn(x, en)
,

we can use the second part of Assumption 2(a) to conclude by bounded convergence.
It yields the L2

en
convergence (10) under Assumptions 1(a) and 2(a), uniformly for f ∈ F .

The proof of (10) under Assumptions 1(b) and 2(b) is almost the same, replacing K
by n−kn with kn → ∞. Indeed, Assumption 1(b) ensures that there exists kn → ∞ such
that

Een,δx (#{|u| = |v| = n : u ∧ v > n− kn})

mn(x, en,X )2
n→∞
−→ 0

whereas

Een









∑

i≤n−kn,|w|=i−1
|wa|=|wb|=i

Fi,n(wa)Fi,n(wb)
mn−i(X(wa), T ien)mn−i(X(wb), T ien,X )

mn(x, en)2









≤

(

sup
n−i≥kn,x∈X

Fi,n(x)

)2
E(Zn(X )2)

mn(x, en)2
.

Assumption 1(a) ensures that supn−i≥kn,x∈X Fi,n(x) → 0 as kn → ∞ and the second part
of Assumption 2(b) ensures that E(Zn(X )2)/mn(x, en) is bounded. The conclusion is
thus the same.

The proof of the last part of the Theorem comes from Cauchy Schwartz inequality :

Een

(

1Zn(X )/m(x,en)≥ǫ

[

fn.Zn(f)

Zn(X )
− µn(f)

])2

≤ Een

(

mn(x, en)
2

Zn(X )2
1Zn(X )/mn(x,en)≥ǫ

)

Een

(

[

fn.Zn(f)− Zn(X )µn(f)

mn(x, en)

]2
)

.

So the first part of the theorem yields the second one.

We give now a strong law of large numbers. For that purpose, we define

Vi(x0, x1) = sup
k≥0

mk(x0, T
ie,X )mk(x1, T

ie,X )

mi+k(x, e,X )2
.

Lemma 2. Let e ∈ E, x ∈ X and assume that

∑

n≥0

mn(x, e,X )−1 <∞;
∑

i≥1

E









∑

|w|=i−1
|wa|=|wb|=i

Vi(X(wa),X(wb))









<∞, (11)

then Zn(X )/mn(x, e,X ) is bounded in L2
e,δx

.
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The proof of this Lemma is given after the following main result.

Theorem 4 (Strong LLN). Let e ∈ E, x ∈ X . Assume that (11) hold. Assume also that
there exist F ⊂ Bb(X ) and a sequence of probability measure µn on X such that

sup
i∈N,f∈F

∑

n≥i

sup
λ∈M1

∣

∣Qi,n(λ, T
ie, f ◦ fn)− µn(f)

∣

∣

2
<∞. (12)

Then uniformly for f ∈ F

fn.Zn(f)− µn(f)Zn(X )

mn(x, en,X )

n→∞
−→ 0 Pe,δx a.s.

The first assumption is related to the genealogy of the population and the second one is
linked to the ergodic property of the auxiliary Markov chain Y . Both assumptions are
stronger that their counterpart of the previous theorem.
We refer to [G07] for more general conditions on the functions f ∈ F in the fixed envi-
ronment case, when the reproduction law does not depend on the position.
We note that under the Assumptions of the Theorem, Zn(X )/mn(x, e,X ) is bounded
in L2

e
thanks to the previous Lemma. It entails that the probability of the event

{Zn(X )/mn(x, en,X ) ≥ ǫ} is positive for ǫ small enough and every n ≥ 1. On this
event, we get fn.Zn(f)/Zn(X )− µn(f) → 0 a.s. as n→ ∞.

Proof of Lemma 2. We omit still in the notations the initial state δx and write mn(x, e)
for mn(x, e,X ). Using the branching property, we have

Ee(Zn(X )2) = Ee





∑

|u|=|v|=n

1





= Ee(Zn(X )) + Ee









∑

i≤n

∑

|w|=i−1
|wa|=|wb|=i

∑

|u|=n:u>wa
|v|=n:v>wb

1









= mn(x, e) +
∑

i≤n

Ee









∑

|w|=i−1
|wa|=|wb|=i

mn−i(X(wa), T ie)mn−i(X(wb), T ie)









.

Then,

Ee(Zn(X )2

mn(x, e)2
≤

1

mn(x, e)
+
∑

i≤n

Ee









∑

|w|=i−1
|wa|=|wb|=i

Vi(X(wa),X(wb)









,

which ends up the proof.

Proof of Theorem 4. In this proof, we also omit the uniformity with respect to f . Let us
prove that

Ee





∑

n≥1

[

fn.Zn(f)− µ(f)Zn(X )

mn(x, e)

]2


 <∞
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to get that
fn.Zn(f)− µn(f)Zn(X )

mn(x, e)

goes to 0 a.s. and conclude. We use the notations of the proof of the previous Theorem :

gn(x) := f(fn(x))− µn(f)

and follow the approach of [G07]. Using Fubini inversion, the branching property and
the notations of the proof of Theorem 3, we have

∑

n≥0

mn(x, e)
−2

E(Zn(gn)
2)

= Ee





∑

n∈N

∑

|u|=|v|=n

mn(x, e)
−2gn(X(u))gn(X(v))





= Ee









∑

n∈N

∑

i≤n

∑

|u|=|v|=n
|u∧v|=i

mn(x, e)
−2gn(X(u))gn(X(v))









= Ee









∑

i≤n

∑

|w|=i−1
|wa|=|wb|=i

∑

|u|=n:u>wa
|v|=n:v>wb

mn(x, e)
−2gn(X(u))gn(X(v))









+E





∑

n∈N,|u|=n

mn(x, e)
−2gn(X(u))2





≤ E









∑

i≤n

∑

|w|=i−1
|wa|=|wb|=i

mn−i(X(wa), T ie)mn−i(X(wb), T ie)

mn(x, e)2
Ri,n(X(wa))Ri,n(X(wb))









+ ‖ gn ‖∞ E

(

∑

n∈N

mn(x, e)
−2Zn(X )

)

≤ E









∑

i∈N,|w|=i−1
|wa|=|wb|=i

Vi(X(wa),X(wb))Hi









+ 2b
∑

n∈N

mn(x, e)
−1,

where

Hi = sup
y,z

∑

n≥i

Ri,n(y)Ri,n(z), Vi(x0, x1) = sup
n≥i

mn−i(x0, T
ie)mn−i(x1, T

ie)

mn(x, e)2
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Then, the assumptions ensure that

∑

n≥0

mn(x, e,X )−2
E(Zn(gn)

2) ≤ 2b
∑

n≥0

mn(x, e)
−1

+sup
i∈N

Hi.
∑

i∈N

E









∑

|w|=i−1
|wa|=|wb|=i

Vi(X(wa),X(wb))









<∞

It ensures that Zn(gn)/mn(x, e) → 0 a.s. and completes the proof.

3.4 Applications

We now provide some applications of the previous results. First we recall that the
previous results extend the law of large numbers for proportions of individuals in gen-
eration n obtained in [G07, DM10] for cellular aging or [BH13] for branching process in
(stationary ergodic) random environment.
Now we provide some applications of the previous Theorems, where the assumptions can
be more easily satisfied. They are motivated by the assumptions arising in reproduction-
dispersion or cell division models.

3.4.1 Under Doeblin’s conditions

We assume Doeblin’s conditions on the mean measure

Assumption 3. There exist M : E → [1,∞) such that for all x ∈ X , e ∈ E,

m(x, e, A) ≤M(e)m(y, e, A).

We could relax this assumption, for example by asking such an inequality for mb instead
of m, for some b ≥ 1. We note This assumption hold if both m(x, e,X ) and P (x, e, .)
satisfy Doeblin’s conditions. We also refer to [M13] for more general conditions in the-non
homogeneous framework.
Let us denote

σ(e) := sup
x∈X

E(N(x, e)2), D(e) :=
σ(e)M(e)M(Te)2

m(x, Te)

to state the result.

Corollary 3. Let e ∈ E, x ∈ X and f ∈ Bb(X ). We assume that Assumption 3 holds
with

∑

n≥1

1 +D(T n−1e)

mn(x, e,X )
<∞,

∑

n≥0

n
∏

k=0

(1− 1/M(T ke)2) <∞. (13)

Then, Zn(X )/mn(x, e,X ) is bounded in L2
e,δx

and

Zn(f)− Zn(X )Q0,n(x, e, f)

mn(x, e,X )

n→∞
−→ 0 Pe,δx a.s.
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We note that the assumptions are fulfilled soon as mn tends fast enough to ∞ (in par-
ticular with geometric convergence) and both σ,M,m are bounded. The proof here uses
Theorem 4 and some additional lemmas allowing to check the assumptions required. We
may derive an application of this result to the random environment framework directly
or relax the assumptions to get only convergence in probability.
We note that the assumptions above ensure that mn(x, e,X ) goes to ∞ (supercritical-
ity). Second, we recall that the fact that Zn(X )/mn(x, e,X ) is bounded ensures that
Zn(X ) → ∞ with positive probability. Using Paley-Sigmund inequality and a stronger
assumption in the first part of (13) to ensure the uniformity with respect to the initial en-
vironment, one can prove that soon as Zn(X ) → ∞, lim infn→∞Zn(X )/mn(x, e,X ) > 0.
Then, one Pe,δx a.s on the event {Zn(X ) → ∞}, Zn(f)/Zn(X ) − Q0,n(x, e, f) → 0
as n → ∞. One can derive an analogous result such from Theorem 2 soon as
lim infn→∞Zn+1(X )/Zn(X ) > 1. To give a simple example, we mention the case of
reproduction laws which are lower bounded by a supercritical offspring distribution.

Lemma 3. Under Assumption 3, for all x, y ∈ X , e ∈ E,n ≥ 0, A ∈ BX ,

mn(x, e)

mn(y, e)
∈ [M(e)−1,M(e)], Qn(x, e, A) ≤M(e)2Qn(y, e, A).

Proof. We have

mn(x, e) =

∫

X
m1(x, e, dz)mn−1(z, Te) ≤ M(e)

∫

X
m1(y, e, dz)mn−1(z, Te)

≤ M(e)mn(y, e).

Thus for all n, x, y,
mn(x, e) ≤M(e)mn(y, e)

and we obtain the first part of the Lemma. We then note that

Qn(x, e, A) =

∫

X

m1(x, e, dz)

mn(x, e)
mn−1(z, Te, A)

≤M(e)2
∫

X

m1(y, e, dz)

mn(y, e)
mn−1(z, Te, A) ≤M(e)2Qn(y, e, A)

to get the second part of the Lemma.

Proof of Theorem 3. Using the branching property in generation i and the first part of
Lemma 3, we have for all x, y ∈ X ,

mi+k(x, e) ≥ mi(x, e)M(T ie)−1mk(y, T
ie).

Then

Vi(x0, x1) = sup
k≥0

mk(x0, T
ie)mk(x1, T

ie)

mk+i(x, e)2
≤
M(T ie)2

mi(x, e)2

and

∑

i≥1

Ee





∑

|w|=i−1

∑

|wa|=|wb|=i

Vi(X(wa),X(wb))



 ≤
∑

i≥1

Ee(Zi−1(X ))σ(T i−1e)
M(T ie)2

mi(x, e)2

≤
∑

i≥1

σ(T i−1e)
M(T i−1(e)M(T ie)2

m(x, T i−1e)mi(x, e)
.
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So (13) ensures that (11) is fulfilled and Lemma 2 ensures that Zn(X )/mn(x, e) is bounded
in L2

e
. The first part of the Theorem is proved and we tackle now the a.s. convergence.

Using the second part of Lemma 3, we get the geometric ergodicity of Qi,n :

|Qi,n(λ, e, f)−Qi,n(µ, e, f)| ≤‖ f ‖∞

n
∏

j=i

(1− 1/M(T je)2)

so that the second part of (13) ensures that (12) hold. Then Theorem 4 yields the
expected a.s. convergence.

3.4.2 Under Lyapounov’s conditions

In the vein of Section 3.4.1, we can use Lyapounov functions to ensure geometric
ergodicity and derive law of large numbers. One need to prove that Qi,n is geometric
ergodic combining a Lyapounov function and Doeblin’s assumption. It is the key point to
apply Theorem 2 when the size of the population has a positive growth rate and the re-
production law is dominated. Some additional work is required to check the Assumptions
of Theorem 4 to get ride of the positive growth rate assumption, as made in Section 3.4.1.

In the two next applications, we consider the case when the reproduction law does not
depend on the trait, so Qi,n just depends on i and the auxiliary Markov chain with kernel
Qi is denoted by Y . We focus in these two examples the discussion on the functions fn
one can use to derive results.

3.4.3 Branching random walks

For branching random walks (possibly in varying environment in time and space), the
auxiliary Markov chain Y is a random walk (possibly in varying environment in time and
space). One way to get law of large numbers is to check some central limit theorem, i.e.
the convergence in law

(Yn − an)/bn ⇒W

for every initial state x ∈ X . Then we can use Theorem 3 with fn(x) = (x − an)/bn to
obtain the asymptotic proportion of individuals whose trait x satisfies fn(x) ∈ [a, b]. It
is given by P(W ∈ [a, b]) soon as P(W ∈ {a, b}) = 0. .
We refer to [BH13] Section 3.4 for more details in this direction in the case when the
reproduction law does not depend on the trait x ∈ X and the environment is stationary
ergodic in time.

3.4.4 Kimmel’s cell infection model and non ergodicity

In the Kimmel’s branching model [B08] for cell division with parasite infection, the
auxiliary Markov chain Yn is a Galton-Waston in (stationary ergodic) random environ-
ment. For example, in the case when no extinction is possible, i.e. P1(Y1 > 0), under the
usual integrability assumption we have

Yn/Π
n−1
i=0mi

n→∞
−→ W ∈ (0,∞) a.s.

wheremi are the successive mean number of offsprings and the distribution ofW depends
on the inital value Y0. But

log(Yn)/n
n→∞
−→ E(logm0) a.s.
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and the limit here does not depend on Y0. So we get ergodic property and can use use
Theorem 3 with fn(x) = log(x)/n. We obtain that the proportion of cells in generation
whose number of parasites in between [exp([E(logm0)− ǫ]n), exp([E(logm0) + ǫ]n) goes
to 1 in probability.

Soon as the number of parasites in a cell can be equal to zero, i.e. P1(Y1 = 0) > 0,
ergodicity is failing and some additional work is needed. Using monotonicity argument,
one may still conclude, see [B08] for an example.

4 Local densities and extremal particles.

We deal now with local densities, so we focus on the number of individuals whose
trait belongs to some set An in generation n and their ancestral lineage.
We have proved the many-to-one formula

E(Zn(An)) = mn(x, e,X )Q0,n(x, e, An)

in the previous section. We have then checked that the ergodicity of Q0,n ensures that
Zn(A)/mn(x, e,X )−Q0,n(x, e, A) goes to zero under some conditions.
Now we wish to compare the asymptotic behaviors of Zn(An) and
mn(x, e,X )Q0,n(x, e, An), when Q0,n(x, e, An) → 0 as n → ∞. In particular, we
are studying the links with the large deviations events of Q0,n, i.e. exponential decrease
of this quantity.
Such questions have been well studied for branching random walks from the pioneering
work of Biggins [B77], and we refer to [R93] and to [R00, S08] for reviews on the topic.
We mention also to [CP07, N11] for the random environment framework and to [DMS05]
for large deviations Markov chain along tree with n vertices.
The upper bound for such results comes directly from Markov inequality and we are
working on the lower bound. As usual, we could then derive the asymptotic behavior
of the left most particle. It covers classical results for branching random walks on the
speed of the extremal individual at the log scale. We provide some example motivated
by cell’s infection model, where the associated deviation strategy is more subtle. We
mention also that Zn(An) may be negligible compared to mn(x, e,X )Q0,n(x, e, An).

Definition 2. For all 0 ≤ i ≤ n, A,B ∈ BX , we define the measure

µi,n(A, e, B)[l,∞) := inf
x∈A

Pδx,T i
e
(Zn−i(B) ≥ l)

We note µ̄ the mean of µ and µ̂ the variance of µ/µ̄, so that

µ̄i,n(A, e, B) =
∑

l≥1

µi,n(A, e, B)[l,∞), µ̂i,n(A, e, B) =

∑

l≥1 l
2µi,n(A, e, B){l}

µ̄i,n(A, e, B)2
− 1.

We start by coupling our process in the first stages by a particular branching process
in varying environment to use both the convergence of the associated martingale during
these first steps and a law of large number argument on the remaining time.

Lemma 4. We assume that there exist φ,ψ : N → ∞ with φ(n) non decreasing going to
∞ and

0 = k0 < k1 < · · · < kφ(n) = k0,n < k1,n < · · · < kψ(n),n = n, Bi, Bj,n ⊂ X
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such that
lim inf
i→∞

µ̄ki,ki+1
(Bi, e, Bi+1) > 1

and

∑

i≥0

µ̂ki,ki+1
(Bi, e, Bi+1)

Πn−1
i=0 µ̄ki,ki+1

(Bi, e, Bi+1)
<∞; sup

n

ψ(n)−1
∑

i=0

µ̂ki,n,ki+1,n
(Bi,n, e, Bi+1,n)

Πn−1
i=0 µ̄ki,n,ki+1,n

(Bi,n, e, Bi+1,n)
<∞.

Then, there exists a set A, whose probability is positive and which does not depend on
(ki,n, Bi,n : i, n ≥ 0), such that

A ⊂

{

lim inf
n→∞

Zn(Bn,ψ(n))

Pn
> 0

}

,

where

Pn :=

φ(n)−1
∏

i=0

µ̄ki,ki+1
(Bi, e, Bi+1).

ψ(n)−1
∏

i=0

µ̄ki,n,ki+1,n
(Bi,n, e, Bi+1,n)

Proof. We use a coupling of the branching Markov chain Z with a supercritical Branching
Process in Varying Environment (BPVE). It is obtained by selecting the individuals whose
lineage lives in the tube (Bi : i ≤ φ(n), Bj,nj ≤ ψ(n)). More prisely we consider the
subpopulation of Z constructed recursively by keeping the descendance of the population
in generation ki whose trait belongs to Bi for i ≤ φ(n) and then whose trait belongs to
Bj,n for j ≤ ψ(n). The size of the population obtained by this construction in generation
ki is a.s. larger than a branching process Ni whose reproduction law in generation i is
µi := µki,ki+1

(Bi, e, Bi+1). Similarly, the size of the population in generation kψ(n),n is
larger than a branching process in varying environment, with initial value equal to Nφ(n)

and successive reproduction law µj,n := µkj,n,ki+1,n
(Bj,n, e, Bj+1,n) jor j = 0, · · · , ψ(n).

Thus,

Zn(Bn,ψ(n)) ≥

Nφ(n)
∑

j=1

Uj,n

where Uj,n is distributed as a BPVE in generation ψ(n), denoted by Un, whose successive
reproduction laws are µki,n,ki+1,n

(Bi,n, e, Bi+1,n) for i = 0, · · · , ψ(n)− 1. Moreover (Uj,n :
j = 0, . . . ψ(n),) are independent by branching property.
By orthogonality ansd using the assumption

∑

i≥0

V ar(µi/µ̄i)

Πi−1
j=0µ̄i

<∞,

the martingale
Ni

∏i−1
j=0 µ̄j

has a finite positive limit W on the survival event A = {∀n,Nn > 0}. Recalling that
lim inf i→∞ µ̄i > 1 by assumption, A has positive probability and conditionally on that
event

lim inf
i→∞

Ni+1

Ni
> 1.
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Similarly Uj,n/E(Uj,n) is bounded in L2
e
using the second part of the moment assump-

tions of the Lemma. Thus

Xj,n
d
=
Uj,n − E(Un)

E(Un)

are independent random variable independent of (Ni : i = 0, · · · , φ(n)) and are bounded
in L2

e
. We can then apply Lemma 1 in [AK98a] to

1

Nkφ(n)

Nkφ(n)
∑

j=1

Xj,n

to get that this quantity goes a.s. to 0 as n→ ∞. Then

Zn(Bn,ψ(n)) ≥ Nkφ(n)
E(Un). [1 + ǫn]

where ǫn → 0. Finally, we use

E(Nkφ(n)
) =

φ(n)−1
∏

i=0

µ̄ki,ki+1
(Bi, e, Bi+1), E(Un) =

ψ(n)−1
∏

i=0

µ̄ki,n,ki+1,n
(Bi,n, e, Bi+1,n)

to get

lim inf
n→∞

Zn(Bn,ψ(n))

Pn
≥ lim inf

n→∞

Nφ(n)

E(Nφ(n))
(1 + ǫn) ≥W.

Recalling that A = {W > 0} has positive probability ends up the proof.

4.1 Monotone Branching Markov chain

Our aim is to see the local densities in terms of the large deviations of the auxiliary
process and the way this large deviation event is achieved. First, let us derive from the
previous Lemma a result in the monotone case for the event [an,∞), which yield the
applications for the cell models and branching random walks which initially motivated
these questions.
Thus, by now, we assume that X is totally ordered by ≤ and

Assumption 4 (Monotonicity). For all x ≤ y, e ∈ E and a ∈ X , we have

Pδx,e(Z1([a,∞)) ≥ l) ≤ Pδy ,e(Z1([a,∞)) ≥ l) (l ≥ 0).

Assumption 5 (Mean growth rate). Let ρ > 0 such that

lim
n→∞

1

n
logmn(x, e, [an,∞)) = ρ.

Moreover, there exist p ≥ 1 and bi ∈ X such that x ≥ b0 and

lim inf
i→∞

mp(bi, T
ipe, [bi+1,∞)) > 1.

Finally, for every ǫ > 0, there exist q = q(ǫ), φ(n) → ∞ and (bj,n : j, n ≥ 0) such that

lim inf
n→∞

1

n

∑

j<(n−φ(n)p)/q

logmq(bj,n, T
iφ(n)+jqe, [bj+1,n,∞)) ≥ ρ− ǫ.
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The values (bi : i ≤ φ(n), bj,n : j ≤ ψ(n)) correspond to the (lower) line of the trait of
the subpopulation which realize the population Zn([an,∞)) in generation n. This line is
a straight line for branching random walk or for an = 1 in the Kimmel’s branching model
[B08], see below. But the line is not straightforward for the other quantities of interest
in Kimmel’s branching model, such as the large deviations associated to an → ∞. An
other motivating example when the line is not straightforward is given by large deviations
event realized in one step of the process. It can be the case for random walks with heavy
tails or autoregressive processes. For that reasons, we have split the line in two parts in
the previous results.

Theorem 5. Let e ∈ E and x ∈ X . Under the Assumptions 4, 5 and

sup
{

E(N(z, T ke)2) : z ∈ X , k ≥ 0
}

<∞,

we have
1

n
logZn([an,∞))

n→∞
−→ ρ

with positive probability under Pe,δx.

Letting the initial population goes to infinity in this statement allows to get the result
a.s. by branching property. Getting the result a.s. requires additional assumptions.

Proof. As for branching random walks, the upper bound comes directly from Markov
inequality. For every η > 0,

Px,e(Zn([an,∞)) ≥ exp((ρ+ η)n)) ≤ exp(−(ρ+ η)n)mn(x, e, [an,∞)),

so that the first part of the Assumption 5 ensures that the right hand side is summable.
Then Borel-Cantelli lemma yields the a.s. upper bound.

The lower bound from the previous Lemma with

ki = ip, kn,j = φ(n)p+jq, Bj = [bj ,∞), Bj,n = [bj,n,∞), ψ(n) = [(n−φ(n)p)/q],

where [x] is the smallest integer larger or equal to x. By the monotonicity Assumption 4

µkj ,kj+1
(Bj , e, Bj+1)(.) := P

δbj ,T
kj

e

(

Zkj+1−kj([bj+1,∞)) = .
)

and the definition of µkj,n,kj+1,n
(Bj,n, e, Bj+1,n)(.) is analoguous. So

µ̄kj ,kj+1
(Bj , e, Bj+1) = mkj+1−kj(bj , T

kje, [bj+1,∞)) = mp(bj , T
jpe, [bj+1,∞)).

and the analoguous identitie hold for µ̄kj,n,kj+1,n
(Bj,n, e, Bj+1,n) By Assumption 5, we

have for ǫ ∈ (0, ρ),

lim inf
j→∞

µ̄kj ,kj+1
(Bj , e, Bj+1) > 1, lim inf

n→∞

1

n
log(Π

ψ(n)−1
j=0 µ̄kj,n,kj+1,n

(Bj,n, e, Bj+1,n)) ≥ ρ−ǫ > 0.

Recalling that sup{E(N(x, T ke)2) : x ∈ X , k ≥ 0} <∞ is assumed, we get

∑

i≥0

µ̂ki,ki+1
(Bi, e, Bi+1)

Πi−1
j=0µ̄kj ,kj+1

(Bi, e, Bj+1)
<∞; sup

n

ψ(n)−1
∑

i=0

µ̂ki,n,ki+1,n
(Bi,n, e, Bi+1,n)

Πi−1
j=0µ̄kj,n,kj+1,n

(Bj,n, e, Bj+1,n)
<∞.
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Thus, we can apply Lemma 4 and get

A ⊂

{

lim inf
n→∞

Zn([an,∞))
∏ψ(n)
i=1 µ̄ki,n,ki+1,n

(Bi,n, e, Bi+1,n)
> 0

}

⊂

{

lim inf
n→∞

1

n
logZn([an,∞)) ≥ ρ− ǫ

}

≥ η

Noting that A is fixed when ǫ→ 0 ends up the proof.

As expected, we can now precise the asymptotic behavior of the extremal individuals.
If an(x) satisfies the assumptions of Theorem 5 with some rate ρ(x), then, for every x
such that ρ(x) > logm,

lim sup
n→∞

max{X(u) : |u| = n}

an(x)
≤ 1 Pδx,e a.s.

and for every x such that ρ(x) < logm,

lim inf
n→∞

max{X(u) : |u| = n}

an(x)
≥ 1 Pδx,e a.s.

on some event with positive probability.
The proof is standard. The first part comes directly from Borel-Cantelli Lemma, recalling
that

Pδx,e(Rn ≥ an(x)) ≤ Eδx,e(Zn([an(x),∞))) = m(x, e, [an(x),∞))

decreases exponentially with rate ρ− ρ(x). The second part comes from the Theorem 5
which ensures that there are many particles beyond an(x).

4.2 Monotone Markov chain indexed by branching trees

Let us specify in a simpler framework the results above, more precisely the link be-
tween the local densities and the large deviations of the auxiliary chain. We assume here
that the reproduction law does not depend on the trait of the individual, so that

N(e) := N(x, e), m(e) := m(x, e), mn(e) := mn(x, e) =

n−1
∏

i=0

m(T ie). (14)

As above, we require the monotonocity of the trait distribution : assume :

Assumption 6 (Monotonicity of P ). For all x ≤ y, e ∈ E and a ∈ X , we have

P (x, e, [a,∞)) ≤ P (y, e, [a,∞)).

We assume also that the large deviations of Qi,n beyond an occur with rate α > 0
and that the beginning of the associated trajectory is supercritical, i.e.

Assumption 7 (Large deviations of the auxiliary process Q). We have

lim
n→∞

1

n
logQ0,n(x, e, [an,∞)) = −α

Moreover, we assume that exists p ≥ 1 and bi ∈ X such that

lim inf
i→∞

mp(T
ipe)Qp(bi, T

ipe, [bi+1,∞)) > 1

and that for every ǫ > 0, there exist q = q(ǫ), φ(n) → ∞ and (bj,n : j, n ≥ 0) such that

lim inf
n→∞

1

n

∑

j<(n−φ(n)p)/q

logQq(bj,n, T
iφ(n)+jqe, [bj+1,n,∞)) ≥ −α− ǫ.
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These assumptions are satisfied for the applications we have in mind. For an example
of large deviations following Assumption 7, a sufficient condition is Pan(Yn ≥ an + bn) ∼
P0(Yn ≥ bn). The trajectory associated to the large deviation event is then straight line
and ki,n = ki works. It holds for random walks and more generally for random walks in
random environment under general moment assumptions.

Corollary 4. Let e ∈ E and x ∈ X . Assuming (14), 6 and 7, we have

1

n
log (Zn([an,∞))/mn(e))

n→∞
−→ −α

with positive probability under Pe,δx.

As expected, the large deviation of the auxiliary Markov chain quantifies the lost of
growth α of the size of the population beyond an, Zn([an,∞), compared to the whole
growth of the population given by mn(e).

4.3 Applications

4.3.1 Kimmel’s branching model

We refer to [B08] for a complete description of the model and the motivations. The
population of cells is a binary tree and the number of parasites is the trait. The auxiliary
Markov process Y is then a branching process in random environment. Monotonicity
(Assumption 6) is a direct consequence of the branching property of Y and the problem
is reduced to check Assumption 7.

One of the motivating question in [B08] is to count the number of infected cells in
the subcritical case, which means that Y is a.s. absorbed in finite time. Three regimes
appear in the subcritical case [1] and in particular in the weak subcritical case

P(Yn > 0) ∼ cn−3/2γn

where γ < E1(Y1). The mean number of infected cells is equal to 2nP(Yn > 0) and
obtaining a.s. results was left open is this regime. Corollary 4 ensures that the number
of infected cells in generation n, N∗

n satisfies

1

n
log(N∗

n)
n→∞
−→ log(2γ) p.s.

soon as 2γ > 0. Indeed, the corollary is applied for p large enough such that 2pP1(Yp >
0) > 1, an = [1,∞], bi = 1, bj,n = 1, φ(n) = o(n) and q is chosen such that

log P1(Yq > 0) ≥ q log(γ)− ǫ.

Second, when counting the number of cells infected less than the typical cell in the
supercritical regime, the problem is now linked to the lower large deviation of branching
processes in random environment Yn, i.e. to

P(1 ≤ Yn ≤ exp(nθ)), where θ < E(logm(E)))

and the way this large deviation event is realized. We refer to [BB12] for the results.
Here again Corollary 4 allows to determine the a.s. behavior of the number of cells whose
number of parasites is between 1 and exp(θn). It is worth noting that for this question
the associated trajectory is not straight and ki,n depends on n.
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4.3.2 Branching random walks

We can recover here the classical result on the asymptotic behavior of

1

n
logZn[an,∞)

for a branching random walk with random increment X. It converges a.s. to

log(m)− Λ(a)

soon as a ≥ E(X) and log(m) > Λ(a), where Λ is the rate function associated to the
random walk S =

∑n−1
i=0 Xi, see e.g. [R00, S08]. One can extend this result to offsprings

distribution in time varying environment and random walks in varying environment using
the last Corollary and large deviations of random walks in varying environment. Here
bi = aip, bj,n = ajp + bφ(n), φ(n) = o(n). We refer in particular to [Z04] for results on
quenched and annealed large deviations of random walk in random envrionment.

4.3.3 Perspectives

A main motivation for this work is the control of local densities in cell division models
for aging [G07, DM10], for damages [ES07] or infection such as Kimmel’s branching
model already mentioned. An other one coming from ecology is the role of time and
space inhomogenity. We aim at investigating further these questions and determine the
behavior of extremal particles in these models, which present different large deviation’s
trajectories.
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[S94] T. Seppäläinen (1994). Large deviations for Markov chains with Random Transi-
tions. Ann. Prob. 22 (2), 713-748.

[S08] Z. Shi (2008). Random walks and trees. Lecture notes, Guanajuato, Mexico, Novem-
ber 3-7.

[T88] D. Tanny (1988). A necessary and sufficient condition for a branching process in
a random environment to grow like the product of its means. Stoch. Process. Appl.
28, no. 1, 123-139.

[Y08] N. Yoshida (2008). Central limit theorem for random walk in random environment.
Ann. Appl. Probab. 18 (4), 1619-1635.

[Z04] O. Zeitouni (2004). Random walks in random environment. XXXI Summer school
in probability, St Flour (2001). Lecture notes in Math. 1837 (Springer) (2004), pp.
193?312.

30


