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Commutativity rules play an essential role when building multirate signal processing systems. In this letter, we focus on the interchangeability of block decimators and expanders. We, formally, prove that commutativity between these two operators is possible if and only if the data blocks are of an equal length corresponding to the greatest common divisor of the integer decimation and expansion factors.

corresponds to the easiest part of our theorem. However, as we could not find any proof of it, in order to provide a self contained paper, we demonstrate it in our Lemmas 2 and 3.

II. PROOF OF THE THEOREM

Before proving the theorem, let us introduce some notations and definitions. For n ∈ Z and m > 0 two integers, the quotient a and the remainder b of the euclidean division of n by m are denoted by a = quo(n, m), b = rem(n, m), which may be also written in a condensed form (a, b) = div(n, m).

Let 1 ≤ q 1 < p 1 . Applied to a discrete-time input signal, named in short a sequence, x = (x[n], n ∈ Z), the decimator D(q 1 , p 1 ) returns an output sequence t = (t[k], k ∈ Z) obtained by (a, b) = div(n, p 1 ), (a ∈ Z, 0 ≤ b < p 1 ),

(1)

k = aq 1 + b, if b < q 1 , (2) 
t[k] = x[n], (3) 
When q 1 ≤ b < p 1 , the x[n] sample is discarded. For 1 ≤ q 2 < p 2 , the expander E(q 2 , p 2 ) is now applied to the input sequence t = (t[k], k ∈ Z), producing a sequence y 1 = (y 1 [m], m ∈ Z) defined by (α, β) = div(k, q 2 ), (α ∈ Z, 0 ≤ β < q 2 ) (4)

y 1 [αp 2 + β] = t[k].
(
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and the unassigned symbols in the sequence y 1 = (y 1 [m], m ∈ Z) are set to zero. The transformation to go from

x = (x[n], n ∈ Z) to y 1 = (y 1 [m], m ∈ Z) is denoted by E(q 2 , p 2 )D(q 1 , p 1 ).
Equations ( 1)-( 5) allow us to define a function f 1 (q 1 , p 1 , q 2 , p 2 ; •), depending on parameters q 1 , p 1 , q 2 , p 2 , and defined on integers n ∈ Z that are expressed in an intuitive algorithmic language in (6) such that, when f 1 (q 1 , p 1 , q 2 , p 2

; n) = -∞, y 1 [f 1 (q 1 , p 1 , q 2 , p 2 ; n)] = x[n]. When f 1 (q 1 , p 1 , q 2 , p 2 ; n) = -∞, the symbol x[n] is discarded and y 1 [m] = 0 when m ∈ Z is not in the image of f 1 (q 1 , p 1 , q 2 , p 2 ; •).             f 1 = proc(q 1 , p 1 , q 2 , p 2 ; n) local a, b, α, β (a, b) = div(n, p 1 ) if b < q 1 then (α, β) = div(aq 1 + b, q 2 ) return αp 2 + β else return -∞ end (6)
The action of E(q 2 , p 2 ) on the input sequence

x = (x[n], n ∈ Z) produces a sequence z = (z[l], l ∈ Z) defined by (c, d) = div(n, q 2 ) (c ∈ Z, 0 ≤ d < q 2 ), (7) 
l = cp 2 + d, (8) z[l] = x[n]. (9) 
Then, applying the decimator D(q 1 , p 1 ) to the input sequence z = (z[l], l ∈ Z) produces the sequence

y 2 = (y 2 [m], m ∈ Z), such that (γ, δ) = div(l, p 1 ) (γ ∈ Z, 0 ≤ δ < p 1 ), (10) 
y 2 [γq 1 + δ] = z[l], if δ < q 1 . (11) 
Again unassigned samples in the sequence y 2 = (y 2 [m], m ∈ Z) are set to zero. The overall transformation is denoted by D(q 1 , p 1 )E(q 2 , p 2 ).

In a similar way, a function f 2 (q 1 , p 1 , q 2 , p 2 ; •), depending on parameters q 1 , p 1 , q 2 , p 2 , and defined for n ∈ Z is defined by (12). For the values of n such that f 2 (q 1 , p 1 , q 2 , p 2

; n) = -∞, we have y 2 [f 2 (q 1 , p 1 , q 2 , p 2 ; n)] = x[n]. When f 2 (n)] = -∞, the symbol x[n] is discarded and y 2 [m] = 0 when m is not in the image of f 2 .             f 2 = proc(q 1 , p 1 , q 2 , p 2 ; n) local c, d, γ, δ (c, d) = div(n, q 2 ) (γ, δ) = div(cp 2 + d, p 1 ) if δ < q 1 then return γq 1 + δ else return -∞ end (12)
Inverting equations ( 1)-(5) (resp. ( 7)-( 11)) for given parameters q 1 , p 1 , q 2 , p 2 , we may introduce the function g 1 (q 1 , p 1 , q 2 , p 2 ; •) (resp. g 2 (q 1 , p 1 , q 2 , p 2 ; •)) defined for m ∈ Z such that y 1 [m] = 0 when g 1 (q 1 , p 1 , q 2 , p 2 ; m) = -∞ and y 1 [m] = x[g 1 (q 1 , p 1 , q 2 , p 2 ; m)] otherwise (resp. y 2 [m] = 0 when g 2 (q 1 , p 1 , q 2 , p 2 ; m) = -∞ and y 2 [m] = x[g 2 (q 1 , p 1 , q 2 , p 2 ; m)] otherwise).

            g 1 = proc(q 1 , p 1 , q 2 , p 2 ; m) local α, β, a, b (α, β) = div(m, p 2 ) if β < q 2 then (a, b) = div(αq 2 + β, q 1 ) return ap 1 + b else return -∞ end (13)             g 2 = proc(q 1 , p 1 , q 2 , p 2 ; m) local γ, δ, c, d (γ, δ) = div(m, q 1 ) (c, d) = div(γp 1 + δ, p 2 ) if d < q 2 then return cq 2 + d else return -∞ end (14)
It is now obvious that the following properties are equivalent

• D(q 1 , p 1 ) and E(q 2 , p 2 ) commute, • f 1 (q 1 , p 1 , q 2 , p 2 ; •) = f 2 (q 1 , p 1 , q 2 , p 2 ; •), • g 1 (q 1 , p 1 , q 2 , p 2 ; •) = g 2 (q 1 , p 1 , q 2 , p 2 ; •).
This is clearly stated in Theorem 1 of [START_REF] Xia | Multirate filter banks with block sampling[END_REF] which amounts to say that the up and down block sampling with integer sampling ratios commute if and only if g 1 (q 1 , p 1 , q 2 , p 2 ; •) = g 2 (q 1 , p 1 , q 2 , p 2 ; •).

The method of our proof to prove that D(q 1 , p 1 ) and E(q 2 , p 2 ) do not commute for a given subset of parameters q 1 , p 1 , q 2 , p 2 will be to find a particular value of n, depending on q 1 , p 1 , q 2 , p 2 , such that f 1 (q 1 , p 1 , q 2 , p 2 ; n) = f 2 (q 1 , p 1 , q 2 , p 2 ; n) or g 1 (q 1 , p 1 , q 2 , p 2 ; n) = g 2 (q 1 , p 1 , q 2 , p 2 ; n).

Notations. In a context where parameters q 1 , p 1 , q 2 , p 2 are fixed, f 1 (q 1 , p 1 , q 2 , p 2 ; n) will be denoted simply by f 1 (n). In the evaluation of f 1 (q 1 , p 1 , q 2 , p 2 ; n) following ( 6), the value assigned to a local variable like a will be denoted by a(q 1 , p 1 , q 2 , p 2 ; n), but only by a(n) in the context of fixed values for the parameters q 1 , p 1 , q 2 , p 2 , and even simply a when a given fixed value of n is considered. The same notation simplification will apply also for function f 2 defined by (12) and for functions g 1 and g 2 defined by ( 13) and ( 14).

The following exchange property will be useful to restrict the number of cases to study on parameters q 1 , p 1 , q 2 , p 2 .

Lemma 1. Let q 1 , p 1 , q 2 , p 2 be integers with 1 ≤ q 1 ≤ p 1 , 1 ≤ q 2 ≤ p 2 . Then D(q 1 , p 1 ) and E(q 2 , p 2 ) commute if and only if D(q 2 , p 2 ) and E(q 1 , p 1 ) commute.

Proof.-For any set of parameters q 1 , p 1 , q 2 , p 2 , exchanging (q 1 , p 1 ) and (q 2 , p 2 ) in the definition [START_REF] Ho | Representations of linear dual-rate system via single SISO LTI Filter, conventional sampler and block sampler[END_REF] and changing the name of the local variables (a, b, α, β) by (α, β, a, b) gives the definition (13), and thus f 1 (q 1 , p 1 , q 2 , p 2 ; n) = g 1 (q 2 , p 2 , q 1 , p 1 ; n), n ∈ Z.

(15)

In a similar way

f 2 (q 1 , p 1 , q 2 , p 2 ; n) = g 2 (q 2 , p 2 , q 1 , p 1 ; n), n ∈ Z. ( 16 
)
The lemma is proved by using afterwards as a commutativity criterion the equality of functions f 1 and f 2 or the equality of g 1 and g 2 .

D(1, p 1 ) corresponds to the traditional decimator of factor p 1 while E(1, p 2 ) is the traditional expander of factor p 2 . The following lemma is a classical result reobtained using our own notations. Proof.-For n ∈ Z, we get from ( 6) and ( 12)

-If n is a multiple of p 1 i.e. n = ap 1 , then f 1 (n) = ap 2 , otherwise f 1 (n) = -∞, -If np 2 is a multiple of p 1 i.e. np 2 = γp 1 , then f 2 (n) = γ, otherwise f 2 (n) = -∞.
If p 1 and p 2 are not relatively primes, then

p 1 = dp 1 , p 2 = dp 2 with d > 1. Choosing n = p 1 , we get f 1 (p 1 ) = -∞ because p 1 is not multiple of p 1 . But np 2 = p 1 dp 2 = p 2 p 1 and thus f 2 (p 1 ) = p 2 . This proves that f 1 = f 2 meaning that D(1, p 1 ) and E(1, p 2 ) do not commute.
If p 1 and p 2 are relatively primes, then if np 2 is a multiple of p 1 if and only if n is a multiple of p 1 , and

f 1 = f 2 , that is D(1, p 1 ) and E(1, p 2 ) commute.
The following lemma allows us to multiply the parameters q 1 , p 1 , q 2 , p 2 by a same positive integer which is an already well known result. Lemma 3. Let q 1 , p 1 , q 2 , p 2 be integers with 1 ≤ q 1 ≤ p 1 , 1 ≤ q 2 ≤ p 2 and d > 1 an integer. Then D(q 1 , p 1 ) and E(q 2 , p 2 ) commute if and only if D(dq 1 , dp 1 ) and E(dq 2 , dp 2 ) commute.

Proof.-For n ∈ Z, define n ∈ Z and 0 ≤ γ < d by n = n d + γ. In the evaluation of f 1 (q 1 , p 1 , q 2 , p 2 ; n ), we get n = a(q 1 , p 1 , q 2 , p 2 ; n )p 1 + b(q 1 , p 1 , q 2 , p 2 ; n ), a(q 1 , p 1 , q 2 , p 2 ; n ) ∈ Z, 0 ≤ b(q 1 , p 1 , q 2 , p 2 ; n ) < p 1 . So n = a(q 1 , p 1 , q 2 , p 2 ; n )dp 1 + b(q 1 , p 1 , q 2 , p 2 ; n )d + γ, = a(dq 1 , dp 1 , dq 2 , dp 2 ; n)dp 1 + b(dq 1 , dp 1 , dq 2 , dp 2 ; n). As 0 ≤ b(q 1 , p 1 , q 2 , p 2 ; n ) ≤ p 1 -1 and 0 ≤ γ < d, we get dp 1 + b(q 1 , p 1 , q 2 , p 2 ; n )d + γ < dp 1 , and thus

a(dq 1 , dp 1 , dq 2 , dp 2 ; n) = a(q 1 , p 1 , q 2 , p 2 ; n ), (17) b(dq 1 , dp 1 , dq 2 , dp 2 ; n) = b(q 1 , p 1 , q 2 , p 2 ; n )d + γ. ( 18 
)
If b(q 1 , p 1 , q 2 , p 2 ; n ) < q 1 then from (18) b(dq 1 , dp 1 , dq 2 , dp 2 ; n) ≤ d(q 1 -1) + γ < dq 1 , and, since a(q 1 , p 1 , q 2 , p 2 ; n )q 1 + b(q 1 , p 1 , q 2 , p 2 ; n ) = α(q 1 , p 1 , q 2 , p 2 ; n )q 2 + β(q 1 , p 1 , q 2 , p 2 ; n ),

with 0 ≤ β(q 1 , p 1 , q 2 , p 2 ; n ) < q 2 , from ( 17) and ( 18), we may write

a(dq 1 , dp 1 , dq 2 , dp 2 ; n)dq 1 + b(dq 1 , dp 1 , dq 2 , dp 2 ; n) (20) = a(q 1 , p 1 , q 2 , p 2 ; n )dq 1 + b(q 1 , p 1 , q 2 , p 2 ; n )d + γ, = [α(q 1 , p 1 , q 2 , p 2 ; n )q 2 + β(q 1 , p 1 , q 2 , p 2 ; n )]d + γ. ( 21 
)
As β(q 1 , p 1 , q 2 , p 2 ; n )]d + γ < (q 2 -1)d + γ < dq 2 , we get from (21), α(dq 1 , dp 1 , dq 2 , dp 2 ; n) = α(q 1 , p 1 , q 2 , p 2 ; n ), β(dq 1 , dp 1 , dq 2 , dp 2 ; n) = dβ(q 1 , p 1 , q 2 , p 2 ; n ) + γ, from which it follows that

f 1 (dq 1 , dp 1 , dq 2 , dp 2 ; n) = α(dq 1 , dp 1 , dq 2 , dp 2 ; n)dp 2 + dβ(q 1 , p 1 , q 2 , p 2 ; n ) + γ, (22) f 1 (dq 1 , dp 1 , dq 2 , dp 2 ; n) = df 1 (q 1 , p 1 , q 2 , p 2 ; n ) + γ. ( 23 
)
If b(q 1 , p 1 , q 2 , p 2 ; n ) ≥ q 1 then, from (18), b(dq 1 , dp 1 , dq 2 , dp 2 ; n) ≥ dq 1 and thus f 1 (dq 1 , dp 1 , dq 2 , dp 2 ; n) = f 1 (q 1 , p 1 , q 2 , p 2 ; n ) = -∞ and the relation (23) still holds.

In a similar way, it is easy to prove the relation

f 2 (dq 1 , dp 1 , dq 2 , dp 2 ; n) = df 2 (q 1 , p 1 , q 2 , p 2 ; n ) + γ. (24) 
Relations ( 23) and ( 24) imply that f 1 (q 1 , p 1 , q 2 , p 2 ; •) and f 2 (q 1 , p 1 , q 2 , p 2 ; •) are equal if and only if f 1 (dq 1 , dp 1 , dq 2 , dp 2 ; •) and f 2 (dq 1 , dp 1 , dq 2 , dp 2 ; •) are equal, which proves the lemma.

Lemma 4. Let q 1 , p 1 , q 2 , p 2 be integers with 1 ≤ q 1 ≤ p 1 , 1 ≤ q 2 ≤ p 2 . If q 1 > q 2 then f 1 (q 1 -1) > f 2 (q 1 -1).
Proof.-According to our notation convention f 1 (q 1 -1) and f 2 (q 1 -1) stands here for f 1 (q 1 , p 1 , q 2 , p 2 ; q 1 -1) and f 2 (q 1 , p 1 , q 2 , p 2 ; q 1 -1).

With n = q 1 -1 in function f 1 , we get a = 0 and b = q 1 -1. As b < q 1 , α and β are such that αq 2 + β = q 1 -1, 0 ≤ β < q 2 and α > 0 because q 1 > q 2 . then f 1 (q 1 -1) = αp 2 + β.

On the other hand, in function f 2 for n = q 1 -1, c = α and d = β. Then αp 2 + β = γp 1 + δ with 0 ≤ δ < p 1 .

-If γ = 0, then δ = αp 2 + β > αq 2 + β = q 1 -1 and thus f 2 (q 1 -1) = -∞.

-If γ > 0 and δ ≥ q 1 then f 2 (q 1 -1) = -∞.

-If γ > 0 and δ < q 1 then f 2 (q 1 -1) = γq 1 + δ < γp 1 + δ = αp 2 + β = f 1 (q 1 -1).

Lemma 5. Let q 1 , p 1 , q 2 , p 2 be integers with 1 ≤ q 1 ≤ p 1 , 1 ≤ q 2 ≤ p 2 . If q 1 < q 2 then g 1 (q 2 -1) > g 2 (q 2 -1).

Proof.-As q 2 > q 1 , the set of parameters q 2 , p 2 , q 1 , p 1 satisfy the condition given by Lemma 4 implying f 1 (q 2 , p 2 , q 1 , p 1 ; q 2 -1) > f 2 (q 2 , p 2 , q 1 , p 1 ; q 2 -1).

Using Lemma 1, we get g 1 (q 1 , p 1 , q 2 , p 2 ; q 2 -1) > g 2 (q 1 , p 1 , q 2 , p 2 ; q 2 -1) i.e. g 1 (q 2 -1) > g 2 (q 2 -1).

Let us consider now the case of equal block lengths q 1 = q 2 = q. Lemma 6. Let q, p 1 , q 2 , p 2 be integers, 1 ≤ q ≤ p 2 < p 1 such that p 1 = kq + r, p 2 = lq + s with 0 ≤ r < s < q.

Then f 1 (p 1 + q -s) = p 2 + q -s and f 2 (p 1 + q -s) = -∞.

Proof.-In the evaluation of f 1 (p 1 + q -s), we get a = 1, b = q -s since 0 < q -s < q. Now aq + b = 2q -s and thus α = 1 and β = q -s.

Finally

f 1 (p 1 + q -s) = αp 2 + β = p 2 + q -s.
From f 2 (p 1 + q -s) = f 2 (kq + r + q -s) , we get c = k and d = r + q -s since 0 ≤ r ≤ r + q -s < q. Then

cp 2 + d = k(lq + s) + r + q -s = l(kq + r) + (k -1)s -(l -1)r + q,
The conditions p 1 > p 2 and r < s imply that k > l and thus (k -1)s -(l -1)r + q > q.

As s < q, (k-1)s-(l-1)r+q < kq < p 1 , we get cp 2 +d = γp 1 +δ with γ = l and δ = (k-1)s-(l-1)r+q > q. So f 2 (p 1 + q -s) = -∞. Lemma 7. Let q, p 1 , q 2 , p 2 be integers, 1 ≤ q ≤ p 2 < p 1 such that p 1 = kq + r, p 2 = lq + s with r > 0 and 0 ≤ s ≤ r < q. Then f 1 (p 1 + q -1) > f 2 (p 1 + q -1).

Proof.-In the evaluation of f 1 (p 1 + q -1), we get a = 1, b = q -1. From aq + b = 2q -1, it comes α = 1 and β = q -1 and then f 1 (p 1 + q -1) = p 2 + q -1 = (l + 1)q + s -1.

In the evaluation of f 2 (p 1 + q -1), we get p 1 + q -1 = (k + 1)q + r -1 and since r > 0, c = k + 1, d = r -1. Then γ and δ are determined by

γp 1 + δ = cp 2 + d = (k + 1)(lq + s) + r -1, (25) 
and -If q ≤ δ < p 1 , f 2 (p 1 + q -1) = -∞ and the lemma is proved.

-If 0 ≤ δ < q, first prove the inequation

γp 1 + δ < (l + 1)p 1 + s -1. (26) 
Using (25), we get

∆ = (l + 1)p 1 + s -1 -(γp 1 + δ) = (l + 1)(kq + r) + s -1 -((k + 1)(lq + s) + r -1)
= k(q -s) -l(q -r).

-If k = l then r > s because p 1 > p 2 , and then ∆ = k(r -s) > 0, -If k > l and because q -s ≥ q -r > 0, k(q -s) > l(q -r) and ∆ > 0, which proves that (26) is satisfied.

Since the application d(q, p 1 ; •) defined on {n, n ∈ Z, rem(n, p 1 ) < q} by d(q, p 1 ; n) = quo(n, p 1 )q + rem(n, p 1 ) is a strictly increasing function, relation (26) implies f 2 (p 1 + q -1) = γq + δ < (l + 1)q + s -1 = f 1 (p 1 + q -1).

Proof of the theorem.-When q 1 = q 2 Lemmas 4 and 5 prove that D(q 1 , p 1 ) and E(q 2 , p 2 ) cannot commute.

If q 1 = q 2 = q and p 2 < p 1 , the only case for (r, s) not considered in lemmas 6 and 7, as shown in Figure 1, is the case where r = s = 0, i.e. p 1 = kq and p 2 = lq with l < k, and thus D(q 1 , p 1 ) and E(q 2 , p 2 ) cannot commute when p 1 or p 2 are not multiples of q.

Using the exchange property given by Lemma 1, we obtain a similar result for p 2 > p 1 . So, if q 1 = q 2 = q and p 1 = p 2 , D(q 1 , p 1 ) and E(q 2 , p 2 ) cannot commute unless p 1 = qp 1 and p 2 = qp 2 for some p 1 > 1 and p 2 > 1. Using Lemma 3 and Lemma 2, if D(q 1 , p 1 ) and E(q 2 , p 2 ) commute then gcd(p 1 , p 2 ) = 1, which is equivalent to gcd(p 1 , p 2 ) = q.

The only case not yet considered is the case where q 1 = q 2 = q and p 1 = p 2 = p with q < p. D(q, p) do not commute with E(q, p) because D(q, p)E(q, p) is the identity while in E(q, p)D(q, p) the x[q] sample is discarded, i.e. f 1 (q) = -∞ while f 2 (q) = q. This achieves the proof of the direct part of the theorem. The converse part of the theorem results immediately from Lemmas 3 and 2.

Lemma 2 .

 2 Let p 1 > 1 and p 2 > 1. D(1, p 1 ) and E(1, p 2 ) commute if and only if p 1 and p 2 are relatively prime integers.