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AIC and C, as estimators of loss for
spherically symmetric distributions®

Aurélie Boisbunon, Stéphane Canu, Dominique Fourdrinier,
William Strawderman and Martin T. Wells

Abstract: In this article, we develop a modern perspective on Akaike’s
Information Criterion and Mallows’ C;, for model selection. Despite the
differences in their respective motivation, they are equivalent in the special
case of Gaussian linear regression. In this case they are also equivalent to
a third criterion, an unbiased estimator of the quadratic prediction loss,
derived from loss estimation theory. Our first contribution is to provide an
explicit link between loss estimation and model selection through a new
oracle inequality. We then show that the form of the unbiased estimator of
the quadratic prediction loss under a Gaussian assumption still holds under
a more general distributional assumption, the family of spherically symmet-
ric distributions. One of the features of our results is that our criterion does
not rely on the specificity of the distribution, but only on its spherical sym-
metry. Also this family of laws offers some dependence property between
the observations, a case not often studied.

Keywords and phrases: variable selection, Cp, AIC, loss estimator, un-
biased estimator, SURE estimator, Stein identity, spherically symmetric
distributions.

1. Introduction

The problem of model selection has generated a lot of interest for many decades
now and especially recently with the increased size of datasets. In such a context,
it is important to model the data observed in a sparse way. The principle of par-
simony helps to avoid classical issues such as overfitting or computational error.
At the same time, the model should capture sufficient information in order to
comply with some objectives of good prediction, good estimation or good selec-
tion and thus it should not be too sparse. This principle has been summarized by
many statisticians as a trade-off between goodness of fit to data and complexity
of the model (see for instance Hastie, Tibshirani, and Friedman, 2008, Chapter
7). From the practitioner point of view, model selection is often implemented
through cross-validation (see Arlot and Celisse, 2010, for a review on this topic)
or the minimization of criteria whose theoretical justification relies on hypoth-
esis made within a given framework. In this paper, we review two of the most
commonly used criteria, namely Mallows’ C,, and Akaike’s AIC, together with
the associated theory under Gaussian distributional assumptions, and then we
propose a generalization towards spherically symmetric distributions.

*This research was partially supported by ANR ClasSel grant 08-EMER-002, by the Simons
Foundation grant 209035 and by NSF Grant DMS-12-08488.
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We will focus on the linear regression model
Y = X + oe, (1)

where Y is a random vector in R", X is a fixed and known full rank design
matrix containing p observed variables x’/ in R”, 3 is the unknown vector in RP
of regression coefficients to be estimated, o is the noise level and ¢ is a random
vector in R” representing the model noise, with mean zero and covariance matrix
proportional to the identity matrix (we assume the proportion coefficient to be
equal to one when ¢ is Gaussian). One subproblem of model selection is the
problem of variable selection: only a subset of the variables in X gives sufficient
and non-redundant information on Y and we wish to recover this subset as well
as correctly estimate the corresponding regression coefficients.

Early works treated the model selection problem from the hypothesis testing
point of view. For instance Forward Selection and Backward Elimination were
stopped using Student’s critical values. This practice changed with Mallows’ au-
tomated criterion known as C), (Mallows, 1973). Mallows’ idea was to propose an
unbiased estimator of the scaled expected prediction error Eg[|| X 87— X 8|2 /03],

where 3 ; is an estimator of 8 based on the selected variables set I C {1,...,p},
Es denotes the expectation with respect to the sampling distribution in model
(1) and ||| is the Euclidean norm on R™. This way, assuming Gaussian 1.i.d. er-
ror terms, Mallows came to the following criterion

Y = X5
- 52

c, +2df —n, (2)

where 62 is an estimator of the variance o2 based on the full linear model fitted
with the least-squares estimator 3%5. that is, 62 = ||Y — X 5|12/ (n—p), and df
is an estimator of df, the degrees of freedom, also called the effective dimension
of the model (see Hastie and Tibshirani, 1990; Meyer and Woodroofe, 2000).
For the least squares estimator, df is the number k of variables in the selected
subset I.

Mallows’ C), relies on the assumption that, if for some subset I of explanatory
variables the expected prediction error is low, then we can assume those variables
to be relevant for predicting Y. In practice, the rule for selecting the “best”
candidate is the minimization of C,. However, Mallows argues that this rule
should not be applied in all cases, and that it is better to look at the shape
of the Cp-plot instead, especially when some explanatory variables are highly
correlated.

In 1974, Akaike followed Mallows’ spirit to propose automatic criteria that
would not need a subjective calibration of the significance level as in hypothesis
testing. His proposal was more general with application to many problems such
as variable selection, factor analysis, analysis of variance, or order selection in
auto-regressive models (Akaike, 1974). Akaike’s motivation however was differ-
ent from Mallows. He considered the problem of estimating the density f(-|5)
of an outcome variable Y, where f is parametrized by § € RP, by f(:| B) His
aim was to generalize the principle of maximum likelihood enabling a selection
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between several maximum likelihood estimators B 1. Akaike showed that all the
information for discriminating f(-|3r) from f(-|3) could be summed up by the
Kullback-Leibler divergence Dg (81, 8) = E[log f(Yiew|8)] — E[l0g f(Yaeu|31)]
where the expectation is taken over new observations. This divergence can
in turn be approximated by its second-order variation when /3’1 is sufficiently
close to 3, which actually corresponds to the distance ||3; — 8]|2/2 where
T = —E[(8%log f/@ﬁiaﬁj)ﬁjzl] is the Fisher-information matrix and for a vec-
tor z, its weighted norm ||z||z is defined by (z'Zz)'/2. By means of asymptotic
analysis and by considering the expectation of Dk the author arrived at the
following criterion

AIC = ~27) "log f(y|Br) + 2k, (3)

=1

where k is the number of parameters of BI. In the special case of a Gaussian
distribution, AIC and C), are equivalent up to a constant for model (1) (see
Section 2.2). Hence Akaike described his AIC as a generalization of C,, for other
distributional assumptions. Unlike Mallows, Akaike explicitly recommends the
rule of minimization of AIC to identify the best model from data. Note that Ye
(1998) proposed to extend AIC to more complex settings by replacing k by the
estimated degrees of freedom d} .

Both C}, and AIC have been criticized in the literature, especially for the
presence of the constant 2 tuning the adequacy-complexity trade-off and fa-
voring complex models in many situations, and many authors have proposed
some correction (see Schwarz (1978); Burnham and Anderson (2002); Foster
and George (1994); Shibata (1980)). Despite these critics, these criteria are still
quite popular among practicioners. Also they can be very useful in deriving bet-
ter criteria of the form ¢ = dg —y, where dy is equal to Cp, AIC or an equivalent
and ~ is a correction function based on data. This framework, referred to as
loss estimation, has been successfully used by Johnstone (1988) and Fourdrinier
and Wells (1995), among others, to propose good criteria for selecting the best
submodel.

Another possible criticism of Cp, and AIC regards their strong distributional
assumptions. Indeed, C,’s unbiasedness has been shown under the Gaussian
i.i.d. case, while AIC requires the specification of the distribution. However, in
many practical cases, we might not have any prior knowledge or intuition about
the form of the distribution, and we want the result to be robust to a wide
family of distributions.

The purpose of the present paper is twofold:

e First, we show in Section 2 that the procedures C), and AIC are equiv-
alent to unbiased estimators of the quadratic prediction loss when Y is
assumed to be Gaussian in model (1). This result is an important ini-
tial step for deriving improved criteria as is done in Johnstone (1988) and
Fourdrinier and Wells (2012). Both references consider the case of improv-
ing the unbiased estimator of loss based on the data, which is consistent
with other approaches on data-driven penalties based on oracle inequali-
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ties (see for instance Birgé and Massart, 2007; Arlot and Massart, 2009).
The derivation of better criteria will not be covered in the present article,
but a relationship between oracle inequality and the statistical risk of the
estimators of the prediction loss is provided section 2.2.2.

e Second, we derive the unbiased loss estimator for the wide family of spher-
ically symmetric distributions and show that, for any spherical law, this
unbiased estimator is the same as that derived under the Gaussian law.
The family of spherically symmetric distribution is a large family which
generalizes the multivariate standard normal law and includes multivari-
ate versions of the Student, Cauchy, Kotz, and Pearson type II and type
VII distributions among others. Also, the spherical assumption frees us
from the independence assumption of the error terms in (1), while not re-
jecting it since the Gaussian law is spherical. Note however that spherical
symmetry here means no correlation, the case of correlated observations
being handled by elliptical symmetry. Furthermore, some members of the
spherical family, like the Student law, have heavier tails than the Gaussian
density allowing a better handling of potential outliers. Finally, the results
of the present work do not depend on the specific form of the distribution.
The last two points provide some distributional robustness.

2. Expression of AIC and C,, in the loss estimation framework
2.1. Basics of loss estimation
2.1.1. Unbiased loss estimation

The idea underlying the estimation of loss is closely related to Stein’s Unbiased
Risk Estimate (SURE, Stein, 1981). The theory of loss estimation was initially
developed for problems of estimation of the location parameter of a multivariate
distribution (see e.g. Johnstone, 1988; Fourdrinier and Strawderman, 2003). The
principle is classical in statistics and goes as follow: we wish to evaluate the
accuracy of a decision rule ji for estimating the unknown location parameter p
(in the linear model (1), we have p = X 3). Therefore we define a loss function,
which we write L(ji, 1), measuring the discrepancy between fi and p. A typical
example is the quadratic loss L(fi, u) = ||z — p||?. Since L(fi, 1) depends on the
unknown parameter u, it is unknown as well and can thus be assessed through
an estimation using the observations (see for instance Fourdrinier and Wells
(2012) and references therein for more details on loss estimation). The main
difference with classical approaches (such as SURE) is that we are interested in
estimating the actual loss, not its expectation, that is the risk

R(fi, ) = Ep[L(f1, ). (4)

In this paper we only consider unbiasedness as our notion of optimality. Hence,
let us start with the definition of an unbiased estimator of loss in a general
setting. This definition of unbiasedness is the one used by Johnstone (1988).
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Definition 1 (Unbiasedness). Let Y be a random vector in R™ with mean p €
R™, and let i be any estimator of p. An estimator 0o(Y) of the loss L(fi, p) is
said to be unbiased if, for all p € R™,

E, [0 (Y)] = Ey [L(f1, p)]
where E,, denotes the expectation with respect to the distribution of Y.

This definition of unbiasedness of an estimator of the loss is somehow non
standard. The usual notion of unbiasedness is retrieved when considering do(Y")
as an estimator of the risk R(ji, p) since the risk is the expectation of the loss,
see (4). However, this terminology of loss estimation, due to Sandved (1968) and
Li (1985), has been used by other authors (among others Johnstone (1988); Lele
(1993); Fourdrinier and Strawderman (2003); Fourdrinier and Wells (2012)). Dif-
ferences between loss estimation and risk estimation are enlightened by results
from Li (1985). Li proves that SURE estimates the loss consistently over the
true mean p as n goes to infinity. He also constructs a simple example where p
is estimated by a particular form of James-Stein shrinkage estimators for which
SURE tends asymptotically to a random variable, and hence is inconsistent for
the estimation of the risk, which is not random. Another interesting result of Li
(1985) is the consistency of the estimator of u selected using the rule “minimize
SURE” (which is equivalent to the rule “minimize the unbiased estimator dp”).
Although this result has only been proved for the special case of James-Stein
type estimators, this is encouraging for choosing such a rule to select the best
model from data.

Although in practice SURE and unbiased loss estimators are the same, we
believe this discussion makes it clear that the actual loss is a more relevant quan-
tity of interest than the risk. The difference will be important when improving
on unbiased estimators, as we will discuss in the perspectives of Section 4.

Obtaining an unbiased estimator of loss requires Stein’s identity, the key the-
orem of loss estimation theory which we recall here for the sake of completeness
and whose proof can be found in Stein (1981).

Theorem 1 (Stein’s identity). Let Y ~ N, (u,0%I,). Given g : R* — R"
a weakly differentiable function, we have, assuming the expectations exist, the
following equality

E, [(Y — 0)'g(Y)] = 0®E,, [divyg(Y)], (5)

where divy g(Y) = Y1, g;(Y)/9Y; is the weak divergence of g(Y') with respect
toY.

See e.g. Section 2.3 in Fourdrinier and Wells (1995) for the definition and the
justification of weak differentiability.

2.1.2. Unbiased loss estimation for model (1)

When considering the Gaussian model in (1), we have u = X, we set i = X3
and L(B, B) is defined as the quadratic loss || X3 — X3||?. Special focus will be
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given to the quadratic loss since it is the most commonly used and allows simple
calculations. In practice, it is a reasonable choice if we are interested in both
good selection and good prediction at the same time. Moreover, the quadratic
loss allows us to link loss estimation with C, and AIC.

In the following theorem, an unbiased estimator of the quadratic loss under
a Gaussian assumption is provided.

Theorem 2. Let Y ~ N, (X3,021,). Let 3 = B(Y) be a function of the least
squares estimator of B such that X is weakly differentiable with respect to Y.
Let 62 = ||Y — XBL9||2/(n — p). Then

So(Y) = [IY — XB|* + (2divy (X B) — n)6* (6)

is an unbiased estimator of | X5 — X 2.
Proof. The risk of XB at X5 is

Esll X5 - XBI7) = EsllX5-Y|>+|IY - X5’ (7)
+Es2(Y — XB) (XS - Y)).

Since Y ~ N, (X B,021,), we have Eg[||Y — X 3||?] = no? leading to
Es| X5 = XBI*)=Es[|Y — XBI*) = no” + 2tr(covs(XB,Y — X))

Moreover, applying Stein’s identity for the right-most part of the expectation in
(7) with g(Y') = X8 and assuming that X 5 is weakly differentiable with respect
to Y, we can rewrite (7) as

Eslll X8 — XBI] = EglllY = XB|2] - no® +20° B |divy X

Since 62 is an unbiased estimator of o2 independent of 3%5, the right-hand
side of this last equality is also equal to the expectation of §p(Y) given by
Equation (6). Hence, according to Definition 1, the statistic do(Y") is an unbiased
estimator of || X8 — X3]2. O

Remark 1. It is often of interest to use robust estimators of 8 and 2. In such a
case, the hypotheses of the theorem need to be modified to insure the independence
between estimators B and 62 which were implicit in the statement of the theorem.
We will see in Remark 2 of the next section that, by the use of Stein identity for
the general spherical case, the implicit assumption of independence is no longer
needed.

In the following subsections, we discuss our choices for the measure of com-
plexity of a model (through the divergence term) and for the estimation of the
variance, and we relate them to other choices from the literature.



A. Boisbunon et al./AIC and C), as estimators of loss for spherical distributions 7

2.1.3. Degrees of freedom

It turns out that the divergence term of d(Y) in (6), divy X3, is related to the
estimator of the degrees of freedom dAf used in Equation (2) for the definition of
Cp, and to the number k of parameters proposed for AIC in (3).

A convenient way to establish this connection is to follow Ye (1998) in defining
the (generalized) degrees of freedom of an estimator as the trace of the scaled
covariance between the prediction X B and the observation Y

daf = %tr <cov[3(XB,Y)) : (8)

This definition has the advantage of encompassing the effective degrees of free-
dom proposed for generalized linear models and the standard degrees of freedom
used when dealing with the least squares estimator.

When it applies, Stein’s identity yields

df = Egldivy X 3].

Setting
df = divy Xp5,

the statistic dAf appears as an unbiased estimator of the (generalized) degrees of
freedom. In the case of linear estimators, there exists a hat matrix, that is, a
matrix H such that X3 = HY and we have

n

. O HjY;
divy X3 = divy (HY) = > # =" H;; = te(H),
i=1 i i=1

so that R
df =tr(H).

This definition of (3} is the one used by Mallows for the extension of C), to ridge
regression. Note that, in this case, c/l} no longer depends on Y and thus equals
its expectation (df = df). When H is a projection matrix (i.e. when H? = H)
as it is for the least squares estimator, then we have

tr(H) =k,

where k is the rank of the projector which is also the number of linearly inde-
pendent parameters, and thus df = k.

In this case the definition of degrees of freedom agrees with intuition. It is
the number of parameters of the model that are free to vary. When H is no
longer a projector, rank(H) is no longer a valid measure of complexity since
it can be equal to n while for admissible estimators tr(H) is the trace norm
of H (also known as the nuclear norm). The trace norm is also the minimum
convex envelope of rank(H) over the unit ball of the spectral norm, used as
a convex proxy for the rank in some optimization problem (see for instance
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Recht, Fazel, and Parrilo (2010) and the references therein). As a convex norm,
tr(H) is a continuous measure of the complexity of the associated mapping. For
nonlinear estimators, the divergence divy X B is the trace of the Jacobian matrix
(its nuclear norm) of the mapping that produced a set of fitted values for Y.
According to Ye (1998), it can be interpreted as “the cost of the estimation
process” or as “the sum of the sensitivity of each fitted value to perturbations”.

Other measures of the complexity, involving the trace or the determinant
of the Fisher information matrix Z, have been used for instance by Takeuchi
(1976) and Bozdogan (1987). However, such measures depend on the specific
form of the distribution considered which does not suit our context. The Vapnik-
Chervonenkis dimension (VC-dim, Vapnik and Chervonenkis (1971)), is another
way to capture the complexity of the model. However, it can be difficult to
compute for nonlinear estimators while it is equivalent to our divergence term
for linear estimators. Hence, Cherkassky and Ma (2003) proposed to estimate
the VC-dim by df.

2.1.4. Estimators of the variance

The issue of estimating the variance was clearly pointed out in Cherkassky and
Ma (2003). The authors proposed two estimators of the variance, one for the
full model together with 5% the least-squares estimator

R P Caed
= 9
O full n—p ) 9)
and the second one for the model restricted to a subset I C {1,...,p}
-9 Iy — X5/
= 10
O restricted n—k ’ ( )

where k is the size of I and 37 is linear in Y. Note that other estimators of 02 can
be found in the literature (see for instance Arlot and Bach, 2009). As mentioned
earlier, we are concerned with unbiasedness of the loss, so that the estimator of
o2 should be unbiased and independent of divy X B Hence the choice between
&]%u” and &%estricted should be made with respect to what we believe is the true
model, either the full model in (1) or the restricted model

Y =X/ +o0e.

In the general case where B 1 is not necessarily linear in Y, the variance is usually
estimated by (10) where k is replaced by df. However, in such a case, it is not
clear whether this estimator is independent of Y or not. Also, the use of 62, , ;..
might not lead to an equivalence between the unbiased estimator of loss (24)
and AIC. Indeed, in such a case the unbiased estimator of loss would have the
form k|| Y — X53/||?/(n — k), while AIC would result in log 62, . ,.. + 2k. This
is just model selection based on the minimum standard error. On the contrary,
when considering the estimator &J%u”, the equivalence is pretty clear, as we will
see in the next section.
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2.2. Links between loss estimation and model selection
2.2.1. Selection criteria
In order to make the following discussion clearer, we recall here the formula of
the three criteria of interest for the Gaussian assumption, namely the unbiased

estimator of loss 6y (Y"), Mallows’ C}, and the extended version of AIC proposed
by Ye (1998):

oY) = |V = XB|? + (2divy (X ) — n)6?
Y — X532 R
alc = W= XA _6§(5||2 + 2divy (X3).

Using the estimator 67, of the variance in (9), we thus obtain the following
link between g, Cp and AIC:

80(Y) = 67y X Cp = 67y X (AIC — ). (11)

These links between different criteria function for model selection are due
to the fact that, under our working hypothesis (linear model, quadratic loss,
normal distribution Y ~ N, (X3, 02%1,,) for a fixed design matrix X), they can
be seen as unbiased estimators of related quantities of interest.

Note that there is also an equivalence with other model selection criteria,
investigated for instance in Li (1985), Shao (1997) and Efron (2004).

2.2.2. Quality of model selection procedures

Given a loss estimator E(B 1, 8) (such as dp), the corresponding model selection
procedure consists in finding the best subset of variables, I, that is,

I =argmin L(Bs, B)
I

where B 1 is the chosen estimator associated to the subset I of variables. To assess
the quality of this model selection procedure, from a nonasymptotic point of view
(fixed n), Donoho and Johnstone (1994) introduced the notion of an oracle. An
oracle is supposed to determine the ideal subset, I*, that is,

I* = arg min L(BI,,B).
I

A good model selection procedure approaches the ideal performance. More for-
mally, the associated oracle inequality states that, with high probability,

L(B;,8) < L(Br+, B) +e. (12)
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That is to say for any a, 0 < a < 1, there is a positive € such that
P(L(B;.8) - L(Br.B8) 2 ) <. (13)
Noticing that E(ﬁ},ﬁ) < Z(Bp,ﬁ) we can write

P(L(31.8) = L(Br-.B) 2 €) < P(IL(Br,8) — L(Br,A)| = 5)
+P (IL(31.8) - L(81.6)| = 5)
< Y P(ILGnA) - LB 2 5)

I

considering all the subsets I. Then by Chebyshev’s inequality

P(L(B31A) ~ LB B) =€) < Y ;%E IZ(31,8) — L(B1, 8)]

I
4 ~ A
I
where R(E(B T, ﬁ)) is the statistical risk of a further quadratic loss function

R(L(B1,8)) = E |IL(B1, ) - L(Br. O] (14)

Hence, for any « we can find ¢, say,

R(L(B1, B)
3 ( )

(%

e=2 (15)

1

such that the oracle inequality (12) is satisfied. It is clear that a way of con-
trolling the oracle bound of the selector is to choose a loss estimator with small
quadratic risk. In the case where the loss estimator is of the form squared resid-
ual plus a penalty function the oracle condition above translates into a sufficient
condition on the behavior of the penalty term. Classical oracle inequality anal-
ysis gives an exponential bound on the left-hand side of (13). The development
of such a result requires a concentration type inequality for the maximum of
Gaussian processes (see Massart (2007)) to give an exponential upper bound on
(12) that tends to zero. Our goal here is complementary to the standard oracle
inequality approach; that is, we developed a novel upper bound that links the
quality of the model selection procedure to the risk assessment of a loss estima-
tor. This idea is further elucidated in Barron, Birgé, and Massart (1999); Birgé
and Massart (2007) and related work. Note that, in particular, C), has been
proven to satisfy an oracle inequality by Baraud (2000).

Bartlett, Boucheron, and Lugosi (2002) studied model selection strategies
based on penalized empirical loss minimization in the context of bounded loss.
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They prove, using concentration inequality techniques, the equivalence between
loss estimation and data-based complexity penalization. It was shown that good
loss estimates may be converted into a data-based penalty function and the
performance of the estimate is governed by the quality of the loss estimate.
Furthermore, it was shown that a selected model that minimizes the empirical
loss achieves an almost optimal trade-off between the approximation error and
the expected complexity. The key point to stress is that the results of Bartlett
et al. are concordant with the oracle bound in (15), that is there is a fundamental
dependence on the notions of good complexity regularization and good loss
estimation.

2.2.8. Model selection

The final objective is to select the “best” model among those at hand. This can
be performed by minimizing either of the three proposed criteria, that is the
unbiased estimator of loss dg, Cp and AIC. The idea behind this heuristic, as
shown in the previous section, is that the best model in terms of prediction is
the one minimizing the estimated loss. Now, from (11), it can be easily seen
that the three criteria differ from each other only up to a multiplicative and/or
additive constant. Hence the models selected by the three criteria will be the
same.

We would like to point out that Theorem 2 does not rely on the linearity of
the link between X and Y so that this work can easily be extended to nonlinear
links at no extra cost. Therefore dy generalizes Cj, to nonlinear models. Moreover,
following its definition (3), AIC implementation requires the specification of the
underlying distribution. In this sense it is considered as a generalization of C), for
non Gaussian distributions. However, in practice, we might only have a vague
intuition of nature of the underlying distribution and we might not be able
to give its specific form. We will see in the following section that &g, which is
equivalent to the Gaussian AIC as we have just seen, can be also derived from a
more general distribution context, that of spherically symmetric distributions,
with no need to specify the precise form of the distribution.

3. Unbiased loss estimators for spherically symmetric distributions
3.1. Multivariate spherical distributions

In the previous section, results were given under the Gaussian assumption with
covariance matrix o2 1,,. In this section, we extend this distributional framework.

The characterization of the normal distribution as expressed by Kariya and
Sinha (1989) allows two directions for generalization. Indeed, the authors assert
that a random vector is Gaussian, with covariance matrix proportional to the
identity matrix, if and only if its components are independent and its law is
spherically symmetric. Hence, we can generalize the Gaussian assumption by
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either keeping the independence property and consider other laws than the
Gaussian, or by relaxing the independence assumption to the benefit of spherical
symmetry. In the same spirit, Fan and Fang (1985) pointed out that there
are two main generalizations of the Gaussian assumption in the literature: one
generalization comes from the interesting properties of the exponential form
and leads to the exponential family of distributions, while the other is based
on the invariance under orthogonal transformation and results in the family
of spherically symmetric distributions (which can be generalized by elliptically
contoured distributions). These generalizations go in different directions and
have lead to fruitful works. Note that their only common member is the Gaussian
distribution. The main interest of choosing spherical distributions is that the
conjunction of invariance under orthogonal transformation together with linear
regression with less variables than observations brings robustness. The interest
of that property is illustrated by the fact that some statistical tests designed
under a Gaussian assumption, such as Student and Fisher tests, remain valid for
spherical distributions Wang and Wells (2002); Fang and Anderson (1990). This
robustness property is not shared by independent non-Gaussian distributions,
as mentioned in Kariya and Sinha (1989).

Note that, from the model in (1), the distribution of Y is the distribution of
o € translated by u = X3: Y has a spherically symmetric distribution about the
location parameter y with covariance matrix equal to n=1o?E[||¢]|?]I,, where I,,
is the identity matrix. We write ¢ ~ S,,(0,I,,) and Y ~ S, (u, 0%I,,). Examples
of this family besides the Gaussian distribution N, are the Student distribution
Tn, the Kotz distribution K,,, or else variance mixtures of Gaussian distributions
GM,, whose densities are respectively given by

1 ly—pl?
. 2\ _ —le=s ™
No(y; p,0°) = 7(27r02)n/2e 202
(vtn)
I[(n+v)/2] ly — ull?]
. 2 _
Tn(ys py 07, v) = (7o) /2T (0 ) 2) 02 L+

I‘(n/Q)TN*1+”/2

lly—pl?
’Cn L 27]\[7 = o 2(N-1) —r )
(s, 0% N )= oNT N1+ 2) Iy — wll e
GM(y:1,0%.C) = ——; /Oo L Gaw)
n y’/”ﬁ ’ - (27('0'2)77’/2 0 ’(}”/2 bl

where v > 1, 2N +n > 2, r > 0, and G(-) is a probability measure on the scale
parameter v. Here, I' denotes the Gamma function. Note that the Gaussian
distribution is a special case of Kotz distribution with » = 1/2 and N = 1,
and of Gaussian mixtures, while it is the limiting distribution of the Student
law when v tends to infinity. Figure 1 shows the shape of these densities in two
dimensions (n = 2).

As we will see in the sequel, the unbiased estimator of the quadratic loss dg
(24) remains unbiased for any of these distributions with no need to specify its
form. It thus brings distributional robustness. For more details and examples of
the spherical family, we refer the interested reader to Chmielewski (1981) for a
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FIGURE 1. Examples of spherically symmetric densities for a two-dimensional random variable
with =0 and 02 = 1: Gaussian (top left), Student with v = 1 or Cauchy (top right), Kotz
with N =2 and r =1 (bottom left), mizture of centered Gaussian with Plv = 0.1] = 0.3 and
Plv = 5] = 0.7 (bottom right). Note that the Student and the mizture of centered Gaussian
distributions have heavier tails than the Gaussian law.

historical review and Fang and Zhang (1990) for a comprehensive presentation.

3.2. The canonical form of the linear regression model

An efficient way of dealing with the linear regression model under spherically
symmetric distributions is to use its canonical form (see Fourdrinier and Wells
(1995) for details). This form will allow us to give more straightforward proofs.

Considering model (1), the canonical form consists in an orthogonal transfor-
mation of Y. Using partitioned matrices, let Q) = (Q1 @2) be an nxn orthogonal
matrix partitioned such that the first p columns of @ (i.e. the columns of Q1)
span the column space of X. For instance, this is the case of the Q-R factoriza-
tion where X = QR with R an n X p upper triangular matrix. Now, according
to (1), let

QY = <g%)y = (g%) XB+0Qle= <g> +0oQ'e (16)

with § = Q¢ XS and QX3 = 0 since the columns of Q, are orthogonal to
whose of X. It follows from the definition that (Z¢ U?)! := Q'Y has a spherically
symmetric distribution about (6? 0%)!. In this sense, the model

(0) - ()=~ (&)

is the canonical form of the linear regression model (1).
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This canonical form has been considered by various authors such as Cel-
lier, Fourdrinier, and Robert (1989); Cellier and Fourdrinier (1995); Maruyama
(2003); Maruyama and Strawderman (2005, 2009); Fourdrinier and Strawder-
man (2010); Kubokawa and Srivastava (1999). Kubokawa and Srivastava (2001)
addressed the multivariate case where 6 is a mean matrix (in this case Z and U
are matrices as well).

For any estimator 8, the orthogonality of @ implies that
Iy — X8> = 6-2*+|U]|? (17)

where 6 = Qi X B is the corresponding estimator of 6. In particular, for the least
squares estimator 8%, we have

Iy — X555 = U] (18)

In that context, we recall the Stein-type identity given by Fourdrinier and
Wells (1995).

Theorem 3 (Stein-type identity). Given (Z,U) € R™ a random vector following
a spherically symmetric distribution around (0,0), and g : R? — RP a weakly
differentiable function, we have

Eo[(Z — 0)'9(2)] = Eol||U*divzg(2)/(n - p)], (19)

provided both expectations exist.

Note that the divergence in Theorem 2 is taken with respect to Y while
the Stein type identity (19) requires the divergence with respect to Z (with
the assumption of weak differentiability). Their relationship can be seen in the
following lemma.

Lemma 1. We have
divy X3(Y) = divz0(Z,U). (20)

Proof. Denoting by tr(A) the trace of any matrix A and by J;(z) the Jacobian
matrix (when it exists) of a function f at z, we have

divy XB(Y) = tr(J5(V))=tr(Q" Ty 5(Y) Q)

by definition of the divergence and since Q! is an orthogonal matrix. Now,
setting W = Q'Y i.e. Y = Q W, applying the chain rule to the function

T(W)=Q'XAQW)

gives rise to
Tp(W) = Jgixs(Y) Q= Q" T 5(Y)Q, (21)

noticing that Q! is a linear transformation.
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Also, as according to (16)

w=(Z) o f:(g)

the following decomposition holds

sy = (5 B0,

where J;(Z) and J4(U) are the parts of the Jacobian matrix in which the deriva-
tives are taken with respect to the components of Z and U respectively. Thus

tr(Jz(W)) = tr(J;(2)) (22)
and, therefore, gathering (21) and (22), we obtain
tr(J;(2)) = tr(Q" Jx5(Y) Q) = tr(QQ" JXB(Y)) = tr(JXB(Y)),

which is (20) by definition of the divergence. O

3.3. Unbiased estimator of loss for the spherical case

This section is devoted to the generalization of Theorem 2 to the class of spher-
ically symmetric distributions ¥ ~ 8,(Xf3,6?), given by Theorem 4. To do so
we need to consider the statistic

5*(Y) = 5y — X555 2. (23)

==

It is an unbiased estimator of 0?Eg|||¢||?/n]. Note that, in the normal case where
Y ~ N,(XB,0%1,), we have Eg[|[|?/n] = 1 so that 6%(Y) is an unbiased
estimator of o2.

Theorem 4 (Unbiased estimator of the quadratic loss under spherical assump-
tion). Let Y ~ S, (XB3,02%1,) and let 3 = B(Y) be an estimator of B depending
only on Q'Y . If B(Y) is weakly differentiable with respect to'Y , then the statistic

So(Y) =Y = XB(Y)|* + (2divy (XB(Y)) —n) 6*(Y), (24)
is an unbiased estimator of | XB(Y) — X B]2.
Proof. The quadratic loss function of X B at X can be decomposed as
IXB = XBII* =Y = XB[> + Y = XBII* +2(XB-Y)' (Y —XB). (25)

The expectation of the second term in the right hand side of (25) has been
considered in (23). As for the third term, by orthogonally invariance of the
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inner product,
(XB-Y)'(Y - XB) = (Q'XB-QY)(QY —Q'Xp)
(Q%XB = Q§Y>t (Q‘iY - QiXﬁ)

QLXA—QLy) \QYY — Q4Xp
(- 2\"(Z-0
- -U U
= 0-2)z-0)—|U|>. (26)

Now, since 8 = 6(Z,U) depends only on Z, by Stein type identity, we have

B[ - 2)(Z - 9)] - E ULU—”; div (0 — Z)]
_ [l'LU_”; (dw 6 p)] (27)

so that
B8 - v - x8) = B[ 1 (et —p) — o]

_ U || 2
= B[l s - o]
= E[6*(Y) d1vYXﬂfn62(Y)} (28)

by (18) and since divz6 = divy X3 by Lemma 1. Finally, gathering (25), (23)
and (28) gives the desired result. O

From the equivalence between éy, C}, and AIC under a Gaussian assumption,
and the unbiasedness of §y under the wide class of spherically symmetric distri-
butions, we conclude that C, and AIC derived under the Gaussian distribution
still can be considered as good selection criteria for spherically symmetric dis-
tributions, although their original properties may not have been verified in this
context.

Remark 2. Note that the extension of Stein’s lemma in Theorem 3 implies that
df = d1VyXﬂ s also an unbiased estimator of df under the spherical assump-
tion. Moreover, we would like to point out that the independence of 6% used in
the proof of Theorem 2 in the Gaussian case is no longer necessary. Also, to re-
quire that B depends on Q1Y only is equivalent to say that ﬁ s a function of the
least squares estimator. When this hypothesis is not available, an extended Stein
type identity can be derived (Fourdrinier, Strawderman, and Wells (2003)).

4. Discussion

In this work, we studied the well-known model selection criteria C;, and AIC
through a loss estimation approach and related them to an unbiased estimator
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of the quadratic prediction loss under a Gaussian assumption. We then derived
the unbiased estimator of loss under a wider distributional setting, the family of
spherically symmetric distributions. Under this context, the unbiased estimator
of loss is actually equal to the one derived under the Gaussian law. Hence, this
implies that we do not have to specify the form of the distribution, the only
condition being its spherical symmetry. We also conclude from the equivalence
between unbiased estimators of loss, C}, and AIC that their form for the Gaus-
sian case is able to handle any spherically symmetric distribution. The spherical
family is interesting for many practical cases since it allows a dependence prop-
erty between the components of random vectors whenever the distribution is not
Gaussian. Some members of this family also have heavier tails than the Gaus-
sian law, and thus the unbiased estimator derived here can be robust to outliers.
A generalization of this work with elliptically symmetric distributions for the
error vector would go even further by taking into account a general covariance
matrix X. We intend to study this case in future work.

It is well known that unbiased estimators of loss are not the best estimators
and can be improved. It was not our intention in this work to show better
results of such estimators, but our result explains why their performances can
be similar when departing from the Gaussian assumption. The improvement
of these unbiased estimators requires a way to assess their quality. This can
be done either using oracle inequalities or the theory of admissible estimators
under a certain risk. These two points of view are closely related. Based on our
definition of the risk (14) a selection rule dy is inadmissible if we can find a
better estimator, say d., that has a smaller risk function for all possible values
of the parameter (§, that is, with stict inequality for some . The heuristic of
loss estimation is that the closer an estimator is to the true loss, the more
we expect their respective minima to be close. We are currently working on
improved estimators of loss of the type 6(Y) = 6o(Y) + (YY), where v — 2k
can be thought of as a data driven penalty. From another point of view, choosing
a v improvement term, decreases the oracle bound given in (15). The selection
of such a v term is an important research direction.
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