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Asymptotic behavior of some statistics in
Ewens random permutations†

Valentin Féray‡

LaBRI, CNRS, Université de Bordeaux, 351 cours de la Libération, 33 400 Talence, France

Abstract: The purpose of this article is to present a general method to find limiting laws for some renormalized
statistics on random permutations. The model considered here is Ewens sampling model, which generalizes uniform
random permutations. We describe the asymptotic behavior of a large family of statistics, including the number of
occurrences of any given dashed pattern. Our approach is based on the method of moments and relies on the following
intuition: two events involving the images of different integers are almost independent.

Keywords: random permutations, SSEP, cumulants, dashed patterns

1 Introduction
Permutations are one of the most classical objects in enumerative combinatorics. Several statistics have
been widely studied: total number of cycles, number of cycles of a given length, number of descents, in-
versions, excedances or, more recently, occurrences of a given (generalized) pattern... A classical question
in enumerative combinatorics consists in computing the (multivariate) generating series of permutations
with respect to some of these statistics.

A probabilistic point of view on the topic raises other questions. Let us consider, for each positive
integer N , a probability measure µN of permutations of size N . Then any statistics above can be inter-
preted as a sequence of random variables (XN )N≥1. The natural question is now: what is the asymptotic
behavior (possibly after normalization) of (XN )N≥1?

The simplest model of random permutations is of course the uniform random permutations (for each
N , µN is the uniform distribution on the symmetric group SN ). A generalization of this model has been
introduced by W.J. Ewens in the context of population dynamics [6]. It is defined by

µN ({σ}) =
(1 + θ)#(σ)

(θ + 1)(θ + 2) · · · (θ +N)
, (1)

where θ > −1 is a fixed real parameter and #(σ) stands for the number of cycles of the permutation
σ. Of course, when θ = 0, we recover the uniform distribution. From now on, we will allow ourselves
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a small abuse of language and use the expression Ewens random permutation for a random permutation
distributed with Ewens measure.

Random permutations, either with uniform or Ewens distribution, are well-studied objects. A lot of
examples in the seminal book of P. Flajolet and R. Sedgewick deal with the asymptotic behavior of some
statistics on uniform random permutations [9, Examples IX.3, IX.4, IX.5, IX.9]. A survey of important
techniques and results in the area can be found in the book [1]. Most of them involve explicit formulae
for generating series or algorithms to generate a random permutation.

The purpose of this article is to introduce a new general approach to this family of problems, based
on the moment method. Our motivation is the following intuition: events which involve the images of
different integers by the permutation σ are, informally speaking, almost independent. We will give a
precise statement of this almost independence, that is an upper bound on joint cumulants (Lemma 2.2).
This bound allows to study the asymptotic behavior of some statistics in Ewens random permutation (even
some statistics whose bivariate generating series is not known). In this extended abstract, we have chosen
to illustrate this method on two simple problems.

Number of cycles of a given length p. Let Γ
(N)
p be the random variable given by the number of cycles of

length p in an Ewens random permutation σ in SN . The asymptotic distribution of Γ
(N)
p has been studied

by V.L. Goncharov [11] and V.F. Kolchin [13] in the case of uniform measure and by G.A. Watterson [16,
Theorem 5] in the framework of a general Ewens distribution (see also [1, Theorem 5.1]).

Theorem 1.1 ([16]) Let p be a positive integer. When N tends to infinity, Γ
(N)
p converges in distribution

towards a Poisson law of parameter (1 + θ)/p. Moreover, the sequences of random variables (Γ
(N)
p′ )N≥1

for p′ ≤ p are asymptotically independent.

In section 4, we illustrate our method by giving a new proof of this result.
Excedances. A (weak) excedance of a permutation σ in SN is an integer i such that σ(i) ≥ i. Let

Bex,N
i be the random variable equal to 1 if i is an excedance and 0 otherwise.
Let σ a permutation of size N . We define the function F (N)

σ as follows: if Nx is an integer, then

F (N)
σ (x) :=

1

N

Nx∑
i=1

Bex,N
i (σ)

and the function F (N)
σ is an affine function between i/N and (i+ 1)/n for each integer i ≤ N − 1.

Our interest in this quantity comes from the bijection between permutations and permutation tableaux
(see, e.g., [4]). The function F (N)

σ describes the shape of the permutation tableau associated to σ. It is also
meaningful in a related model of statistical physics called symmetric simple exclusion process (SSEP). For
more details, see the full version of the paper [7, paragraphs 5.1 and 5.2].

Theorem 1.2 ([5]) Let x be a real number between 0 and 1. Then, F (N)
σ (x) tends almost surely towards

(1− (1− x)2)/2. Moreover, if we define the rescaled fluctuations

Z(N)
σ (x) :=

√
N
(
F (N)
σ (x)− E(F (N)

σ (x))
)
,

then, for any 0 ≤ x1, . . . , xr ≤ 1, the vector (Z
(N)
σ (x1), . . . , Z

(N)
σ (xr)) converges towards a Gaussian

vector (G(x1), . . . , G(xr)) of covariance matrix (K(xi, xj))1≤i,j≤r, where K is an explicit function
(given in paragraph 5.2).
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With this formulation the result is new, but the first part is quite easy while the second is a consequence
of [5, Appendix A] (see section 5).

Other statistics. The same method can be applied to other statistics. Unfortunately, we did not manage
to obtain a general theorem, including all our examples. Nevertheless, we have quite general results, as
the description of the limiting law of the renormalized number of occurrences of a given dashed pattern:
see section 6 for the definition of this notion and the statement of this result (the proof is omitted in this
extended abstract).

Comparison with other methods. Of course, the use of joint cumulants to determine limit laws of
renormalized statistics is not original, see for example [12, Example 6.19] for an application in graph
theory.

Nevertheless, in this example, the considered statistics are sums of Bernoulli variables, most of them
being independent from each other (this information is encoded in the so-called dependency graph). In
our work, none of the Bernoulli variables involved are independent, we are only able to give sharp bounds
for their joint cumulants (Lemma 2.2).

These bounds on cumulants and the use of joint cumulants for pairwise dependent variables (i.e. whose
dependency graph is the complete graph) are, to our knowledge, original.

Outline of the paper. Section 2 is devoted to our main lemma, a bound on joint cumulants of elementary
events. Before proving the stated theorems, we give a graph-theoretical lemma in section 3. Then sections
4 and 5 consist respectively of the proofs of Theorems 1.1 and 1.2. Finally section 6 deals with dashed
patterns.

2 Moments and cumulants of elementary events
2.1 Cumulants: definition and basic properties
Joint cumulants of random variables form a classical tool to quantify correlation. They generalize the
notion of covariance. Most of this material can be found in Leonov’s and Shiryaev’s paper [14].

Definition of cumulants
Consider a sequence X1, . . . , X` of random variables on the same probability space (denote E the

expectation on this space) indexed by the set [`] (standard abbreviation for {1, 2, . . . , `}). Let us define

κ(X1, . . . , X`) = [t1 . . . t`] ln

(
E
(

exp(t1X1 + · · ·+ t`X`)
))
. (2)

As usual, [t1 . . . t`]F stands for the coefficient of t1 . . . t` in the series expansion of F in positive powers
of t1, . . . , t`. Note that joint cumulants are multilinear functions. In the case where all the Xi are equal,
we recover the `-th cumulant κ`(X) of a single variable [8].

For small values of `, the joint cumulants of one or two variables are respectively the mean of a sin-
gle random variable (i.e., κ(X1) = E(X1)) and the covariance of a couple of random variables (i.e.,
κ(X1, X2) = E(X1X2)− E(X1)E(X2)). For three variables, one has

κ(X1, X2, X3) = E(X1X2X3)− E(X1X2)E(X3)− E(X1X3)E(X2)

− E(X2X3)E(X1) + 2E(X1)E(X2)E(X3).
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In general, moments and cumulants are related by:

κ(X1, . . . , X`) = E
(
X1 · · ·X`

)
+ reminder, (3)

where the reminder is a linear combination of products of smaller order joint moments.

Cumulants of independent random variables.
An interesting property of cumulants is the following: if the set of variables {Xi, 1 ≤ i ≤ `} can be

split into two sets {Xi, i ∈ A} and {Xi, i ∈ B} (where AtB = [`]) such that the variables from the first
set are independent from the variables from the second, then

κ(X1, . . . , X`) = [t1 . . . t`] ln

(
E
(

exp(
∑
i∈A

tiXi)
))

+ [t1 . . . t`] ln

(
E
(

exp(
∑
i∈B

tiXi)
))

= 0.

Because of this strong property, joint cumulants can be seen as a quantification of the dependence of
random variables.

Convergence in distribution using cumulants.
Consider nowm sequences of random variables: (X

(i)
n )n≥1 for i ∈ [m]. A consequence of Equation (3)

is that the convergence of all joint cumulants

κ
(
X(i1)
n , . . . , X(i`)

n

)
; ` ≥ 1, 1 ≤ i1, . . . , i` ≤ m

is equivalent to the convergence of all joint moments

E
(
X(i1)
n · · ·X(i`)

n

)
; ` ≥ 1, 1 ≤ i1, . . . , i` ≤ m.

In particular, if Y (1), . . . , Y (m) are random variables such that the law of the m-tuple (Y (1), . . . , Y (m))
is entirely determined by its joint moments, then the two following statements are equivalent (see [3,
Theorem 30.2] for the same property in terms of moments).

• For any ` and any list i1, . . . , i` in [m],

lim
n→∞

κ
(
X(i1)
n , . . . , X(i`)

n

)
= κ

(
Y (i1), . . . , Y (i`)

)
.

• The sequence of m-tuples (X
(1)
n , . . . , X

(m)
n ) converges in distribution towards (Y (1), . . . , Y (m)).

Recall that Gaussian and Poisson variables are determined by their moments, see e.g. the criterion [3,
Theorem 30.1]. Hence, cumulants can be used to prove convergence in distribution towards Gaussian or
Poisson variables, such as the results of the previous paragraph.

2.2 Joint moments of elementary events
From now on, N is a positive integer and σ a random Ewens permutation in SN .

If i and s are two integers in [N ], we consider the Bernoulli variable B(N)
i,s which takes value 1 if

and only if σ(i) = s. Despite its simple definition, this collection of events allows to reconstruct the
permutation and thus generates the full algebra of observables (we call them elementary events).
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In this paragraph, we compute the joint moments of the family of random variables (B
(N)
i,s )1≤i,s≤N .

Indeed, our method is based on the fact that these joint moments have an explicit closed form.
Note that (B

(N)
i,s )2 = B

(N)
i,s , while B(N)

i,s B
(N)
i,s′ = 0 if s 6= s′ and B(N)

i,s B
(N)
i′,s = 0 if i 6= i′. Therefore,

we can restrict ourselves to the computation of E
(
B

(N)
i1,s1
· · ·B(N)

ir,sr

)
, where i = (i1, . . . , ir) and s =

(s1, . . . , sr) are two lists of pairwise distinct indices (some entry in the list i can be equal to an entry of
s). We see these two lists as a partial permutation

σ̃i,s =

(
i1 . . . ir
s1 . . . sr

)
,

which sends ij to sj . The notion of cycles of a permutation can be naturally extended to partial permuta-
tions: (ij1 , . . . , ijγ ) is a cycle of the partial permutation if sj1 = ij2 , sj2 = ij3 and so on until sjγ = ij1 .
Note that a partial permutation does not necessarily have cycles. The number of cycles of σ̃i,s is denoted
#(σ̃i,s).

Lemma 2.1 Let σ be a random permutation taken with Ewens distribution. Then one has

E
(
B

(N)
i1,s1
· · ·B(N)

ir,sr

)
=

(1 + θ)#(σ̃i,s)

(N + θ)r
,

where (x)r is a short notation for the falling factorial x(x− 1) . . . (x− r + 1).

Proof: Omitted for brevity. It relies on two important properties of the Ewens measure. First, it is
conjugacy-invariant. Second, a random sampling can easily be obtained by an inductive procedure, called
Chinese restaurant process (see, e.g. [1, Example 2.19] for details). 2

2.3 The main lemma
Our main tool is a bound on joint cumulants of products of elementary events (B

(N)
i,s ). To state it, we

introduce the following notations. Consider two lists i = (i1, . . . , ir) and s = (s1, . . . , sr) of positive
integers of the same length r, as well as a set partition τ of [r] with ` parts. Then we define the graphs
G1(i, s) and Gτ2(i, s) as follows.

• The vertex set of G1(i, s) is [r] and j and j′ are linked in G1(i, s) iff ij = ij′ and sj = sj′ .

• For Gτ2(i, s), first consider the graph G2(i, s) whose vertex set is [r] and j and j′ are linked in
G2(i, s) iff ij = ij′ or sj = sj′ . Then Gτ2(i, s) is obtained from G2(i, s) by merging vertices
corresponding to elements in the same part of τ .

The connected components of a graph G form a set partition of its vertex set that we denote CC(G). We
use also the symbol #(CC(G)) for the number of connected components of G.

Theorem 2.2 Fix a positive integer r. There exists a constant Cr, depending on r, such that for any set
partition τ = (τ1, . . . , τ`) of [r], any N ≥ 1 and lists i = (i1, . . . , ir) and s = (s1, . . . , sr) of integers in
[N ], one has:∣∣∣∣∣∣κ

∏
j∈τ1

B
(N)
ij ,sj

, . . . ,
∏
j∈τ`

B
(N)
ij ,sj

∣∣∣∣∣∣ ≤ CrN−#
(
CC(G1(i,s))

)
−#
(
CC(Gτ2 (i,s))

)
+1. (4)
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Note that the integer #
(

CC(G1(i, s))
)

is the number of different couples (ij , sj). The second quantity
does not admit such a simple description.

As an example, let us consider the case where all the entries in the lists i and s are pairwise distinct. In
this case, the joint moment of products of B(N)

i,s is simply 1/(N + θ)a, where a is the number of factors
(the case θ = 0 is obvious, the general case is given in Lemma 2.1). Thus, if we denote aj = |τj |, the
left-hand side is the following explicit rational function∑

π∈P([`])

(−1)|π|−1(|π| − 1)!
∏
C∈π

1

(N + θ) ∑
j∈C

aj

.

Note that each summand has degree −
∑r
j=1 aj = −`. According to our theorem, the sum has degree

at most −` − r + 1, which means that many simplifications are happening. This reflects the fact that the
variables B(N)

ij ,sj
are very weakly correlated.

Remark 2.3 In this extended abstract, we do not give the proof of this theorem, which is rather long and
technical (even in the case presented above, where the cumulant is a totally explicit rational function).
The proof can of course be found in the full version [7, Section 2].

3 Graph-theoretical lemmas
In this section, we present an easy lemma on the number of connected components on contraction of
graphs. This lemma will be useful in the asymptotic study of the number of excedances. It also ap-
pears when considering other statistics (not presented in this extended abstract), that is why we state it
separately.

Let us consider a surjective map f from V to another set W . Then the contraction of G by f is the
graph G/f with vertex set W and which has an edge between w and w′ if, in G, there is at least one edge
between a vertex of f−1(w) and a vertex of f−1(w′).

Let us further assume that V = W tW and f is the canonical application W tW → W consisting
in forgetting to which copy of W the element belongs. Throughout the paper, for simplicity of notations,
we will use overlined letters for elements of the second copy of W .

In this context, in addition to the contraction G/f , one can consider another graph with vertex set W .
By definition, G//f has an edge between w and w′ if, in G, there is an edge between w and w′ and an
edge between w and w′. We call this graph the surcontraction of G.

Example. Consider the graph G of Figure 1. Its vertex set is the set V = {1, 2, 3, 4, 5, 1̄, 2̄, 3̄, 4̄, 5̄}.
Consider the application f from V toW = {1, 2, 3, 4, 5}, consisting in forgetting the bar. The contraction
G/f and the surcontration G//f are drawn on Figure 1.

Lemma 3.1 Let G and f be as above. Then

#(CC(G)) ≤ #(CC(G/f)) + #(CC(G//f)).

Proof: Omitted for brevity. It relies on easy considerations on maximal spanning forests of G. 2
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Fig. 1: An example of a graph, its contraction and surcontraction.

4 Toy example: number of cycles of a given length p

In this section, we are interested in the number Γ
(N)
p of cycles of length p in a random Ewens permutation

of size N . The asymptotic behavior of Γ
(N)
p is easy to determine (see Theorem 1.1), as its generating

series is explicit and quite simple. We will give another proof which relies on Lemma 2.2 and does not
use an explicit expression for the generating series of Γ

(N)
p .

The main steps of the proof are the same in the other examples, so let us emphasize them here.

Expanding the cumulants of the considered statistic.
In this step, one has to express the statistic we are interested in in terms of the variables B(N)

i,s : here,

Γ(N)
p =

∑
1≤i1<i2,i3,...,ip≤N

Bc,N
(i1,...,ip)

,

where Bc,N
(i1,...,ip)

= B
(N)
i1,i2

. . . B
(N)
ip−1,ip

B
(N)
ip,i1

is 1 if (i1, . . . , ip) is a cycle of σ and 0 otherwise. By
multilinearity of cumulants, we get:

κ`(Γ
(N)
p ) =

∑
i11<i

1
2,i

1
3,...,i

1
p

...
i`1<i

`
2,i
`
3,...,i

`
p

κ
(
B

(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

i`1,i
`
2
. . . B

(N)

i`p,i
`
1

)
. (5)

An upper bound for the elementary cumulants.
Now, we would like to apply our main lemma to every summand of equation (5). For this, one has to

understand what is the exponent of N in the upper bound given by Lemma 2.2.
For a matrix i = (irj) 1≤j≤p

1≤r≤`
, we denote:

• M(i) = |{(irj , irj+1); 1 ≤ j ≤ p, 1 ≤ r ≤ `}| the number of different entries in the sequence of
couples (irj , i

r
j+1) (by convention, irp+1 = ir1);

• Q(i) the number of connected components of the graph G(i) on [`] where r1 is linked with r2 if

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅;

• t(i) the number of distinct entries.
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Clearly, M(i) is always at least equal to t(i). In the case where τ has ` blocks of size p and where the list
s is obtained by a cyclic rotation of the list i in each block, Lemma 2.2 writes as:∣∣κ(B(N)

i11,i
1
2
. . . B

(N)

i1p,i
1
1
, · · · , B(N)

i`1,i
`
2
. . . B

(N)

i`p,i
`
1

)∣∣ ≤ Cp`N−M(i)−Q(i)+1 ≤ Cp`N−M(i) ≤ Cp`N−t(i). (6)

An upper bound for the number of lists.
As the number of summands in Equation (5) depends on N , we need a bound on this number to use

inequality (6).
This bound comes from the following simple lemma:

Lemma 4.1 For each ` ≥ 1, there exists a constant C ′` with the following property. For any N ≥ 1 and
t ∈ [`], the number of lists i of length ` with entries in [N ] such that |{i1, . . . , i`}| = t is bounded by
C ′`N

t.

Proof: If we specify which indices correspond to entries with the same values (that is a set partition of
the set of indices), the number of corresponding lists is

(
N
t

)
and hence is bounded by N t. But the number

C ′` of possible partitions of the set [`] depends only on `, whence the result. 2

End of proof of the theorem.
By inequality (6) and Lemma 4.1, the contribution of lists (irj) taking exactly t different values is

bounded by C ′p`Cp` and hence, for all ` ≥ 1, one has κ`(Γ
(N)
p ) = O(1).

To compute the component of order 1, let us make the following remark: by the argument above, the
total contribution of lists (irj) with M(i) > t(i) or Q(i) > 1 is O(N−1).

But M(i) = t(i) implies that, as soon as

{ir1j ; 1 ≤ j ≤ p} ∩ {ir2j ; 1 ≤ j ≤ p} 6= ∅,

the cyclic words (ir11 , . . . , i
r1
p ) and (ir21 , . . . , i

r2
p ) are equals. As ir1 is always the minimum of the irj , the

two words are in fact always equal in this case. In particular G(i) is a disjoint union of cliques. If we
further assume Q(i) = 1, i.e. G(i) is connected, G(i) is the complete graph and we get that irj does not
depend on r. Therefore,

κ`(Γ
(N)
p ) =

∑
i1<i2,i3,...,ip

κ`
(
B

(N)
i1,i2

. . . B
(N)
ip,i1

)
+O(N−1). (7)

But each B(N)
i1,i2

. . . B
(N)
ip,i1

is a Bernoulli variable of parameter (1 + θ)/(N + θ)p. Therefore its moments
are all equal to (1 + θ)/(N + θ)p and by formula (3), its cumulants are (1 + θ)/(N + θ)p + O(N−2p).
Finally, as there are (N)p/p terms in equation (7),

κ`(Γ
(N)
p ) =

1 + θ

p
+O(N−1).

This is valid for any ` ≥ 1, so Γ
(N)
p converges in distribution towards a Poisson law of parameter 1+θ

p .
Moreover, a simple adaptation of the proof of Equation (7) implies that

κ(Γ(N)
p1 , . . . ,Γ(N)

p`
) = O(N−1)
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as soon as two of the pr’s are different. Indeed, no matrices (irj) 1≤r≤`
1≤j≤pr

with rows of different sizes fulfill

simultaneously M(i) = t(i) and Q(i) = 1. Finally, for any p ≥ 1, the vector (Γ
(N)
1 , . . . ,Γ

(N)
p ) tends

in distribution towards a vector (P1, . . . , Pp) where the Pi are independent Poisson-distributed random
variables with respective parameters (1 + θ)/i. 2

Remark. After equation (7), one could have finished the proof without computation by the following
argument: Γ

(N)
p has asymptotically the same cumulants as a virtual variable XN , which writes as a sum

of independent random variables with the same distribution as the Bc,N
(i1,...,ip)

. As each Bc,N
(i1,...,ip)

is a
Bernoulli variable of expectation (1 + θ)/(N + θ)p and as there are (N)p/p such variables, XN tends in
distribution towards a Poisson law of parameter (1 + θ)/p. And so does Γ

(N)
p .

As promised in the introduction, this argument follows the idea that “everything happens as if the
variables Bc,N

(i1,...,ip)
were independent”.

5 Number of excedances
In this section, we prove Theorem 1.2. The proof roughly follows the same guideline as the one of
Theorem 1.1 in the previous paragraph.

5.1 Bounds for cumulants
Let us fix some real numbers x1, . . . , x` in [0; 1]. In this paragraph, we will give some bounds on the joint
cumulants of the random variables (F

(N)
σ (x1), . . . , F

(N)
σ (x`)).

Let us begin by the following bound:

Proposition 5.1 For each ` ≥ 1, there exists a constant C` with the following property. For any N ≥ 1
and lists i1, . . . , i` and s1, . . . , s` of integers in [N ],

κ(B
(N)
i1,s1

, . . . , B
(N)
i`,s`

) ≤ C`N−|{i1,...,i`,s1,...,s`}|+1. (8)

Proof: Using Lemma 2.2 for τ =
{
{1}, . . . , {`}

}
, we only have to prove that

−#
(

CC(G1(i, s))
)
−#

(
CC(Gτ2(i, s))

)
≥ −|{i1, . . . , i`, s1, . . . , s`}|. (9)

The last quantity |{i1, . . . , i`, s1, . . . , s`}| can be seen as the number of connected component of the
graphs G3(i, s) defined as follows:

• its vertex set is [`] t [`] = {1, 1̄, . . . , `, ¯̀};

• there is an edge between j and k (resp. j and k̄, j̄ and k̄) if and only if ij = ik (resp. ij = sk,
sj = sk).

Then, inequality (9) is simply Lemma 3.1 applied to the graph G3(i, s) (G1(i, s) and Gτ2(i, s) are respec-
tively its contraction and surcontraction). 2

We can now prove the following bound:

Proposition 5.2 There exists a constant C ′′` such that, for any integer N ≥ 1 and real numbers x1, . . . ,
x`, one has

|κ(F (N)
σ (x1), . . . , F (N)

σ (x`))| ≤ C ′′` N−`+1. (10)
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Proof: To simplify the notations, we suppose that Nx1, . . . , Nx` are integers, so that

(N − 1) · F (N)
σ (xi) =

Nxi∑
i=2

Bex,N
i (σ).

But the Bernoulli variable Bex,N
i can be written as Bex,N

i =
∑
s≥iB

(N)
i,s . Finally, by multilinearity,

(N − 1)`κ(F (N)
σ (x1), . . . , F (N)

σ (x`)) =
∑

2≤i1≤Nx1
...

2≤i`≤Nx`

∑
s1≥i1

...
s`≥i`

κ(B
(N)
i1,s1

, . . . , B
(N)
i`,s`

). (11)

We apply Lemma 4.1 to the list i1, . . . , i`, s1, . . . , s` and get that the number of couples of lists (i, s) such
that |{i1, . . . , i`, s1, . . . , s`}| is equal to a given number t is bounded by C ′2`N

t.
Combining this with Proposition 5.1, we get that the total contribution of couples of lists (i, s) with
|{i1, . . . , i`, s1, . . . , s`}| = t to the right-hand side of (11) is smaller than C ′2`C`N , which ends the
proof. 2

Illustration of the proof. Set ` = 5 and consider the lists i = (5, 2, 2, 7, 7) and s = (8, 8, 2, 7, 7).
The graph G3(i, s) associated to this couple of sequences is the graph G drawn of Figure 1. It follows
immediately that G1(i, s) = G//f has 4 connected components while Gτ2(i, s) = G/f has 2. Therefore,
by Lemma 2.2,

κ(B
(N)
5,8 , B

(N)
2,8 , B

(N)
2,2 , B

(N)
7,7 , B

(N)
7,7 ) ≤ C5N

−5.

The same bound is valid for all sequences i and s such that G3(i, s) = G. There are fewer than N4

such sequences: to construct such a sequence, one has to choose distinct values for the four connected
components ofG, such that they fulfill some inequalities. Finally, their total contribution to (11) is smaller
than C5N

−1.
Remark. This result is closely related to a result of B. Derrida, J.L. Lebowitz and E.R. Speer [5,

Appendix A], as explained in the full version [7, paragraph 5.3].

5.2 Convergence results

In this paragraph, we explain how one can deduce from the bound on cumulants, some results on the
convergence of F (N)

σ .
In addition to the bounds above, we need equivalents for the first and second joint cumulants of the

F
(N)
σ (x). An easy computation gives

E(Bex,N
i ) =

N − i+ 1 + θ

N + θ
; Var(Bex,N

i ) =
(i− 1)(N − i+ 1 + θ)

(N + θ)2
;

Cov(Bex,N
i , Bex,N

j ) = − (n− j + 1 + θ)(i− 1)

(N + θ2)(N + θ − 1)
for i < j.
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It is easily deduced that:

lim
N→∞

E(F (N)
σ (x)) =

∫ x

0

(1− t)dt+ o(1) =
1− (1− x)2

2
; (12)

lim
N→∞

N Cov(F (N)
σ (x), F (N)

σ (y)) =

∫ min(x,y)

0

t(1− t)dt−
∫ x

0

∫ y

0

min(t, u)(1−max(t, u))dtdu.

(13)

We call K(x, y) the right-hand side of the second equation.

Proof of Theorem 1.2: Consider the first statement. The convergence in probability follows immedi-
ately from equations (12) and (13). The almost-sure convergence can be obtained by studying the fourth
centered moment: this is a classical trick not detailed here.

Let us consider the second statement. Proposition 5.2 implies that, for any list j1,. . . ,j` of integers in
[r], one has

κ(Z(N)
σ (xj1), . . . , Z(N)

σ (xj`)) = O(N−r/2+1). (14)

In particular, for r > 2 the left-hand side tends to 0. As the variables Z(N)
σ (xi) are centered, this implies

that (Z
(N)
σ (x1), . . . , Z

(N)
σ (xr)) tends towards a Gaussian vector. The covariance matrix is the limit of the

covariance of the Z(N)
σ (xi), that is (K(xi, xj)). 2

The theorem gives the first and second order asymptotics for the values of F (N)
σ and Z(N)

σ at some
fixed point(s). It is also possible with the same method to prove some stronger more technical result: the
sequence of random functions (Z

(N)
σ )N≥1 converges in distribution towards a Gaussian process in the

space of continuous real-valued functions on [0; 1] endowed with uniform norm (see [7, paragraph 5.4]).

6 Dashed patterns
We now present without proof a general result for the number of occurences of dashed patterns in large
Ewens random permutations. This notion has been introduced by E. Babson and E. Steingrimsson [2].

Definition 6.1 A dashed pattern of size p is the data of a permutation τ ∈ Sp and a subset X of [p− 1].
An occurrence of the dashed pattern (τ,X) in a permutation σ ∈ SN is a list i1 < · · · < ip such that:

• for any x ∈ X , one has ix+1 = ix + 1.

• σ(i1), . . . , σ(ip) is in the same relative order than τ(1), . . . , τ(p).

The number of occurrences of the pattern (τ,X) will be denoted O(N)
τ,X(σ).

Example 6.2 O
(N)
21,∅ is the number of inversion, while O(N)

21,{1} is the number of descents. Many classical
statistics on permutations can be written as the number of occurrences of a given dashed patten or as a
linear combination of such statistics, see [2, section 2].

With the same method as above, it is proven in the full version of the paper [7, paragraph 6.3] the
following general result for the asymptotic behavior of number of occurences of dashed patterns.
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Theorem 6.3 Let (τ,X) be a dashed pattern of size p (see definition 6.1) and σN a sequence of random
permutations, each σN being of size N distributed with Ewens measure. We denote q = |X|. Then,
O

(N)
τ,X(σN )

Np−q , that is the renormalized number of occurrences of (τ,X), tends almost surely towards 1
p!(p−q)! .

Besides, one has the following central limit theorem:

√
N

(
O

(N)
τ,X(σN )

Np−q − 1

p!(p− q)!

)
→ N (0, Vτ,X),

where the arrow denotes a convergence in distribution and Vτ,X is some nonnegative real number.

The asymptotic number of occurrences of some patterns (or motifs) have already been studied in the
framework of random words. In particular, results similar to Theorem 6.3 have been obtained by P. Flajolet
and co-authors [15, 10]. Note that the methods used by these authors can a priori not be extended to the
framework of permutation patterns for the following reasons. First, it is not known how to compute the
generating functions of the number of occurrences of a given pattern in permutations. Second, except
in the case θ = 0 (uniform random permutations), the occurrences of patterns in disjoint places are not
independent events.
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