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A predictive Stein’s effect even in the

low-dimensional case

Aurélie Boisbunon and Yuzo Maruyama

The University of Tokyo

Abstract: In this work, we are concerned with the estimation of the pre-
dictive density of a Gaussian random vector where both the mean and the
variance are unknown. In such a context, we prove the inadmissibility of
the best equivariant predictive density under the Kullback-Leibler risk in a
nonasymptotic framework. Our result stands whatever the dimension d of
the vector is, even when d ≤ 2, which can be somewhat surprising compared
to the known variance setting. We also propose a class of priors leading
to a Bayesian predictive density that dominates the best equivariant one.
Throughout the article, we give several elements that we believe are use-
ful for establishing the parallel between the prediction and the estimation
problems, as it was done in the known variance framework.

AMS 2000 subject classifications: Primary 62C20; secondary 62C10,
62F15.
Keywords and phrases: Bayes rules, inadmissibility, multivariate nor-
mal, unknown variance, prior distributions.

1. Context

The most natural way to estimate an unobserved quantity µ is to use observed
averages. However, Stein (1956) demonstrated the inadmissibility of such esti-
mators for dimensions strictly greater than two, that is, he showed that there
exist better estimators. The notion of better estimator means here that it has
a lower quadratic risk

RQ(µ, µ̂) = Eµ[‖µ̂− µ‖2],

where µ̂ is an estimator of µ and the expectation is taken with respect to
observed random quantities used in the construction of µ̂. This phenomenon
is the now very well-known Stein effect, which was first brought to light in the
context of parameter estimation. For such a problem, many classes of estimators
dominating the average have been proposed.

In parallel, a similar phenomenon has been observed for the predictive den-
sity estimation problem. For instance, let us observe n independent vectors
x1, . . . ,xn of size d, each supposedly normally distributed, xi ∼ Nd(µ, σ2 Id),
1 ≤ i ≤ n, where the common mean µ is unknown, and the variance is first as-
sumed to be known. The aim is to estimate the density of a future vector y, which
is also assumed to be normal with same mean and variance, y ∼ Nd(µ, σ2 Id).
In this context, the mean x̄ = n−1

∑n
i=1 xi is a sufficient statistic used for the
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estimation of the predictive density by a function p̂(y|x̄). The quality of such
an estimator is often measured by the Kullback-Leibler risk, given by

RKL(µ, p̂) =

∫
p(x̄|µ)

∫
p(y|µ) log

p(y|µ)

p̂(y|x̄)
dy dx̄,

where p(·|µ) is the Gaussian density. The most natural way to estimate p(y|µ)
here would be to just plug in an estimator of µ, p̂(y|x̄) = p(y|µ = µ̂(x̄)). How-
ever, Aitchison (1975) proved that plug-in densities are uniformly dominated
under the Kullback-Leibler risk by the best equivariant predictive density, given
with respect to the uniform prior πU (µ) = 1 by

p̂U (y|x̄) =
1

(2πσ2)d/2

{
n

n+ 1

}d/2
exp

(
− n

n+ 1

‖y − x̄‖2

2σ2

)
.

George, Liang and Xu (2006) have shown that predictive density estimation
and parameter estimation are in fact related. The authors also argue that the
best equivariant predictive density p̂U (y|x̄) shares many properties with the
maximum likelihood estimator: minimaxity, invariance, constant risk, and inad-
missibility for dimension greater or equal to 3. Hence, it should be taken as the
reference estimator to be improved upon. Komaki (2001) actually showed that,
when d ≥ 3, it is dominated by the Bayesian predictive density with respect to
the harmonic prior (also known as the shrinkage prior)

πH(µ) = ‖µ‖−(d−2). (1.1)

A more interesting and practical setting is the one where the variance is
unknown. In such a case, the sufficient statistic is (x̄, s), where s =

∑n
i=1 ‖xi −

x̄‖2 estimates the variance (up to a factor). The best equivariant predictive
density is now taken with respect to the right invariant prior πR(µ, σ) = 1/σ
and is given by

p̂R(y|x̄, s) = cR

{
1

πs
· n

n+ 1

}d/2(
1 +

1

s

n

n+ 1
‖y − x̄‖2

)−nd/2
, (1.2)

where cR = Γ(nd/2)/Γ({n − 1}d/2) and Γ denotes the Gamma function. Note
that p̂R is actually a Student t-distribution (see for instance Liang and Barron,
2004). The Kullback-Leibler risk now becomes

RKL({µ, σ2}, p̂) =

∫∫
p(x̄|µ, η) p(s|η)

∫
p(y|µ, η) log

p(y|µ, η)

p̂(y|x̄, η)
dy dx̄ ds.

Sofar, there are very few results on admissibility of p̂R in the literature. Three
works attracted our attention, though, and have been of great influence for
the present paper. The first one is due to Kato (2009), who showed that, for
d ≥ 3 and under the Kullback-Leibler risk, the best equivariant density p̂R is
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dominated by the Bayesian predictive density with respect to the prior

πLT (µ, η) =

∫ 1

0

π(µ|η, λ)π(η, λ)dλ

µ|η, λ ∼ Nd
(
0, η−1λ−1{1− λ} Id

)
π(η, λ) = η−2λ−21(0,1)(λ),

(1.3)

where η = 1/σ2. This prior corresponds to an extension of the harmonic prior
given in Equation (1.1) and of Komaki (2001)’s work to the unknown variance
assumption since πLT is proportional to ‖µ‖−(d−2)η−1.

Komaki (2006, 2007) himself proposed another extension of his own work.
His idea is the following one: noticing that the harmonic prior πH , given in
Equation (1.1), is actually proportional to the so-called Green function in the
Euclidean d-dimensional space (see Komaki, 2006, for a definition), he proposes
to consider as a prior the Green function of the manifold of the unknown variance
model, which is a hyperbolic plane. Although the form of this prior can look
complicated, its limits actually correspond to the right invariant prior on one
side and, when d = 1, to the Cauchy density on the other side. But the most
interesting part of this article is that the best equivariant predictive density is
shown to be asymptotically inadmissible even in the low-dimensional case where
d = 1 or 2.

Finally, another interesting work is the one by Maruyama and Strawderman
(2012), where the authors uses an extension of the prior given by Equation (1.3)
with the following change

π(η, λ) = ηaλa(1− λ)b 1(0,1)(λ). (1.4)

This prior leads to an estimator of the density dominating the best equivariant
density also in the low dimensional case, where d = 1 or 2. Unlike Komaki
(2007)’s result, the latter one was obtained in a nonasymptotic framework, and
under the following risk

R1({µ, η}, p̂) =

∫∫
p(x̄|µ, η) p(s|η)

∫
p̂(y|x̄, s) log

(
p̂(y|x̄, s)
p(y|µ, η)

)
dy dx̄ ds,

which is denoted by R1 because it corresponds to Csiszár’s α-divergence with
α = 1.

In the present work, we consider the Kullback-Leibler risk, which is also a
special case of Csiszár’s α-divergence with α = −1. We are interested in the
context of unknown variance and we show that the inadmissibility of the best
equivariant predictive density p̂R for any d, even d = 1 or 2, is still true under
the Kullback-Leibler risk, hence enlarging Kato (2009)’s result. We also par-
tially solve Problem 2-2 stated by Maruyama and Strawderman (2012), namely,
under d = 1, 2 and the Rα risk with −1 ≤ α < 1, does the best invariant pre-
dictive density keep inadmissibility? If so, which Bayesian predictive densities
improve it? We consider a different extension of the shrinkage prior than that of
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Komaki (2007), but the major difference lies in the fact that we have nonasymp-
totic results. Such results are actually derived under the Gaussian assumption,
whereas Komaki (2007) considered a more general distributional assumption. In
this work, we also establish a preliminary basis for comparing the estimation and
the prediction problems for the unknown variance setting. Such a comparison
is however merely qualitative, and proving it formally is still an open problem.

The rest of this paper is organized as follows. First, Section 2 gives the general
expression of the Bayesian predictive density with respect to any prior π as a
function of the best equivariant predictive density for the unknown variance
case. In Section 3, we specify the class of priors we consider and state our
main result on inadmissibility of the best equivariant predictive density. Then,
Section 4 shows visualizations of this result through a simulation study. Finally,
Section 5 presents a discussion on a possible parallel between the estimation
and the prediction problems.

2. The Bayesian predictive density under unknown variance

Recall that we want to estimate the predictive density of

y ∼ Nd(µ, σ2 Id), (2.1)

based on the observations x1, . . . ,xn, where xi ∼ Nd(µ, σ2 Id).
In this section, we aim at extending the famous result by George, Liang and

Xu (2006) expressing a Bayesian predictive density with respect to a prior π as
a function of the best equivariant one, which we recall here

p̂π(y|x̄n) =
mπ(x̄n+1; {n+ 1}−1η−1)

mπ(x̄n;n−1η−1)
p̂U (y|x̄n),

where x̄n = x̄, x̄n+1 = (nx̄n+y)/(n+1), and mπ(z;σ2) is the marginal density
defined as

mπ(z;σ2) =

∫
1

(2πσ2)d/2
exp

(
−‖z − µ‖

2

2σ2

)
π(µ)dµ.

Theorem 2.1 gives a similar expression for the unknown variance case. Before
stating it, note that, in this case, the expression relies on both the sufficient
statistic (x̄, s) and on the statistic (x̄n+1, sn+1), with

x̄n+1 ∼ Nd
(
µ, {n+ 1}−1η−1Id

)
sn+1 = sn + n‖y − x̄n‖2/(n+ 1) ∼ η−1χ2

nd,
(2.2)

where sn = s. Moreover, the marginal density mπ(z, v; l) is now defined for
z ∼ Nd(µ, {lη}−1Id) and v ∼ χ2

(l−1)d by

mπ(z, v; l) =

∫∫
ld/2ηd/2

(2π)d/2
exp

(
− lη‖z − µ‖

2

2

)
× η(l−1)d/2v(l−1)d/2−1

Γ({l − 1}d/2) 2(l−1)d/2
exp

(
−ηv

2

)
π(µ, η)dµ dη.

(2.3)
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We thus have the following extension of Lemma 2 of George, Liang and Xu
(2006) for the unknown variance case. Unfortunately, we have not been able to
link such an expression directly to the estimation problem, like it has been done
by George, Liang and Xu (2006), but we believe that the link exists and we give
in Section 5 some leads to uncover it.

Theorem 2.1. For any prior π(µ, η), the Bayesian predictive density p̂π(y|x̄n, sn)
can be expressed as

p̂π(y|x̄n, sn) =
ρπ(x̄n+1, sn+1;n+ 1)

ρπ(x̄n, sn;n)
· p̂R(y|x̄n, sn),

where p̂R(y|x̄n, sn) is the best equivariant predictive density and ρπ is the func-
tion defined as

ρπ(z, v; l) = v ·mπ(z, v; l). (2.4)

Furthermore, the difference between the Kullback-Leibler risks of p̂π and p̂R is
given by

RKL({µ, η}, p̂R)−RKL({µ, η}, p̂π) = E(µ,η)

[
log

ρπ(x̄n+1, sn+1;n+ 1)

ρπ(x̄n, sn;n)

]
,

provided the expectations exist.

Proof. The Bayesian predictive density is computed by

p̂π(y|x̄n, sn) = pπ(y, x̄n, sn)/mπ(x̄n, sn;n), (2.5)

where pπ(y, x̄n, sn) is the joint density. Let us compute this joint density

pπ(y, x̄n, sn) =

∫∫
p(y|µ, η)p(x̄n|µ, η)p(sn|η)π(µ, η)dµ dη

=

∫∫
nd/2η(n+1)d/2s

(n−1)d/2−1
n

Γ({n− 1}d/2)2(n−1)d/2(2π)d

× exp
(
−η

2

{
‖y − µ‖2 + n‖x̄n − µ‖2 + sn

})
π(µ, η)dµ dη.

Further, noticing that

‖y − µ‖2 + n‖x̄n − µ‖2 = (n+ 1) ‖x̄n+1 − µ‖2 +
n

n+ 1
‖y − x̄n‖2 ,

we can reexpress the joint density as

pπ(y, x̄n, sn) =

∫∫ {
n

n+ 1

}d/2
s
(n−1)d/2−1
n

Γ({n− 1}d/2)πd/2

× (n+ 1)d/2ηd/2

(2π)d/2
exp

(
−{n+ 1}η

2
‖x̄n+1 − µ‖2

)

× Γ(nd/2)ηnd/2

Γ(nd/2)2nd/2

{
n
n+1 ‖y − x̄n‖

2
+ sn

n
n+1 ‖y − x̄n‖

2
+ sn

}nd/2−1
× exp

(
−η

2

{
n

n+ 1
‖y − x̄n‖2 + sn

})
π(µ, η)dµdη.
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Now, we easily recognize the densities of x̄n+1 and sn+1 from Equation (2.2)
and the best equivariant density p̂R(y|x̄n), yielding

pπ(y, x̄n, sn) = p̂R(y|x̄n, sn)

∫∫
sn+1

sn
p(x̄n+1|µ, η)p(sn+1|η)π(µ, η)dµdη.

Replacing the joint density by this latter expression in Equation (2.5), we obtain
the desired result. The result on the difference in risks follows immediately from
the fact that

RKL({µ, η}, p̂R)−RKL({µ, η}, p̂π) = E(µ,η)

[
log

p̂π(y|x̄n, sn)

p̂R(y|x̄n, sn)

]
. (2.6)

In the following section, we specify the class of priors we consider for this
work and prove the inadmissibility of the best equivariant predictive density.

3. Main result

In this section, we propose to study the Bayesian predictive density with respect
to the following improper prior

πGM (µ, η) =

∫ 1

0

π(µ|η, λ)π(η, λ)dλ

µ|η, λ ∼ Nd
(
0, η−1λ−1{1− λ} Id

)
π(η, λ) = ηaλaπ̃(λ)1(0,1)(λ),

(3.1)

where we recall that η = 1/σ2 and the subscript GM stands for Gaussian mix-
ture. Note that the priors studied by Kato (2009) and Maruyama and Straw-
derman (2012) are special cases of this new prior with a = −2 and π̃(λ) = 1 for
the former one and π̃(λ) = (1− λ)b for the latter one.

We first give the expression of the Bayesian predictive density associated with
πGM in the following lemma, and then state our main results of domination
and inadmissibility in the subsequent theorems. In the sequel, we denote the
Kullback-Leibler risk by R instead of RKL for ease of notation.

3.1. Expression of the new Bayesian predictive density

The prior πGM defined in Equation (3.1) leads to the following Bayesian pre-
dictive density.

Lemma 3.1. Under the assumptions of Model (2.1), the Bayesian predictive
density with respect to the prior πGM in Equation (3.1) is given by

p̂GM (y|x̄n, sn) = cGM

{
sn+1

sn

}−ν
Jn+1

Jn
p̂R(y|x̄n, sn),
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where cGM = {1 + 1/n}νB (ν, {n− 1}d/2) /B (ν, nd/2) is a constant and the
term Jl, l ∈ {n;n+ 1}, is defined as

Jl =

∫ 1

0

λν−1{1 + (l − 1)λ}d/2−ν−1

{1 + wl λ}(l−1)d/2+ν
π̃

(
lλ

1 + {l − 1}λ

)
dλ, (3.2)

where ν = d/2 + a+ 1, B(·, ·) denotes the Beta function and wl = l‖x̄l‖2/sl.

Proof. From Theorem 2.1, we only have to compute ρπ(x̄n+1, sn+1;n+ 1) and
ρπ(x̄n, sn;n). Let us start by computing the expression of ρπ(z, v; l) with respect
to the prior defined in Equation (3.1):

ρπ(z, v; l) =

∫∫∫
1

Γ({l − 1}d/2)

ld/2 v(l−1)d/2

(2π)d 2(l−1)d/2
ηa+(l+1)d/2 λa+d/2 π̃(λ)

× (1− λ)−d/2 exp

(
−η

2

{
l‖z − µ‖2 + v +

λ

1− λ
‖µ‖2

})
dµ dη dλ.

We first integrate with respect to µ. In order to do so, we develop the squares
involving µ in the exponential term

l‖z − µ‖2 +
λ

1− λ
‖µ‖2 =

l − (l − 1)λ

1− λ

∥∥∥∥µ− (1− λ)lz

l − (l − 1)λ

∥∥∥∥2 +
lλ

l − (l − 1)λ
‖z‖2.

Noticing that the integration with respect to the location parameter µ corre-
sponds to the Gaussian density with scale parameter (1−λ)/{l− (l−1)λ}η, we
can easily compute the following integral∫

exp

(
−η

2

l − (l − 1)λ

1− λ

∥∥∥∥µ− (1− λ)lz

l − (l − 1)λ

∥∥∥∥2
)
dµ =

{
2π

η

1− λ
l − (l − 1)λ

}d/2
.

Hence, the function ρπ becomes

ρπ(z, v; l) =

∫∫
1

Γ({l − 1}d/2)

ld/2 v(l−1)d/2

(2π)d/2 2(l−1)d/2
ηa+ld/2λa+d/2π̃(λ)

× {l − (l − 1)λ}−d/2 exp

(
−η

2

{
lλ

l − (l − 1)λ
‖z‖2 + v

})
dη dλ.

We now turn to the integration with respect to the precision parameter η.
It can be easily seen that such an integral is related to Gamma distributions,
giving the following equality:∫ ∞

0

η(l−1)d/2+ν−1 exp

(
−η

2

{
lλ

l − (l − 1)λ
‖z‖2 + v

})
dη

= Γ

(
{l − 1}d

2
+ ν

){
1

2

(
lλ

l − (l − 1)λ
‖z‖2 + v

)}−(l−1)d/2−ν
,
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where we recall that ν = d/2 + a+ 1. Replacing the integral in η by this latter
expression in the function ρπ thus yields

ρπ(z, v; l) =

∫
Γ({l − 1}d/2 + ν)

Γ({l − 1}d/2)

ld/2 2ν

(2π)d/2 vν
λν−1 π̃(λ)

× {l − (l − 1)λ}−d/2
{

1 +
λ

l − (l − 1)λ

l‖z‖2

v

}−(l−1)d/2−ν
dλ.

Finally, we apply the change in variable t = λ/{l− (l− 1)λ}, with dλ = l/{1 +
(l − 1)t}2dt

ρπ(z, v; l) =

∫
Γ({l − 1}d/2 + ν)

Γ({l − 1}d/2)

lν2ν

(2π)d/2 vν
tν−1π̃

(
lt

1 + {l − 1}t

)
× {1 + (l − 1)t}d/2−ν−1 {1 + wt}−(l−1)d/2−ν dλ

=
Γ({l − 1}d/2 + ν)

Γ({l − 1}d/2)

lν2ν

(2π)d/2 vν
Jl,

where w = l‖z‖2/v and Jl is given in Equation (3.2). Replacing (z, v) by
(x̄n+1, sn+1) and (x̄n, sn) successively yields

p̂GM (y|x̄n, sn) =
B(ν, {n− 1}d/2)

B(ν, nd/2)

{
n sn+1

(n+ 1) sn

}−ν
Jn+1

Jn
p̂R(y|x̄n, sn),

where the ratio of Gamma functions has been reformulated thanks to the rela-
tionship between Gamma and Beta functions.

In the sequel, we seperate two cases, the low-dimensional case where 1 ≤
d ≤ 4, and the higher-dimensional case where d ≥ 3. In both cases, we obtain a
domination result.

3.2. Domination for the low dimensional case (1 ≤ d ≤ 4)

In this section, we assume n = 2, 0 < ν < 1, and we consider the following
special case for the prior in Equation (3.1)

π̃(λ) = {1− λ}(n−1)d/2−1
{

1− n− 1

n
λ

}−(n−2)d/2−ν
. (3.3)

Theorem 3.1. Let n = 2, 1 ≤ d ≤ 4, 0 < ν < 1 and π̃ be specified by
Equation (3.3). Then, there exists a constant ν∗ depending only on the dimension
d such that the inequality

R({µ, η}, p̂R)−R({µ, η}, p̂GM ) ≥ 0

holds for any {µ, η} ∈ Rd × R∗+ and 0 < ν ≤ ν∗.
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In view of Theorem 3.1, we can state our main result on the inadmissibil-
ity of the best equivariant predictive density p̂R. Note that this result solves
Problem 2.2 stated by Maruyama and Strawderman (2012) for the Kullback-
Leibler risk. Also, a similar result has been obtained by Komaki (2007), but
only asymptotically with the number of observations (n → ∞), whereas here
we give it in a nonasymptotic framework (fixed n and d).

Theorem 3.2. If d ≤ 4 and n = 2, the best equivariant density p̂R is inadmis-
sible under the Kullback-Leibler risk and the unknown variance setting.

In order to prove Theorem 3.1, we first need the three following lemmas.

Lemma 3.2. Assume n ≥ 2, 0 < ν < 1, and π̃ be specified by Equation (3.3).
Then

E(µ,η)

[
log

(
B(ν, {n− 1}d/2)

B(ν, nd/2)

Jn+1

Jn

{1− un}ν

{1− un+1}ν

)]
≥ ν g(n, d, ν)E[1− un+1],

where ul = wl/(1 +wl), l ∈ {n;n+ 1}, the expectation E[·] is taken with respect
to a noncentral Beta random variable, and the function g is defined by

g(n, d, ν) =


1

ν
log

B(ν, nd/2− {d− ν}/n)

B(ν, nd/2)
d ≤ n,

1

nν

d− ν
nd/2− 1

log(1 + ν) d ≥ n+ 1.
(3.4)

Proof of Lemma 3.2. Note first that the choice done for π̃ leads, after some
calculation, to the following equation

{1 + (l − 1)λ}d/2−ν−1π̃
(

lλ

1 + {l − 1}λ

)
= {1− λ}(n−1)d/2−1

{
1 +

(
l

n
− 1

)
λ

}−(n−2)d/2−ν
.

(3.5)

When l = n, the last term reduces to 1 and Jn thus becomes

Jn =

∫ 1

0

λν−1{1− λ}(n−1)d/2−1{1 + wnλ}−(n−1)d/2−νdλ.

Thus, applying Part 2 of Lemma A.1, we obtain

Jn = {1− un}νB(ν, {n− 1}d/2). (3.6)

When l = n+ 1, the last term in Equation (3.5) is equal to a power of (1 +λ/n)
and can be bounded by

{1 + λ/n}−(n−2)d/2−ν ≥ {1− λ}(n−2)d/(2n)+ν/n,

by Part 1 of Lemma A.2. Hence, we obtain for Jn+1 the lower bound

Jn+1 ≥
∫ 1

0

λν−1{1− λ}nd/2−(d−ν)/n−1{1 + wn+1λ}−nd/2−νdλ.
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Then, applying Part 1 of Lemma A.1, the right-hand side of the last inequality
becomes

Jn+1 ≥ {1− un+1}ν
∫ 1

0

tν−1{1− t}nd/2−(d−ν)/n−1{1− un+1t}(d−ν)/ndt. (3.7)

The term in (1 − un+1t) still makes it complicated to compare to Jn and we
next treat it in a different fashion for the cases d ≤ n and d ≥ n + 1. In both
cases, we assume that 0 < ν < 1.

Case d ≤ n In this case, since 0 < (d − ν)/n < 1, we can apply Part 2 of
Lemma A.2 with α = (d− ν)/n, β = un+1 and γ = t, which gives

{1− un+1}(d−ν)/n ≥ {1− t}(d−ν)/n + (1− un+1)
{

1− (1− t)(d−ν)/n
}
.

This inequality results in the following lower bound for Jn+1

Jn+1 ≥ {1− un+1}ν
∫ 1

0

tν−1{1− t}nd/2−(d−ν)/n−1

×
(
{1− t}(d−ν)/n + (1− un+1)

{
1− (1− t)(d−ν)/n

})
dt

= B(ν, nd/2){1− un+1}ν

×
{

1 + (1− un+1)

(
B(ν, nd/2−{d− ν}/n)

B(ν, nd/2)
− 1

)}
.

This new lower bound is more similar to the expression of Jn, but we can still
simplify it further. Indeed, by Part 1 of Lemma A.2, we have

Jn+1 ≥ B(ν, nd/2){1− un+1}ν
{
B(ν, nd/2−{d− ν})

B(ν, nd/2)

}1−un+1

. (3.8)

Case d ≥ n + 1 In this case, since (d − ν)/n ≥ 1, we cannot apply the same
technique. Instead, we will use Jensen’s inequality.

First, notice that

1− un+1t

1− t
= 1 + (1− un+1)

t

1− t
.

Hence, Inequality (3.7) becomes

Jn+1 ≥ {1− un+1}ν
∫ 1

0

tν−1{1− t}nd/2−1
{

1 +
(1− un+1) t

1− t

}(d−ν)/n

dt.

Applying the transformation λ = t/(1− t) to the integral of the right-hand side
in the latter bound yields∫ 1

0

tν−1{1− t}nd/2−1 {1 + (1− un+1)t/(1− t)}(d−ν)/n dt

=

∫ ∞
0

λν−1{1 + λ}−nd/2−ν {1 + (1− un+1)λ}(d−ν)/n dλ

= B(ν, nd/2)Eλ
[
{1 + (1− un+1)λ}(d−ν)/n

]
,
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where the expectation Eλ is taken under the Beta prime distribution with pa-
rameters ν and nd/2. Then, noticing that, since (d − ν)/n ≥ 1, the function
x 7→ {1 + x}(d−ν)/n is convex, we can use Jensen’s inequality

Eλ
[
{1 + (1− un+1)λ}(d−ν)/n

]
≥ {1 + (1− un+1)Eλ[λ]}(d−ν)/n

=

{
1 + (1− un+1)

ν

nd/2− 1

}(d−ν)/n

,

where the last bound directly follows from the mean of Beta prime random
variables. Plugging this lower bound back into the one on Jn+1 yields

Jn+1 ≥ {1− un+1}νB(ν, nd/2)

{
1 +

ν

nd/2− 1
(1− un+1)

}(d−ν)/n

.

Finally, by Part 1 of Lemma A.2, we obtain

Jn+1 ≥ {1− un+1}νB(ν, nd/2)

× exp

(
ν {1− un+1} log

(
{1 + ν}1/ν

) (d− ν)/n

nd/2− 1

)
.

(3.9)

Combining (3.6), (3.8) and (3.9) together yields

E(µ,η)

[
log

(
B(ν, {n− 1}d/2)

B(ν, nd/2)

Jn+1

Jn

{1− un}ν

{1− un+1}ν

)]
≥ ν g(n, d, ν)E[1− un+1],

where g(n, d, ν) is given by Equation (3.4), thus completing the proof.

The following result relies on the digamma function, defined by

ψ(α) =
d

dα
log Γ(α) =

1

Γ(α)

∫ ∞
0

{log x}xα−1e−xdx, (3.10)

and on basic formulas about digamma functions given in Lemma A.3 in the
Appendix.

Lemma 3.3. Assume n ≥ 2 and let π̃ be specified by Equation (3.3). Then,

E(µ,η)

[
log

(
n+ 1

n
· sn
sn+1

· 1− un+1

1− un

)]
≥ −h(n, d)E[1− un+1],

where ul = wl/(1 +wl), l ∈ {n;n+ 1}, the expectation E[·] is taken with respect
to a noncentral Beta random variable, and the function h is defined by

h(n, d) =
1 + (n+ 1)d/2

nd/2

{
ψ

(
1 +
{n+ 1}d

2

)
− ψ

(
1 +

nd

2

)}
. (3.11)

Proof of Lemma 3.3. Let us first treat the term with the random variables. We
have

sn
sn+1

· 1− un+1

1− un
=

n‖x̄n‖2 + sn
(n+ 1)‖x̄n+1‖2 + sn+1

=
χ2
nd(nη‖µ‖2)

χ2
(n+1)d({n+ 1}η‖µ‖2)

,
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where χ2
df (ncp) denotes a noncentral Chi-square random variable with degrees

of freedom df and noncentral parameter ncp. Taking the expected logarithm
yields

E(µ,η)

[
log

(
n+ 1

n
· sn
sn+1

· 1− un+1

1− un

)]
= E

[
log

(
n+ 1

n

χ2
nd(2θn)

χ2
nd(2θn+1)

)]
+ E

[
log

χ2
nd(2θn+1)

χ2
(n+1)d(2θn+1)

]
,

(3.12)

where θl = lη‖µ‖2/2. By Lemma A.4, the first term of the right-hand side of
Equation (3.12) is bounded from below by

E
[
log

(
n+ 1

n

χ2
nd(2θn)

χ2
nd(2θn+1)

)]
≥ log

(
n+ 1

n

)
e−θn+1 .

Then, Part 7 of Lemma A.3 enables us to rewrite the second term of the
right-hand side of (3.12) as

E

[
log

χ2
nd(2θn+1)

χ2
(n+1)d(2θn+1)

]
= −

∞∑
j=0

e−θn+1
θjn+1

j!
E

[
log

χ2
(n+1)d+2j

χ2
nd+2j

]

= −
∞∑
j=0

e−θn+1
θjn+1

j!
Ψd(j + {n+ 1}d/2),

where Ψd(x) = ψ(x)− ψ(x− d/2). We thus obtain

E(µ,η)

[
log

(
n+ 1

n
· sn
sn+1

· 1− un+1

1− un

)]
≥ log

n+ 1

n
e−θn+1 −

∞∑
j=0

e−θn+1
θjn+1

j!
Ψd(j + {n+ 1}d/2)

= e−θn+1

{
log

n+ 1

n
−Ψd({n+ 1}d/2)

}
−
∞∑
j=1

e−θn+1
θjn+1

j!
Ψd(j + {n+ 1}d/2).

Further, Part 5 of Lemma A.3 states that, for j ≥ 1,

Ψd(j + {n+ 1}d/2) ≤ 1 + (n+ 1)d/2

j + (n+ 1)d/2
Ψd(1 + {n+ 1}d/2),
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yielding

E(µ,η)

[
log

(
n+ 1

n
· sn
sn+1

· 1− un+1

1− un

)]
≥ e−θn+1

{
log

n+ 1

n
−Ψd

(
{n+ 1}d

2

)}
− {1 + (n+ 1)d/2}Ψd

(
1 +
{n+ 1}d

2

) ∞∑
j=1

θjn+1

j!

e−θn+1

j + (n+ 1)d/2

= e−θn+1

{
log

n+ 1

n
−Ψd

(
{n+ 1}d

2

)
+

(n+ 1)d+ 2

(n+ 1)d
Ψd

(
1 +
{n+ 1}d

2

)}
− {1 + (n+ 1)d/2}Ψd

(
1 +
{n+ 1}d

2

) ∞∑
j=0

θjn+1

j!

e−θn+1

j + (n+ 1)d/2
,

where the last inequality is obtained by adding and substracting the term cor-
responding to j = 0 in the series. Applying successively Parts 6 and 4 of Lemma
A.3, we obtain

E(µ,η)

[
log

(
n+ 1

n
· sn
sn+1

· 1− un+1

1− un

)]
≥ e−θn+1

(n+ 1)d/2
Ψd

(
1 +
{n+ 1}d

2

)
h(n, d)

∞∑
j=0

θjn+1

j!

(nd/2) e−θn+1

j + (n+ 1)d/2

≥ − h(n, d)

∞∑
j=0

θjn+1

j!

(nd/2) e−θn+1

j + (n+ 1)d/2
,

where h(n, d) is given in Equation (3.11). Finally, noticing that un+1 is a non-
central Beta random variable B(d, nd, 2θn+1), we can see that the series in the
right-hand side of the last bound actually corresponds to E [1− un+1]. Indeed,
from the formula of moments of noncentral Beta random variables (see e.g.
Marchand, 1997), we have that

E[1− un+1] = 1−
∞∑
j=0

θjn+1

j!

(d/2 + j)e−θn+1

(n+ 1)d/2 + j
=

∞∑
j=0

θjn+1

j!

(nd/2) e−θn+1

j + (n+ 1)d/2
.

We thus obtain the desired result.

The last lemma gives the behavior of the difference {g(n, d, ν)− h(n, d)}.

Lemma 3.4. Let n = 2 and 1 ≤ d ≤ 4. Then, there exists a constant ν∗
depending only on the dimension d such that,

g(n, d, ν)− h(n, d) ≥ 0

for any 0 < ν ≤ ν∗.
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Proof of Lemma 3.4. By definition of Beta functions, we have that

logB(ν, nd/2− {d− ν}/n)− logB(ν, nd/2)

= log Γ(nd/2 + ν)− log Γ(nd/2)

− {log Γ(nd/2− {d− ν}/n+ ν)− log Γ(nd/2− {d− ν}/n)} .

Now, by definition of digamma functions, given in Equation (3.10), we deduce
the limit

ν−1 log
B(ν, nd/2− {d− ν}/n)

B(ν, nd/2)
−→
ν→0

ψ(nd/2)− ψ(nd/2− d/n). (3.13)

Notice also that
lim
ν→0

log
(
{1 + ν}1/ν

)
= 1. (3.14)

Thus, gathering Equations (3.13) and (3.14) yields

lim
ν→0

g(n, d, ν) =

{
ψ(nd/2)− ψ(nd/2− d/n) d ≤ n,
d/{n(nd/2− 1)} d ≥ n+ 1,

Computing the exact value of the function ζ(n, d), defined as

ζ(n, d) = lim
ν→0

g(n, d, ν)− h(n, d), (3.15)

for different values of n and d, as displayed by Figure 1, this limit turns out to
be positive only when n = 2 and 1 ≤ d ≤ 4. Under such assumptions, and from
the continuity of {g(n, d, ν)− h(n, d)}, there exists ν∗ such that

g(n, d, ν)− h(n, d) ≥ 0

for 0 < ν ≤ ν∗. This completes the proof.

2 4 6
−0.2

0

0.2

0.4

0.6

0.8

d

ζ
(n
,
d
)

n = 4
n = 3
n = 2

Fig 1. Computation of ζ(n, d) in Equation (3.15) as a function of d for n ∈ {2; 3; 4}.

Numerical computations give approximate values of the constant ν∗ for 1 ≤
d ≤ 4, displayed in Table 1.

We are now able to prove Theorem 3.1.
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Table 1
Numerical approximation of ν∗ for several values of the dimension d.

d ν∗
1 0.253
2 0.325
3 0.175
4 0.052

Proof of Theorem 3.1. From Equation (2.6), the risk difference between the best
equivariant predictive density and the Bayesian predictive density with respect
to the prior πGM , where the function π̃ is specified by Equation (3.3), is given
by

R({µ, η}, p̂R)−R({µ, η}, p̂GM )

= E(µ,η)

[
log

(
B(ν, {n− 1}d/2)

B(ν, nd/2)

{
n+ 1

n

}ν {
sn+1

sn

}−ν
Jn+1

Jn

)]
= E(µ,η)

[
log

(
B(ν, {n− 1}d/2)

B(ν, nd/2)

Jn+1

Jn

{
1− un

1− un+1

}ν)]
+ ν E(µ,η)

[
log

(
n+ 1

n

{
sn+1

sn

}−1
1− un+1

1− un

)]
.

By Lemmas 3.2 and 3.3, the risk difference is bounded by

R({µ, η}, p̂R)−R({µ, η}, p̂GM ) ≥ ν E [1− un+1] {g(n, d, ν)− h(n, d)} .

Since ν > 0 and 1−un+1 ≥ 0, then the sign of the lower bound is determined by
the sign of {g(n, d, ν)− h(n, d)}. Applying Lemma 3.4 completes the proof.

3.3. Domination in higher dimension (d ≥ 3)

The domination of our Bayesian predictive density p̂GM over the best equivariant
one p̂R does not only occur in the case where d ≤ 4. Indeed, the following result
shows that the domination is also true in higher dimension d, and larger number
n of observations, when this time the function π̃ is subject to the following
condition, for 0 < ν ≤ d/2− 1,{

1− n

n+ 1
λ

}d/2−ν−1
≤ π̃(λ) ≤

{
1− n− 1

n
λ

}d/2−ν−1
. (3.16)

Note that Condition (3.16) includes the extension of the harmonic prior when
π̃ ≡ 1 and a = −2, or ν = d/2 − 1 equivalently, thus enlarging Kato (2009)’s
work. Our result actually relies on the proof of Theorem 3 by Kato (2009).

Theorem 3.3. Let n ≥ 2, d ≥ 3, 0 < ν ≤ d/2 − 1 and π̃ be specified by
Condition (3.16). Then, the inequality

R({µ, η}, p̂R)−R({µ, η}, p̂GM ) > 0

holds for any {µ, η} ∈ Rd × R∗+.
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Remark 3.1. In this setting, the inadmissibility of the best equivariant predic-
tive density was already proved by Kato (2009). However, only one improving
Bayesian predictive density had been provided, whereas we give a class of such
dominating densities.

Proof. From Equation (2.6), the difference in Kullback-Leibler risks between
the best equivariant predictive density and the Bayesian predictive density with
respect to the prior πGM , where the function π̃ is specified by Equation (3.16),
is given by

R({µ, η}, p̂R)−R({µ, η}, p̂GM )

= E(µ,η)

[
log

(
B(ν, {n− 1}d/2)

B(ν, nd/2)

{
n+ 1

n

}ν {
sn+1

sn

}−ν
Jn+1

Jn

)]
.

By the change of variable t = λ/{l − (l − 1)λ} and taking first l = n + 1,
Condition (3.16) gives the upper bound

π̃

(
{n+ 1}λ
1 + nλ

)
≥
{

1− n

n+ 1
λ

}−d/2+ν+1

,

so that

Jn+1 ≥
∫ 1

0

tν−1 {1 + wn+1t}−nd/2−ν dt.

Next, applying the change of variables z = wn+1t/(1 + wn+1t), with dt =
w−1n+1(1− z)−2dz yields

Jn+1 ≥ w−νn+1

∫ un+1

0

zν−1{1− z}nd/2−1dz, (3.17)

where we recall that wn+1 = (n+1)‖x̄n+1‖2/sn+1 and un+1 = wn+1/(1+wn+1).
Similarly for l = n, the upper bound of π̃(λ) given in (3.16) is equivalent to

π̃

(
nλ

1 + {n− 1}λ

)
≤ {1 + (n− 1)λ}−d/2+ν+1

,

which in turn yields

Jn ≤ wνn
∫ un

0

λν−1{1− λ}(n−1)d/2−1dλ, (3.18)

where wn = n‖x̄n‖2/sn and un = wn/(1 + wn).
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Gathering (3.17) and (3.18), the risk difference can thus be bounded as follows

R({µ, η}, p̂R)−R({µ, η}, p̂GM )

≥ −ν E(µ,η)

[
log

(
n

n+ 1
· sn+1

sn
· wn+1

wn

)]
+ E

[
log

(
1

B(ν, nd/2)

∫ un+1

0

λν−1{1− λ}nd/2−1dλ
)]

− E
[
log

(
1

B(ν, {n− 1}d/2)

∫ un

0

λν−1{1− λ}(n−1)d/2−1dλ
)]

= ν E(µ,η)

[
log ‖x̄n‖2 − log ‖x̄n+1‖2

]
+ rn+1 − rn,

(3.19)

where rl = E[logFl(ul)], l ∈ {n;n + 1}, with Fl being the distribution defined
as

Fl(u) =
1

B(ν, {l − 1}d/2)

∫ u

0

tν−1{1− t}(l−1)d/2−1dt,

and the expectation being taken with respect to Fl. Inequality (3.19) actually
becomes an equality for the prior πLT considered by Kato (2009). Noticing that
l‖x̄l‖2 ∼ χ2

d(lη‖µ‖2), Lemma A.4 gives

E(µ,η)

[
log ‖x̄n‖2 − log ‖x̄n+1‖2

]
≥ 0.

Hence, it only remains to show that the difference (rn+1 − rn) is positive. Now,
the random variable ul is actually a noncentral Beta random variable, that is,

ul =
χ2
d(lη‖µ‖2)

χ2
d(lη‖µ‖2) + χ2

(l−1)d
.

From the properties of noncentral Chi-square random variables, we have that
the ratio

χ2
d(ncp)

χ2
d(ncp) + χ2

(l−1)d

is stochastically increasing in the noncentral parameter ncp (see for instance
Lehmann and Romano, 2005). Since Fl(u) is a nondecreasing function of u (it
can actually also be seen as the cumulative distribution of a Beta variable), we
deduce that

E
[
logFn+1

(
χ2
d({n+ 1}ξ)

χ2
d({n+ 1}ξ) + χ2

nd

)]
≥ E

[
logFn+1

(
χ2
d(nξ)

χ2
d(nξ) + χ2

nd

)]
,

where ξ = η‖µ‖2. Hence, we obtain

rn+1 − rn ≥ E
[
logFn+1

(
χ2
d(nξ)

χ2
d(nξ) + χ2

nd

)]
− E

[
logFn

(
χ2
d(nξ)

χ2
d(nξ) + χ2

(n−1)d

)]
.
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Finally, Lemma A.5 yields

E
[
logFn+1

(
χ2
d(nξ)

χ2
d(nξ) + χ2

nd

)]
≥ E

[
logFn

(
χ2
d(nξ)

χ2
d(nξ) + χ2

(n−1)d

)]
,

thus completing the proof.

Remark 3.2. It is interesting to notice that, for n = 2 and d = 2, the function
π̃ in the prior in Equation (3.3) is equal to

π̃(λ) = {1− λ/2}−ν . (3.20)

On the other hand, in the case where d ≥ 3, if we take π̃ to be equal to the
upper bound in Condition (3.16), we have that

π̃(λ) = {1− (n− 1)λ/n}d/2−1−ν . (3.21)

Taking d = 2 and n = 2 in this latter expression, we can see that Equa-
tions (3.20) and (3.21) are actually equal. Hence, even though Theorem 3.3
relies on the assumption that d ≥ 3, the case where d = n = 2 seems to be
making the link between the two settings.

In the following section, we verify numerically the domination of our new
Bayesian predictive density over the best equivariant one.

4. Numerical experiment

In practice, the Bayesian predictive density p̂GM might be a little challenging
to compute, because of the presence of integrals in Jn+1 and Jn. We discuss
how we can accurately approximate both terms in the first part of this section.
Then, in the second part, we display the results of the numerical study.

4.1. Computational aspects

In the simulation study, we only considered the case where 1 ≤ d ≤ 4, since
Kato (2009) already drove a simulation study for the case d ≥ 3.

First, we would like to point out that, in such a case, with the choice of π̃
defined by Equation (3.3), Equation (3.6) shows that Jn is exactly equal to

Jn = {1− un}νB(ν, {n− 1}d/2).

We thus were able to compare the different solutions discussed in the sequel to
this true value of Jn.

We tested two options for computing Jl, both with Matlab: expected val-
ues of functions of Beta random variables, and functions computing numerical
approximation of integrals. For the first option, notice that, after applying the
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change of variables t = wlλ/(1 + wlλ), both Jn+1 and Jn can be expressed
thanks to the function

f(m, p, x, w) =
1

B(ν, b+ 1)

∫ 1

0

λν−1{1− λ}b{1− xλ}p{1− uλ}−md/2−νdλ

= Eλ
[
{1− xλ}p{1− uλ}−md/2−ν

]
,

where b = (n− 1)d/2− 1, λ is a Beta random variable, that is, λ ∼ Beta(ν, b+
1), and Eλ is the corresponding expectation. Note that this expression can be
generalized to any function π̃ by taking b = 0 and replacing (1 − xλ)p by the
expression of π̃. We thus have

Jn+1 = B(ν, b+ 1)n−c{1− un+1}nd/2+νf(n, c, 1− n, un+1)

Jn = B(ν, b+ 1){1− un}(n−1)d/2+νf(n− 1, 0, 1− 1/n, un),

where c = −(n − 2)d/2 − ν. In the simulation study, the approximation of f
by averaging the bracket terms was very accurate when we drew r1 = 1 000 000
replicates of λ and averaged the results over 10 trials. We tested it for several
values of n, d and ν, and found an accuracy of the order of 10−4 in average,
whatever ν we chose.

The second option we considered consists in directly estimating the integral
with functions such as quadl or quadgk in Matlab. Those functions evaluate
the integral thanks to the adaptive Lobatto quadrature and the Gauss-Kronrod
quadrature, respectively. Both functions are much faster than the solution with
Beta random variables, quadgk being the fastest of the two. However, when
ν ≤ 0.3, their accuracy becomes very bad (an error of 0.2 has been found for
ν = 0.1 and of around 3 when ν = 0.05, while Beta random variables’ accuracy
is still of the order of 10−3).

Hence, we recommend the following strategy: if ν is taken in the range (0; 0.3),
then the solution with Beta random variables should be preferred ; whereas if
ν ≥ 0.3, then quadgk is the most accurate (around 10−7 error accuracy) and
the fastest solution (hundreds of times faster than Beta random variables). This
is the strategy we adopted for the simulation study exposed in the sequel.

4.2. Simulation study

In order to verify in practice the results of Theorem 3.1, we considered the
example given by Kato (2009) and we generalized it so as to include our working
assumptions.

The experiment is driven for values of the noncentral parameter ξ = η‖µ‖2
taken in [0; 1 000], and values of the shape parameter ν taken in {0.05; 0.25;
0.50; . . . ; 1.75; 2}. We estimated the difference in risks over r2 = 5000 replicates
of the different random variables involved, namely (x̄l, sl), l ∈ {n;n + 1}, and
averaged the results over 10 trials of such an experiment.

Figure 2 shows the behaviour of the thus estimated difference in risks as a
function of the noncentral parameter ξ and of the shape parameter ν for each
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Fig 2. Difference in Kullback-Leibler risks ∆RKL(p̂R, p̂GM ) = RKL({µ̂, η}, p̂R) −
RKL({µ̂, η}, p̂GM ) as a function of the noncentral parameter ξ = η‖µ‖2 and of the shape
parameter ν, for the low dimensional case (1 ≤ d ≤ 4), with n = 2. The black grid shows the
plane z = 0.

d ∈ {1; 2; 3; 4} when n = 2. From this figure, we can see that the difference in
risks is indeed positive for the values of ν defined by Theorem 3.1, whatever
the noncentral parameter ξ is. This fact thus confirms our theoretical results.
What is perhaps more surprising is that the difference in risks is still positive for
larger values of ν. This is especially noticeable in the case where d = 4, where
the largest improvement seems to be obtained for ν in the range [1; 2], whereas
in theory we could only prove the domination when ν ≤ 0.052. For the cases
d = 1 and 2, the difference in risks becomes negative for ν ≥ 1.

Note that, although the difference in risks is decreasing with respect to ξ for
each fixed ν, it is still positive for the ranges of ν previously mentioned when
ξ = 1 000, as shown by Figure 3.

5. Discussion

Concluding remarks In the present work, we have shown that, for the pre-
diction of a Gaussian random vector with unknown mean and variance, the
best equivariant predictive density is inadmissible under the Kullback-Leibler
risk even in the low-dimensional setting, that is, when the dimension d of the
vector is 1 or 2. This result is more general than the one of Kato (2009) since
the latter one proved the inadmissibility only for d ≥ 3.
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Fig 3. Difference in Kullback-Leibler risks ∆RKL(p̂R, p̂GM ) = RKL({µ̂, η}, p̂R) −
RKL({µ̂, η}, p̂GM ) as a function of the shape parameter ν for ξ = η‖µ‖2 = 1000, in the
low dimensional case (1 ≤ d ≤ 4), with n = 2.

We exhibit a class of priors leading to a Bayesian predictive density that
improves upon the best equivariant one. This class of priors generalizes the
well-known shrinkage prior (or harmonic prior), but in a different fashion than
what is done by Komaki (2007). The results of the simulation study seems to go
even further than the theory since it shows positivity of the difference in risks
between the best equivariant and the Bayesian predictive densities even when
departing from the assumptions of Theorem 3.1.

A parallel between the estimation and prediction problem under the
unknown variance setting We would like to point out that, although we
have not been able to prove it sofar, it is our conviction that there exists a link
between the prediction problem and the estimation problem in the unknown
variance case, just as it has been shown in the known variance case (see George,
Liang and Xu, 2006). In order to make our point of view clear, recall that Brown
(1979) argues that some decision-theoretic properties do not seem to depend on
the choice of the loss function. This claim concerned the estimation problem,
but the work of Maruyama and Strawderman (2012), of Komaki (2007) and the
present work, showing inadmissibility of the best equivariant predictive density
for any dimension d ≥ 1 under two different losses, seem to verify it also for the
prediction problem. Such a relationship is particularly appealing since it was
proved by Maruyama and Strawderman (2012) that there exists a direct link
between the prediction problem under R1-risk and the simultaneous estimation
of the mean µ and the variance σ2. Indeed, the authors showed that, for π given
in Equation (1.4),

R1({µ, σ2}, p̂π) = cIQRIQ(µ, µ̂π) + cSRS(σ2, σ̂2
π),
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where RIQ and RS are respectively the invariant quadratic risk of the posterior
mean µ̂π and Stein’s risk of the posterior variance σ̂2

π defined by

RIQ(µ, µ̂) = E(µ,σ2)

[
1

σ2
‖µ̂− µ‖2

]
RS(σ2, σ̂2) = E(µ,σ2)

[
σ̂2

σ2
− log

σ̂2

σ2
− 1

]
,

and cIQ and cS are weights taking the dimension d into account. However, this
parallel has been possible because the Bayesian predictive density under the risk
R1 actually reduces to a plug-in density, which is not the case here. Hence, it
is not clear whether the link would still be possible under the Kullback-Leibler
risk.

It is also worth noting that several arguments given by George, Liang and
Xu (2006) are still true under the unknown variance setting. First, it can eas-
ily be shown that the unbiased estimator with minimum variance (commonly
referred to as the UMVU estimator) of (µ, σ2) are equal to the posterior mean
and variance under the right invariant prior, which led to the best equivariant
predictive density. Also, both the UMVU estimators and the best equivariant
distribution are minimax and inadmissible whatever the dimension is (this is
true for the estimation problem since it is true for the UMVU estimator of σ2,
see for instance Brown, 1968). Finally, Theorem 2.1 expressing any Bayesian
predictive density as a function of the best equivariant one is very similar to
Lemma 2 of George, Liang and Xu (2006). The main difference lies in the ratio
of variance estimators in the factor, which does not seem unreasonable for the
unknown variance case. Theorem 2.1 also gives an expression of the difference
in risks, which can be rewritten as

RKL({µ, σ2}, p̂R)−RKL({µ, σ2}, p̂π) =

∫ n+1

n

∂

∂l
Q(l,µ, σ2)dl,

whereQ(l,µ, σ2) = E(µ,σ2)[log ρπ(z, v; l)] and ρπ(z, v; l) is given in Equation (2.4).
Hence, a sufficient condition for the difference in risks to be positive is that, for
all (µ, σ2) and all l ∈ [n, n+ 1],

∂

∂l
Q(l,µ, σ2) ≥ 0,

with strict inequality at least for one value (µ0, σ
2
0). This type of expression was

the key element that helped George, Liang and Xu (2006) explicitely express
the link with the estimation problem, but is much more difficult to derive under
the unknown variance setting. It thus remains an open problem to find a similar
result when the variance is unknown.

Appendix A: Useful lemmas

The first lemma expresses hypergeometric-type functions in special cases.
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Lemma A.1 (Maruyama and Strawderman (2005)).

1. For α > 0 and β > 0,∫ 1

0

λα−1(1− λ)β−1(1 + wλ)−γdλ

= (1− u)α
∫ 1

0

tα−1(1− t)β−1 {1− ut}−α−β+γ dt,

for u = w/(1 + w).
2. For α > 0 and β > 0,∫ 1

0

λα−1(1− λ)β−1(1 + wλ)−α−βdλ = (1− u)αB(α, β),

for u = w/(1 + w).

Proof. See Maruyama and Strawderman (2005).

The following lemma gives bounds on power functions.

Lemma A.2.

1. Assume α > 0 and 0 < β < 1.

(1 + α)β ≤ 1 + αβ ≤ (1− β)−α.

2. For 0 < α, β, γ < 1,

(1− βγ)α ≥ (1− γ)α + (1− β) {1− (1− γ)α} .

Proof. [Part 1] The right-hand side inequality follows direclty from the Taylor
expansion of (1− β)−α, since we have

(1− β)−α = 1 + αβ +

∞∑
i=2

Γ(α+ i)

Γ(α)

βi

i!
≥ 1 + αβ.

For the left-hand side of the inequality, notice first that

log (1 + βα) = log(1 + α) +
(1− β)α

1 + α

1 + α

(1− β)α
log

(
1− {1− β}α

1 + α

)
,

and that the function x 7→ x−1 log(1 − x) is decreasing on x ∈ (0, 1). Thus we
obtain

log (1 + βα) ≥ log(1 + α) +
(1− β)α

1 + α

1 + α

α
log

(
1− α

1 + α

)
= β log(1 + α).

The desired inequality is derived by taking the exponential of the latter one.
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[Part 2] Using again the Taylor expansion and the fact that β ∈ (0, 1), we
have on the one side that

(1− βγ)α = 1− α
∞∑
i=1

Γ(1− α+ i)

Γ(1− α)

{βγ}i

i!
≥ 1− αβ

∞∑
i=1

Γ(1− α+ i)

Γ(1− α)

γi

i!
,

and on the other side that

(1− γ)α = 1− α
∞∑
i=1

Γ(1− α+ i)

Γ(1− α)

γi

i!
.

Gathering those two expressions yields

(1− βγ)α ≥ 1− β {1− (1− γ)α} = (1− γ)α + (1− β) {1− (1− γ)α} ,

thus completing the proof.

The following lemma gives results on the digamma function ψ(z) and related
functions.

Lemma A.3. Let χ2
2α be a chi-squared random variable with 2α degrees of

freedom and let the functions ψ(z) and Ψd(x) be defined by

ψ(α) =
d

dα
log Γ(α)

Ψd(x) = ψ(x)− ψ(x− d/2).

Then,

1. ψ(z) is increasing and concave;
2. for any positive z,

ψ(z + 1) = ψ(z) + 1/z;

3. for any positive z,

1

2z + 1
≤ ψ(z + 1)− ψ(z + 1/2) ≤ 1

2z
;

4. for any x > d/2, Ψd(x) is strictly positive ;
5. for any x > d/2,

(x+ 1)Ψd(x+ 1)− xΨd(x) < 0;

6. for nd ≥ 2,

log
n+ 1

n
−Ψd

(
{n+ 1}d

2

)
+ Ψd

(
1 +
{n+ 1}d

2

)
≥ 0;

7. for any α such that α > 0,

E
[
logχ2

2α

]
= ψ(α) + log 2.
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Proof. [Part 1 and 2] See Abramowitz and Stegun (1964).
[Part 3] By Part 1, we have

ψ(z + 1)− ψ(z + 1/2) ≤ ψ(z + 1/2)− ψ(z),

which in turn yields

ψ(z + 1/2) ≥ {ψ(z + 1) + ψ(z)}/2.

Reinjecting this inequality in the former one gives

ψ(z + 1)− ψ(z + 1/2) ≤ {ψ(z + 1)− ψ(z)}/2.

Now, by Part 2, we obtain the right-hand side inequality. Similarly we have

ψ(z + 1)− ψ(z + 1/2) ≥ {ψ(z + 3/2)− ψ(z + 1/2)}/2 = 1/(2z + 1).

[Part 4] The positivity of Ψd directly follows from Part 1.
[Part 5] By the definition of Ψd, we can easily see that

(x+ 1)Ψd(x+ 1)− xΨd(x)

= x {ψ(x+ 1)− ψ(x+ 1− d/2)− ψ(x) + ψ(x− d/2)}
+ ψ(x+ 1)− ψ(x+ 1− d/2).

Now, Part 2 yields

(x+ 1)Ψd(x+ 1)− xΨd(x)

= x

(
1

x
− 1

x− d/2

)
+ ψ(x+ 1)− ψ(x+ 1− d/2)

= − d/2

x− d/2
+ ψ(x+ 1)− ψ(x+ 1− d/2).

For even d = 2k, k ∈ N, Part 2 gives

ψ(x+ 1)− ψ(x+ 1− k) =
1

x
+ · · ·+ 1

x+ 1− k
≤ k

x+ 1− k
,

which implies

(x+ 1)Ψd(x+ 1)− xΨd(x) ≤ −d
2

(
1

x− d/2
− 1

x+ 1− d/2

)
< 0.

For odd d = 2k + 1, note that Part 3 gives

ψ(x+ 1)− ψ(x+ 1− d/2) ≤ 1/2x+ ψ(x+ 1/2)− ψ(x+ 1− d/2).

Similarly as for even d, we have

ψ(x+ 1/2)− ψ(x+ 1/2− k) ≤ k/(x+ 1/2− k).
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Hence, we obtain

(x+ 1)Ψd(x+ 1)− xΨd(x) ≤ −1

2

d/2

x(x− d/2)
− (d− 1)/2

(x− d/2)(x+ 1− d/2)
,

which is also negative.
[Part 6] Notice first that

log
n+ 1

n
= − log

(
1− 1

n+ 1

)
=

∞∑
i=1

(n+ 1)−i

i
>

1

n+ 1
.

Then, by definition of ψ(x) and Ψd(x), and by Part 2, we have that

Ψd

(
1 +
{n+ 1}d

2

)
−Ψd

(
{n+ 1}d

2

)
=

1

(n+ 1)d/2
− 1

nd/2
.

Therefore

log
n+ 1

n
+ Ψd

(
1 +
{n+ 1}d

2

)
−Ψd

(
{n+ 1}d

2

)
>

1

n+ 1

(
1− 2

nd

)
≥ 0.

[Part 7] Making the change of variable z = 2x in the definition of the digamma
function given in Equation (3.10), ψ(α) is written as

ψ(α) =

∫ ∞
0

log z
zα−1e−z/2

2αΓ(α)
dx− log 2 = E

[
logχ2

2α

]
− log 2,

which completes the proof.

The following result is essentially due to Komaki (2001).

Lemma A.4. For m ≥ 2 and l1 ≤ l2, the expected logarithm of the ratio of two
noncentral Chi-square random variables is bounded by

E
[
log

(
l2
l1

χ2
m(l1ξ)

χ2
m(l2ξ)

)]
≥ log

l2
l1
e−l2ξ/2.

Proof. Let us first recall the following inequality due to Komaki (2001)

d

dz
E
[
log

χ2
m(2z)

z

]
< −z−1e−z.

Next, writing z as 2(z/2) yields

E
[
log

χ2
m(2{l1ξ/2})
l1ξ/2

]
− E

[
χ2
m(2{l2ξ/2})
l2ξ/2

]
≥
∫ l2ξ/2

l1ξ/2

z−1e−zdz.

Finally, since the function x 7→ e−x is decreasing, we get the following lower
bound

E
[
log

(
l2
l1

χ2
m(l1ξ)

χ2
m(l2ξ)

)]
≥ e−l2ξ/2

∫ l2ξ/2

l1ξ/2

z−1dz = log
l2
l1
e−l2ξ/2,

thus completing the proof.
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The last result is essentially due to Kato (2009).

Lemma A.5. For l > m and d ≥ α,

E
[
logF

({
1 + χ2

l /χ
2
d(θ)

}−1
;α, l

)]
≥ E

[
logF

({
1 + χ2

m/χ
2
d(θ)

}−1
;α,m

)]
where

F (u;α, β) =
1

B(α/2, β/2)

∫ u

0

tα/2−1(1− t)β/2−1dt.

Proof. The proof mainly relies on the expression of noncentral Chi-square ran-
dom variables as mixtures of Chi-square random variables with respect to Pois-
son mixture density, and on the fact that the distribution F is star-ordered with
respect to the parameter β, that is, the ratio

F−1(u;α, β1)

F−1(u;α, β2)

is nondecreasing in u ∈ (0, 1) for 1 < β1 < β2.
See Kato (2009) for more details.
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