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In this work, we are concerned with the estimation of the predictive density of a Gaussian random vector where both the mean and the variance are unknown. In such a context, we prove the inadmissibility of the best equivariant predictive density under the Kullback-Leibler risk in a nonasymptotic framework. Our result stands whatever the dimension d of the vector is, even when d ≤ 2, which can be somewhat surprising compared to the known variance setting. We also propose a class of priors leading to a Bayesian predictive density that dominates the best equivariant one. Throughout the article, we give several elements that we believe are useful for establishing the parallel between the prediction and the estimation problems, as it was done in the known variance framework.

Context

The most natural way to estimate an unobserved quantity µ is to use observed averages. However, [START_REF] Stein | Inadmissibility of the usual estimator for the mean of a multivariate normal distribution[END_REF] demonstrated the inadmissibility of such estimators for dimensions strictly greater than two, that is, he showed that there exist better estimators. The notion of better estimator means here that it has a lower quadratic risk

R Q (µ, μ) = E µ [ μ -µ 2 ],
where μ is an estimator of µ and the expectation is taken with respect to observed random quantities used in the construction of μ. This phenomenon is the now very well-known Stein effect, which was first brought to light in the context of parameter estimation. For such a problem, many classes of estimators dominating the average have been proposed.

In parallel, a similar phenomenon has been observed for the predictive density estimation problem. For instance, let us observe n independent vectors x 1 , . . . , x n of size d, each supposedly normally distributed, x i ∼ N d (µ, σ 2 I d ), 1 ≤ i ≤ n, where the common mean µ is unknown, and the variance is first assumed to be known. The aim is to estimate the density of a future vector y, which is also assumed to be normal with same mean and variance, y ∼ N d (µ, σ 2 I d ). In this context, the mean x = n -1 n i=1 x i is a sufficient statistic used for the estimation of the predictive density by a function p(y|x). The quality of such an estimator is often measured by the Kullback-Leibler risk, given by R KL (µ, p) = p(x|µ) p(y|µ) log p(y|µ) p(y|x) dy dx, where p(•|µ) is the Gaussian density. The most natural way to estimate p(y|µ) here would be to just plug in an estimator of µ, p(y|x) = p(y|µ = μ(x)). However, Aitchison (1975) proved that plug-in densities are uniformly dominated under the Kullback-Leibler risk by the best equivariant predictive density, given with respect to the uniform prior π U (µ) = 1 by

pU (y|x) = 1 (2πσ 2 ) d/2 n n + 1 d/2 exp - n n + 1 y -x 2 2σ 2 .
George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF] have shown that predictive density estimation and parameter estimation are in fact related. The authors also argue that the best equivariant predictive density pU (y|x) shares many properties with the maximum likelihood estimator: minimaxity, invariance, constant risk, and inadmissibility for dimension greater or equal to 3. Hence, it should be taken as the reference estimator to be improved upon. [START_REF] Komaki | A shrinkage predictive distribution for multivariate normal observables[END_REF] actually showed that, when d ≥ 3, it is dominated by the Bayesian predictive density with respect to the harmonic prior (also known as the shrinkage prior ) (d-2) .

π H (µ) = µ -
(1.1)

A more interesting and practical setting is the one where the variance is unknown. In such a case, the sufficient statistic is (x, s), where s = n i=1 x ix 2 estimates the variance (up to a factor). The best equivariant predictive density is now taken with respect to the right invariant prior π R (µ, σ) = 1/σ and is given by

pR (y|x, s) = c R 1 πs • n n + 1 d/2 1 + 1 s n n + 1 y -x 2 -nd/2 , (1.2) 
where c R = Γ(nd/2)/Γ({n -1}d/2) and Γ denotes the Gamma function. Note that pR is actually a Student t-distribution (see for instance [START_REF] Liang | Exact minimax strategies for predictive density estimation, data compression, and model selection[END_REF]. The Kullback-Leibler risk now becomes R KL ({µ, σ 2 }, p) = p(x|µ, η) p(s|η) p(y|µ, η) log p(y|µ, η) p(y|x, η) dy dx ds.

Sofar, there are very few results on admissibility of pR in the literature. Three works attracted our attention, though, and have been of great influence for the present paper. The first one is due to [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF], who showed that, for d ≥ 3 and under the Kullback-Leibler risk, the best equivariant density pR is dominated by the Bayesian predictive density with respect to the prior

π LT (µ, η) = 1 0 π(µ|η, λ)π(η, λ)dλ µ|η, λ ∼ N d 0, η -1 λ -1 {1 -λ} I d π(η, λ) = η -2 λ -2 1 (0,1) (λ), (1.3) 
where η = 1/σ 2 . This prior corresponds to an extension of the harmonic prior given in Equation (1.1) and of [START_REF] Komaki | A shrinkage predictive distribution for multivariate normal observables[END_REF]'s work to the unknown variance assumption since π LT is proportional to µ -(d-2) η -1 . [START_REF] Komaki | Shrinkage priors for Bayesian prediction[END_REF][START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF] himself proposed another extension of his own work. His idea is the following one: noticing that the harmonic prior π H , given in Equation (1.1), is actually proportional to the so-called Green function in the Euclidean d-dimensional space (see [START_REF] Komaki | Shrinkage priors for Bayesian prediction[END_REF], for a definition), he proposes to consider as a prior the Green function of the manifold of the unknown variance model, which is a hyperbolic plane. Although the form of this prior can look complicated, its limits actually correspond to the right invariant prior on one side and, when d = 1, to the Cauchy density on the other side. But the most interesting part of this article is that the best equivariant predictive density is shown to be asymptotically inadmissible even in the low-dimensional case where d = 1 or 2.

Finally, another interesting work is the one by [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF], where the authors uses an extension of the prior given by Equation (1.3) with the following change

π(η, λ) = η a λ a (1 -λ) b 1 (0,1) (λ).
(1.4)

This prior leads to an estimator of the density dominating the best equivariant density also in the low dimensional case, where d = 1 or 2. Unlike Komaki (2007)'s result, the latter one was obtained in a nonasymptotic framework, and under the following risk

R 1 ({µ, η}, p) = p(x|µ, η) p(s|η) p(y|x, s) log p(y|x, s) p(y|µ, η) dy dx ds,
which is denoted by R 1 because it corresponds to Csiszár's α-divergence with α = 1.

In the present work, we consider the Kullback-Leibler risk, which is also a special case of Csiszár's α-divergence with α = -1. We are interested in the context of unknown variance and we show that the inadmissibility of the best equivariant predictive density pR for any d, even d = 1 or 2, is still true under the Kullback-Leibler risk, hence enlarging Kato (2009)'s result. We also partially solve Problem 2-2 stated by [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF], namely, under d = 1, 2 and the R α risk with -1 ≤ α < 1, does the best invariant predictive density keep inadmissibility? If so, which Bayesian predictive densities improve it? We consider a different extension of the shrinkage prior than that of [START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF], but the major difference lies in the fact that we have nonasymptotic results. Such results are actually derived under the Gaussian assumption, whereas [START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF] considered a more general distributional assumption. In this work, we also establish a preliminary basis for comparing the estimation and the prediction problems for the unknown variance setting. Such a comparison is however merely qualitative, and proving it formally is still an open problem.

The rest of this paper is organized as follows. First, Section 2 gives the general expression of the Bayesian predictive density with respect to any prior π as a function of the best equivariant predictive density for the unknown variance case. In Section 3, we specify the class of priors we consider and state our main result on inadmissibility of the best equivariant predictive density. Then, Section 4 shows visualizations of this result through a simulation study. Finally, Section 5 presents a discussion on a possible parallel between the estimation and the prediction problems.

The Bayesian predictive density under unknown variance

Recall that we want to estimate the predictive density of

y ∼ N d (µ, σ 2 I d ),
(2.1) based on the observations x 1 , . . . , x n , where

x i ∼ N d (µ, σ 2 I d ).
In this section, we aim at extending the famous result by George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF] expressing a Bayesian predictive density with respect to a prior π as a function of the best equivariant one, which we recall here

pπ (y|x n ) = m π (x n+1 ; {n + 1} -1 η -1 ) m π (x n ; n -1 η -1 ) pU (y|x n ),
where xn = x, xn+1 = (nx n +y)/(n + 1), and m π (z; σ 2 ) is the marginal density defined as

m π (z; σ 2 ) = 1 (2πσ 2 ) d/2 exp - z -µ 2 2σ 2 π(µ)dµ.
Theorem 2.1 gives a similar expression for the unknown variance case. Before stating it, note that, in this case, the expression relies on both the sufficient statistic (x, s) and on the statistic (x n+1 , s n+1 ), with

xn+1 ∼ N d µ, {n + 1} -1 η -1 I d s n+1 = s n + n y -xn 2 /(n + 1) ∼ η -1 χ 2 nd , (2.2) 
where s n = s. Moreover, the marginal density m π (z, v; l) is now defined for

z ∼ N d (µ, {lη} -1 I d ) and v ∼ χ 2 (l-1)d by m π (z, v; l) = l d/2 η d/2 (2π) d/2 exp - lη z -µ 2 2 × η (l-1)d/2 v (l-1)d/2-1 Γ({l -1}d/2) 2 (l-1)d/2 exp - ηv 2 π(µ, η)dµ dη.
(2.3)

We thus have the following extension of Lemma 2 of George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF] for the unknown variance case. Unfortunately, we have not been able to link such an expression directly to the estimation problem, like it has been done by [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF], but we believe that the link exists and we give in Section 5 some leads to uncover it.

Theorem 2.1. For any prior π(µ, η), the Bayesian predictive density pπ (y|x n , s n ) can be expressed as

pπ (y|x n , s n ) = ρ π (x n+1 , s n+1 ; n + 1) ρ π (x n , s n ; n) • pR (y|x n , s n ),
where pR (y|x n , s n ) is the best equivariant predictive density and ρ π is the function defined as

ρ π (z, v; l) = v • m π (z, v; l). (2.4)
Furthermore, the difference between the Kullback-Leibler risks of pπ and pR is given by

R KL ({µ, η}, pR ) -R KL ({µ, η}, pπ ) = E (µ,η) log ρ π (x n+1 , s n+1 ; n + 1) ρ π (x n , s n ; n) ,
provided the expectations exist.

Proof. The Bayesian predictive density is computed by

pπ (y|x n , s n ) = p π (y, xn , s n )/m π (x n , s n ; n), (2.5) 
where p π (y, xn , s n ) is the joint density. Let us compute this joint density

p π (y, xn , s n ) = p(y|µ, η)p(x n |µ, η)p(s n |η)π(µ, η)dµ dη = n d/2 η (n+1)d/2 s (n-1)d/2-1 n Γ({n -1}d/2)2 (n-1)d/2 (2π) d × exp - η 2 y -µ 2 + n xn -µ 2 + s n π(µ, η)dµ dη.
Further, noticing that

y -µ 2 + n xn -µ 2 = (n + 1) xn+1 -µ 2 + n n + 1 y -xn 2 ,
we can reexpress the joint density as

p π (y, xn , s n ) = n n + 1 d/2 s (n-1)d/2-1 n Γ({n -1}d/2)π d/2 × (n + 1) d/2 η d/2 (2π) d/2 exp - {n + 1}η 2 xn+1 -µ 2 × Γ(nd/2)η nd/2 Γ(nd/2)2 nd/2 n n+1 y -xn 2 + s n n n+1 y -xn 2 + s n nd/2-1 × exp - η 2 n n + 1 y -xn 2 + s n π(µ, η)dµdη.
Now, we easily recognize the densities of xn+1 and s n+1 from Equation (2.2) and the best equivariant density pR (y|x n ), yielding

p π (y, xn , s n ) = pR (y|x n , s n ) s n+1 s n p(x n+1 |µ, η)p(s n+1 |η)π(µ, η)dµdη.
Replacing the joint density by this latter expression in Equation (2.5), we obtain the desired result. The result on the difference in risks follows immediately from the fact that

R KL ({µ, η}, pR ) -R KL ({µ, η}, pπ ) = E (µ,η) log pπ (y|x n , s n ) pR (y|x n , s n ) .
(2.6)

In the following section, we specify the class of priors we consider for this work and prove the inadmissibility of the best equivariant predictive density.

Main result

In this section, we propose to study the Bayesian predictive density with respect to the following improper prior

π GM (µ, η) = 1 0 π(µ|η, λ)π(η, λ)dλ µ|η, λ ∼ N d 0, η -1 λ -1 {1 -λ} I d π(η, λ) = η a λ a π(λ) 1 (0,1) (λ), (3.1)
where we recall that η = 1/σ 2 and the subscript GM stands for Gaussian mixture. Note that the priors studied by [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF] and [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF] are special cases of this new prior with a = -2 and π(λ) = 1 for the former one and π(λ) = (1 -λ) b for the latter one.

We first give the expression of the Bayesian predictive density associated with π GM in the following lemma, and then state our main results of domination and inadmissibility in the subsequent theorems. In the sequel, we denote the Kullback-Leibler risk by R instead of R KL for ease of notation.

Expression of the new Bayesian predictive density

The prior π GM defined in Equation (3.1) leads to the following Bayesian predictive density.

Lemma 3.1. Under the assumptions of Model (2.1), the Bayesian predictive density with respect to the prior π GM in Equation (3.1) is given by

pGM (y|x n , s n ) = c GM s n+1 s n -ν J n+1 J n pR (y|x n , s n ),
where c GM = {1 + 1/n} ν B (ν, {n -1}d/2) /B (ν, nd/2) is a constant and the term J l , l ∈ {n; n + 1}, is defined as

J l = 1 0 λ ν-1 {1 + (l -1)λ} d/2-ν-1 {1 + w l λ} (l-1)d/2+ν π lλ 1 + {l -1}λ dλ, (3.2) 
where ν = d/2 + a + 1, B(•, •) denotes the Beta function and w l = l xl 2 /s l .

Proof. From Theorem 2.1, we only have to compute ρ π (x n+1 , s n+1 ; n + 1) and ρ π (x n , s n ; n). Let us start by computing the expression of ρ π (z, v; l) with respect to the prior defined in Equation (3.1):

ρ π (z, v; l) = 1 Γ({l -1}d/2) l d/2 v (l-1)d/2 (2π) d 2 (l-1)d/2 η a+(l+1)d/2 λ a+d/2 π(λ) × (1 -λ) -d/2 exp - η 2 l z -µ 2 + v + λ 1 -λ µ 2 dµ dη dλ.
We first integrate with respect to µ. In order to do so, we develop the squares involving µ in the exponential term

l z -µ 2 + λ 1 -λ µ 2 = l -(l -1)λ 1 -λ µ - (1 -λ)lz l -(l -1)λ 2 + lλ l -(l -1)λ z 2 .
Noticing that the integration with respect to the location parameter µ corresponds to the Gaussian density with scale parameter (1 -λ)/{l -(l -1)λ}η, we can easily compute the following integral

exp - η 2 l -(l -1)λ 1 -λ µ - (1 -λ)lz l -(l -1)λ 2 dµ = 2π η 1 -λ l -(l -1)λ d/2 . Hence, the function ρ π becomes ρ π (z, v; l) = 1 Γ({l -1}d/2) l d/2 v (l-1)d/2 (2π) d/2 2 (l-1)d/2 η a+ld/2 λ a+d/2 π(λ) × {l -(l -1)λ} -d/2 exp - η 2 lλ l -(l -1)λ z 2 + v dη dλ.
We now turn to the integration with respect to the precision parameter η. It can be easily seen that such an integral is related to Gamma distributions, giving the following equality:

∞ 0 η (l-1)d/2+ν-1 exp - η 2 lλ l -(l -1)λ z 2 + v dη = Γ {l -1}d 2 + ν 1 2 lλ l -(l -1)λ z 2 + v -(l-1)d/2-ν
, where we recall that ν = d/2 + a + 1. Replacing the integral in η by this latter expression in the function ρ π thus yields

ρ π (z, v; l) = Γ({l -1}d/2 + ν) Γ({l -1}d/2) l d/2 2 ν (2π) d/2 v ν λ ν-1 π(λ) × {l -(l -1)λ} -d/2 1 + λ l -(l -1)λ l z 2 v -(l-1)d/2-ν dλ.
Finally, we apply the change in variable

t = λ/{l -(l -1)λ}, with dλ = l/{1 + (l -1)t} 2 dt ρ π (z, v; l) = Γ({l -1}d/2 + ν) Γ({l -1}d/2) l ν 2 ν (2π) d/2 v ν t ν-1 π lt 1 + {l -1}t × {1 + (l -1)t} d/2-ν-1 {1 + wt} -(l-1)d/2-ν dλ = Γ({l -1}d/2 + ν) Γ({l -1}d/2) l ν 2 ν (2π) d/2 v ν J l , where w = l z 2 /v and J l is given in Equation (3.2). Replacing (z, v) by (x n+1 , s n+1 ) and (x n , s n ) successively yields pGM (y|x n , s n ) = B(ν, {n -1}d/2) B(ν, nd/2) n s n+1 (n + 1) s n -ν J n+1 J n pR (y|x n , s n ),
where the ratio of Gamma functions has been reformulated thanks to the relationship between Gamma and Beta functions.

In the sequel, we seperate two cases, the low-dimensional case where 1 ≤ d ≤ 4, and the higher-dimensional case where d ≥ 3. In both cases, we obtain a domination result.

Domination for the low dimensional case (1 ≤ d ≤ 4)

In this section, we assume n = 2, 0 < ν < 1, and we consider the following special case for the prior in Equation (3.1)

π(λ) = {1 -λ} (n-1)d/2-1 1 - n -1 n λ -(n-2)d/2-ν . (3.3) Theorem 3.1. Let n = 2, 1 ≤ d ≤ 4, 0 < ν < 1 and π be specified by Equation (3.3).
Then, there exists a constant ν * depending only on the dimension d such that the inequality

R({µ, η}, pR ) -R({µ, η}, pGM ) ≥ 0 holds for any {µ, η} ∈ R d × R * + and 0 < ν ≤ ν * .
In view of Theorem 3.1, we can state our main result on the inadmissibility of the best equivariant predictive density pR . Note that this result solves Problem 2.2 stated by [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF] for the Kullback-Leibler risk. Also, a similar result has been obtained by [START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF], but only asymptotically with the number of observations (n → ∞), whereas here we give it in a nonasymptotic framework (fixed n and d).

Theorem 3.2. If d ≤ 4 and n = 2, the best equivariant density pR is inadmissible under the Kullback-Leibler risk and the unknown variance setting.

In order to prove Theorem 3.1, we first need the three following lemmas.

Lemma 3.2. Assume n ≥ 2, 0 < ν < 1, and π be specified by Equation (3.3). Then

E (µ,η) log B(ν, {n -1}d/2) B(ν, nd/2) J n+1 J n {1 -u n } ν {1 -u n+1 } ν ≥ ν g(n, d, ν) E[1 -u n+1 ],
where u l = w l /(1 + w l ), l ∈ {n; n + 1}, the expectation E[•] is taken with respect to a noncentral Beta random variable, and the function g is defined by

g(n, d, ν) =        1 ν log B(ν, nd/2 -{d -ν}/n) B(ν, nd/2) d ≤ n, 1 nν d -ν nd/2 -1 log(1 + ν) d ≥ n + 1. (3.4)
Proof of Lemma 3.2. Note first that the choice done for π leads, after some calculation, to the following equation

{1 + (l -1)λ} d/2-ν-1 π lλ 1 + {l -1}λ = {1 -λ} (n-1)d/2-1 1 + l n -1 λ -(n-2)d/2-ν .
(3.5)

When l = n, the last term reduces to 1 and J n thus becomes

J n = 1 0 λ ν-1 {1 -λ} (n-1)d/2-1 {1 + w n λ} -(n-1)d/2-ν dλ.
Thus, applying Part 2 of Lemma A.1, we obtain

J n = {1 -u n } ν B(ν, {n -1}d/2). (3.6)
When l = n + 1, the last term in Equation (3.5) is equal to a power of (1 + λ/n) and can be bounded by

{1 + λ/n} -(n-2)d/2-ν ≥ {1 -λ} (n-2)d/(2n)+ν/n ,
by Part 1 of Lemma A.2. Hence, we obtain for J n+1 the lower bound

J n+1 ≥ 1 0 λ ν-1 {1 -λ} nd/2-(d-ν)/n-1 {1 + w n+1 λ} -nd/2-ν dλ.
Then, applying Part 1 of Lemma A.1, the right-hand side of the last inequality becomes

J n+1 ≥ {1 -u n+1 } ν 1 0 t ν-1 {1 -t} nd/2-(d-ν)/n-1 {1 -u n+1 t} (d-ν)/n dt. (3.7)
The term in (1 -u n+1 t) still makes it complicated to compare to J n and we next treat it in a different fashion for the cases d ≤ n and d ≥ n + 1. In both cases, we assume that 0 < ν < 1.

Case d ≤ n In this case, since 0 < (d -ν)/n < 1, we can apply Part 2 of Lemma A.2 with α = (d -ν)/n, β = u n+1 and γ = t, which gives

{1 -u n+1 } (d-ν)/n ≥ {1 -t} (d-ν)/n + (1 -u n+1 ) 1 -(1 -t) (d-ν)/n .
This inequality results in the following lower bound for J n+1

J n+1 ≥ {1 -u n+1 } ν 1 0 t ν-1 {1 -t} nd/2-(d-ν)/n-1 × {1 -t} (d-ν)/n + (1 -u n+1 ) 1 -(1 -t) (d-ν)/n dt = B(ν, nd/2){1 -u n+1 } ν × 1 + (1 -u n+1 ) B(ν, nd/2-{d -ν}/n) B(ν, nd/2) -1 .
This new lower bound is more similar to the expression of J n , but we can still simplify it further. Indeed, by Part 1 of Lemma A.2, we have

J n+1 ≥ B(ν, nd/2){1 -u n+1 } ν B(ν, nd/2-{d -ν}) B(ν, nd/2) 1-un+1
.

(3.8)

Case d ≥ n + 1 In this case, since (d -ν)/n ≥ 1, we cannot apply the same technique. Instead, we will use Jensen's inequality. First, notice that 1 -

u n+1 t 1 -t = 1 + (1 -u n+1 ) t 1 -t .
Hence, Inequality (3.7) becomes

J n+1 ≥ {1 -u n+1 } ν 1 0 t ν-1 {1 -t} nd/2-1 1 + (1 -u n+1 ) t 1 -t (d-ν)/n dt.
Applying the transformation λ = t/(1 -t) to the integral of the right-hand side in the latter bound yields

1 0 t ν-1 {1 -t} nd/2-1 {1 + (1 -u n+1 )t/(1 -t)} (d-ν)/n dt = ∞ 0 λ ν-1 {1 + λ} -nd/2-ν {1 + (1 -u n+1 )λ} (d-ν)/n dλ = B(ν, nd/2) E λ {1 + (1 -u n+1 )λ} (d-ν)/n ,
where the expectation E λ is taken under the Beta prime distribution with parameters ν and nd/2. Then, noticing that, since (d -ν)/n ≥ 1, the function x → {1 + x} (d-ν)/n is convex, we can use Jensen's inequality

E λ {1 + (1 -u n+1 )λ} (d-ν)/n ≥ {1 + (1 -u n+1 ) E λ [λ]} (d-ν)/n = 1 + (1 -u n+1 ) ν nd/2 -1 (d-ν)/n
, where the last bound directly follows from the mean of Beta prime random variables. Plugging this lower bound back into the one on J n+1 yields

J n+1 ≥ {1 -u n+1 } ν B(ν, nd/2) 1 + ν nd/2 -1 (1 -u n+1 ) (d-ν)/n
.

Finally, by Part 1 of Lemma A.2, we obtain

J n+1 ≥ {1 -u n+1 } ν B(ν, nd/2) × exp ν {1 -u n+1 } log {1 + ν} 1/ν (d -ν)/n nd/2 -1 . (3.9)
Combining (3.6), (3.8) and (3.9) together yields

E (µ,η) log B(ν, {n -1}d/2) B(ν, nd/2) J n+1 J n {1 -u n } ν {1 -u n+1 } ν ≥ ν g(n, d, ν) E[1 -u n+1 ],
where g(n, d, ν) is given by Equation (3.4), thus completing the proof.

The following result relies on the digamma function, defined by

ψ(α) = d dα log Γ(α) = 1 Γ(α) ∞ 0 {log x} x α-1 e -x dx,
(3.10) and on basic formulas about digamma functions given in Lemma A.3 in the Appendix.

Lemma 3.3. Assume n ≥ 2 and let π be specified by Equation (3.3). Then,

E (µ,η) log n + 1 n • s n s n+1 • 1 -u n+1 1 -u n ≥ -h(n, d) E[1 -u n+1 ],
where u l = w l /(1 + w l ), l ∈ {n; n + 1}, the expectation E[•] is taken with respect to a noncentral Beta random variable, and the function h is defined by

h(n, d) = 1 + (n + 1)d/2 nd/2 ψ 1 + {n + 1}d 2 -ψ 1 + nd 2 . (3.11)
Proof of Lemma 3.3. Let us first treat the term with the random variables. We have

s n s n+1 • 1 -u n+1 1 -u n = n xn 2 + s n (n + 1) xn+1 2 + s n+1 = χ 2 nd (nη µ 2 ) χ 2 (n+1)d ({n + 1}η µ 2 )
, where χ 2 df (ncp) denotes a noncentral Chi-square random variable with degrees of freedom df and noncentral parameter ncp. Taking the expected logarithm yields

E (µ,η) log n + 1 n • s n s n+1 • 1 -u n+1 1 -u n = E log n + 1 n χ 2 nd (2θ n ) χ 2 nd (2θ n+1 ) + E log χ 2 nd (2θ n+1 ) χ 2 (n+1)d (2θ n+1 ) , (3.12) 
where θ l = lη µ 2 /2. By Lemma A.4, the first term of the right-hand side of Equation (3.12) is bounded from below by

E log n + 1 n χ 2 nd (2θ n ) χ 2 nd (2θ n+1 ) ≥ log n + 1 n e -θn+1 .
Then, Part 7 of Lemma A.3 enables us to rewrite the second term of the right-hand side of (3.12) as

E log χ 2 nd (2θ n+1 ) χ 2 (n+1)d (2θ n+1 ) = - ∞ j=0 e -θn+1 θ j n+1 j! E log χ 2 (n+1)d+2j χ 2 nd+2j = - ∞ j=0 e -θn+1 θ j n+1 j! Ψ d (j + {n + 1}d/2),
where Ψ d (x) = ψ(x) -ψ(x -d/2). We thus obtain

E (µ,η) log n + 1 n • s n s n+1 • 1 -u n+1 1 -u n ≥ log n + 1 n e -θn+1 - ∞ j=0 e -θn+1 θ j n+1 j! Ψ d (j + {n + 1}d/2) = e -θn+1 log n + 1 n -Ψ d ({n + 1}d/2) - ∞ j=1 e -θn+1 θ j n+1 j! Ψ d (j + {n + 1}d/2).
Further, Part 5 of Lemma A.3 states that, for j ≥ 1,

Ψ d (j + {n + 1}d/2) ≤ 1 + (n + 1)d/2 j + (n + 1)d/2 Ψ d (1 + {n + 1}d/2), yielding 
E (µ,η) log n + 1 n • s n s n+1 • 1 -u n+1 1 -u n ≥ e -θn+1 log n + 1 n -Ψ d {n + 1}d 2 -{1 + (n + 1)d/2} Ψ d 1 + {n + 1}d 2 ∞ j=1 θ j n+1 j! e -θn+1 j + (n + 1)d/2 = e -θn+1 log n + 1 n -Ψ d {n + 1}d 2 + (n + 1)d + 2 (n + 1)d Ψ d 1 + {n + 1}d 2 -{1 + (n + 1)d/2} Ψ d 1 + {n + 1}d 2 ∞ j=0 θ j n+1 j! e -θn+1 j + (n + 1)d/2 ,
where the last inequality is obtained by adding and substracting the term corresponding to j = 0 in the series. Applying successively Parts 6 and 4 of Lemma A.3, we obtain [START_REF] Marchand | On moments of Beta mixtures, the noncentral Beta distribution, and the coefficient of determination[END_REF], we have that

E (µ,η) log n + 1 n • s n s n+1 • 1 -u n+1 1 -u n ≥ e -θn+1 (n + 1)d/2 Ψ d 1 + {n + 1}d 2 h(n, d) ∞ j=0 θ j n+1 j! (nd/2) e -θn+1 j + (n + 1)d/2 ≥ -h(n, d) ∞ j=0 θ j n+1 j! (nd/
E[1 -u n+1 ] = 1 - ∞ j=0 θ j n+1 j! (d/2 + j)e -θn+1 (n + 1)d/2 + j = ∞ j=0 θ j n+1 j! (nd/2) e -θn+1 j + (n + 1)d/2 .
We thus obtain the desired result.

The last lemma gives the behavior of the difference {g(n, d, ν) -h(n, d)}. 

= log Γ(nd/2 + ν) -log Γ(nd/2) -{log Γ(nd/2 -{d -ν}/n + ν) -log Γ(nd/2 -{d -ν}/n)} .
Now, by definition of digamma functions, given in Equation (3.10), we deduce the limit

ν -1 log B(ν, nd/2 -{d -ν}/n) B(ν, nd/2) -→ ν→0 ψ(nd/2) -ψ(nd/2 -d/n). (3.13)
Notice also that lim Numerical computations give approximate values of the constant ν * for 1 ≤ d ≤ 4, displayed in Table 1.

We are now able to prove Theorem 3.1. 

R({µ, η}, pR ) -R({µ, η}, pGM ) = E (µ,η) log B(ν, {n -1}d/2) B(ν, nd/2) n + 1 n ν s n+1 s n -ν J n+1 J n = E (µ,η) log B(ν, {n -1}d/2) B(ν, nd/2) J n+1 J n 1 -u n 1 -u n+1 ν + ν E (µ,η) log n + 1 n s n+1 s n -1 1 -u n+1 1 -u n .
By Lemmas 3.2 and 3.3, the risk difference is bounded by

R({µ, η}, pR ) -R({µ, η}, pGM ) ≥ ν E [1 -u n+1 ] {g(n, d, ν) -h(n, d)} .
Since ν > 0 and 1 -u n+1 ≥ 0, then the sign of the lower bound is determined by the sign of {g(n, d, ν) -h(n, d)}. Applying Lemma 3.4 completes the proof.

Domination in higher dimension (d ≥ 3)

The domination of our Bayesian predictive density pGM over the best equivariant one pR does not only occur in the case where d ≤ 4. Indeed, the following result shows that the domination is also true in higher dimension d, and larger number n of observations, when this time the function π is subject to the following condition, for 0 Remark 3.1. In this setting, the inadmissibility of the best equivariant predictive density was already proved by [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF]. However, only one improving Bayesian predictive density had been provided, whereas we give a class of such dominating densities.

< ν ≤ d/2 -1, 1 - n n + 1 λ d/2-ν-1 ≤ π(λ) ≤ 1 - n -1 n λ d/2-ν-1 . ( 3 
Proof. From Equation (2.6), the difference in Kullback-Leibler risks between the best equivariant predictive density and the Bayesian predictive density with respect to the prior π GM , where the function π is specified by Equation (3.16), is given by

R({µ, η}, pR ) -R({µ, η}, pGM ) = E (µ,η) log B(ν, {n -1}d/2) B(ν, nd/2) n + 1 n ν s n+1 s n -ν J n+1 J n .
By the change of variable t = λ/{l -(l -1)λ} and taking first l = n + 1, Condition (3.16) gives the upper bound

π {n + 1}λ 1 + nλ ≥ 1 - n n + 1 λ -d/2+ν+1
, so that

J n+1 ≥ 1 0 t ν-1 {1 + w n+1 t} -nd/2-ν dt.
Next, applying the change of variables z = w n+1 t/(1 + w n+1 t), with dt = w -1 n+1 (1 -z) -2 dz yields

J n+1 ≥ w -ν n+1 un+1 0 z ν-1 {1 -z} nd/2-1 dz, (3.17)
where we recall that w n+1 = (n+1) xn+1 2 /s n+1 and u n+1 = w n+1 /(1+w n+1 ). Similarly for l = n, the upper bound of π(λ) given in (3.16) is equivalent to

π nλ 1 + {n -1}λ ≤ {1 + (n -1)λ} -d/2+ν+1
, which in turn yields

J n ≤ w ν n un 0 λ ν-1 {1 -λ} (n-1)d/2-1 dλ, (3.18)
where

w n = n xn 2 /s n and u n = w n /(1 + w n ).
Gathering (3.17) and (3.18), the risk difference can thus be bounded as follows R({µ, η}, pR ) -R({µ, η}, pGM ) (3.19) where r l = E[log F l (u l )], l ∈ {n; n + 1}, with F l being the distribution defined as

≥ -ν E (µ,η) log n n + 1 • s n+1 s n • w n+1 w n + E log 1 B(ν, nd/2) un+1 0 λ ν-1 {1 -λ} nd/2-1 dλ -E log 1 B(ν, {n -1}d/2) un 0 λ ν-1 {1 -λ} (n-1)d/2-1 dλ = ν E (µ,η) log xn 2 -log xn+1 2 + r n+1 -r n ,
F l (u) = 1 B(ν, {l -1}d/2) u 0 t ν-1 {1 -t} (l-1)d/2-1 dt,
and the expectation being taken with respect to F l . Inequality (3.19) actually becomes an equality for the prior π LT considered by [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF]. Noticing that l xl 2 ∼ χ 2 d (lη µ 2 ), Lemma A.4 gives

E (µ,η) log xn 2 -log xn+1 2 ≥ 0.
Hence, it only remains to show that the difference (r n+1 -r n ) is positive. Now, the random variable u l is actually a noncentral Beta random variable, that is,

u l = χ 2 d (lη µ 2 ) χ 2 d (lη µ 2 ) + χ 2 (l-1)d
.

From the properties of noncentral Chi-square random variables, we have that the ratio

χ 2 d (ncp) χ 2 d (ncp) + χ 2 (l-1)d
is stochastically increasing in the noncentral parameter ncp (see for instance [START_REF] Lehmann | Testing Statistical Hypotheses[END_REF]. Since F l (u) is a nondecreasing function of u (it can actually also be seen as the cumulative distribution of a Beta variable), we deduce that

E log F n+1 χ 2 d ({n + 1}ξ) χ 2 d ({n + 1}ξ) + χ 2 nd ≥ E log F n+1 χ 2 d (nξ) χ 2 d (nξ) + χ 2 nd ,
where ξ = η µ 2 . Hence, we obtain

r n+1 -r n ≥ E log F n+1 χ 2 d (nξ) χ 2 d (nξ) + χ 2 nd -E log F n χ 2 d (nξ) χ 2 d (nξ) + χ 2 (n-1)d .
Finally, Lemma A.5 yields

E log F n+1 χ 2 d (nξ) χ 2 d (nξ) + χ 2 nd ≥ E log F n χ 2 d (nξ) χ 2 d (nξ) + χ 2 (n-1)d
, thus completing the proof.

Remark 3.2. It is interesting to notice that, for n = 2 and d = 2, the function π in the prior in Equation ( 3.3) is equal to

π(λ) = {1 -λ/2} -ν . (3.20)
On the other hand, in the case where d ≥ 3, if we take π to be equal to the upper bound in Condition (3.16), we have that

π(λ) = {1 -(n -1)λ/n} d/2-1-ν . (3.21)
Taking d = 2 and n = 2 in this latter expression, we can see that Equations (3.20) and (3.21) are actually equal. Hence, even though Theorem 3.3 relies on the assumption that d ≥ 3, the case where d = n = 2 seems to be making the link between the two settings.

In the following section, we verify numerically the domination of our new Bayesian predictive density over the best equivariant one.

Numerical experiment

In practice, the Bayesian predictive density pGM might be a little challenging to compute, because of the presence of integrals in J n+1 and J n . We discuss how we can accurately approximate both terms in the first part of this section. Then, in the second part, we display the results of the numerical study.

Computational aspects

In the simulation study, we only considered the case where 1 ≤ d ≤ 4, since [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF] already drove a simulation study for the case d ≥ 3.

First, we would like to point out that, in such a case, with the choice of π defined by Equation (3.3), Equation (3.6) shows that J n is exactly equal to

J n = {1 -u n } ν B(ν, {n -1}d/2).
We thus were able to compare the different solutions discussed in the sequel to this true value of J n .

We tested two options for computing J l , both with Matlab: expected values of functions of Beta random variables, and functions computing numerical approximation of integrals. For the first option, notice that, after applying the change of variables t = w l λ/(1 + w l λ), both J n+1 and J n can be expressed thanks to the function

f (m, p, x, w) = 1 B(ν, b + 1) 1 0 λ ν-1 {1 -λ} b {1 -xλ} p {1 -uλ} -md/2-ν dλ = E λ {1 -xλ} p {1 -uλ} -md/2-ν , where b = (n -1)d/2 -1, λ is a Beta random variable, that is, λ ∼ Beta(ν, b + 1)
, and E λ is the corresponding expectation. Note that this expression can be generalized to any function π by taking b = 0 and replacing (1 -xλ) p by the expression of π. We thus have

J n+1 = B(ν, b + 1)n -c {1 -u n+1 } nd/2+ν f (n, c, 1 -n, u n+1 ) J n = B(ν, b + 1){1 -u n } (n-1)d/2+ν f (n -1, 0, 1 -1/n, u n ), where c = -(n -2)d/2 -ν.
In the simulation study, the approximation of f by averaging the bracket terms was very accurate when we drew r 1 = 1 000 000 replicates of λ and averaged the results over 10 trials. We tested it for several values of n, d and ν, and found an accuracy of the order of 10 -4 in average, whatever ν we chose.

The second option we considered consists in directly estimating the integral with functions such as quadl or quadgk in Matlab. Those functions evaluate the integral thanks to the adaptive Lobatto quadrature and the Gauss-Kronrod quadrature, respectively. Both functions are much faster than the solution with Beta random variables, quadgk being the fastest of the two. However, when ν ≤ 0.3, their accuracy becomes very bad (an error of 0.2 has been found for ν = 0.1 and of around 3 when ν = 0.05, while Beta random variables' accuracy is still of the order of 10 -3 ).

Hence, we recommend the following strategy: if ν is taken in the range (0; 0.3), then the solution with Beta random variables should be preferred ; whereas if ν ≥ 0.3, then quadgk is the most accurate (around 10 -7 error accuracy) and the fastest solution (hundreds of times faster than Beta random variables). This is the strategy we adopted for the simulation study exposed in the sequel.

Simulation study

In order to verify in practice the results of Theorem 3.1, we considered the example given by [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF] and we generalized it so as to include our working assumptions.

The experiment is driven for values of the noncentral parameter ξ = η µ 2 taken in [0; 1 000], and values of the shape parameter ν taken in {0.05; 0.25; 0.50; . . . ; 1.75; 2}. We estimated the difference in risks over r 2 = 5 000 replicates of the different random variables involved, namely (x l , s l ), l ∈ {n; n + 1}, and averaged the results over 10 trials of such an experiment.

Figure 2 shows the behaviour of the thus estimated difference in risks as a function of the noncentral parameter ξ and of the shape parameter ν for each

d = 1 d = 2 0 10 20 0 1 2 -0.2 0 0.2 0.4 ν ξ ∆R KL (p R , pGM ) 0 10 20 0 1 2 -0.2 0 0.2 0.4 ν ξ ∆R KL (p R , pGM ) d = 3 d = 4 0 10 20 0 1 2 -0.2 0 0.2 0.4 ν ξ ∆R KL (p R , pGM ) 0 10 20 0 1 2 -0.2 0 0.2 0.4 ν ξ ∆R KL (p R , pGM ) Fig 2. Difference in Kullback-Leibler risks ∆R KL (p R , pGM ) = R KL ({ μ, η}, pR ) - R KL ({ μ, η}, pGM )
as a function of the noncentral parameter ξ = η µ 2 and of the shape parameter ν, for the low dimensional case (1 ≤ d ≤ 4), with n = 2. The black grid shows the plane z = 0.

d ∈ {1; 2; 3; 4} when n = 2. From this figure, we can see that the difference in risks is indeed positive for the values of ν defined by Theorem 3.1, whatever the noncentral parameter ξ is. This fact thus confirms our theoretical results. What is perhaps more surprising is that the difference in risks is still positive for larger values of ν. This is especially noticeable in the case where d = 4, where the largest improvement seems to be obtained for ν in the range [1; 2], whereas in theory we could only prove the domination when ν ≤ 0.052. For the cases d = 1 and 2, the difference in risks becomes negative for ν ≥ 1. Note that, although the difference in risks is decreasing with respect to ξ for each fixed ν, it is still positive for the ranges of ν previously mentioned when ξ = 1 000, as shown by Figure 3.

Discussion

Concluding remarks In the present work, we have shown that, for the prediction of a Gaussian random vector with unknown mean and variance, the best equivariant predictive density is inadmissible under the Kullback-Leibler risk even in the low-dimensional setting, that is, when the dimension d of the vector is 1 or 2. This result is more general than the one of [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF] since the latter one proved the inadmissibility only for d ≥ 3. We exhibit a class of priors leading to a Bayesian predictive density that improves upon the best equivariant one. This class of priors generalizes the well-known shrinkage prior (or harmonic prior), but in a different fashion than what is done by [START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF]. The results of the simulation study seems to go even further than the theory since it shows positivity of the difference in risks between the best equivariant and the Bayesian predictive densities even when departing from the assumptions of Theorem 3.1.

A parallel between the estimation and prediction problem under the unknown variance setting We would like to point out that, although we have not been able to prove it sofar, it is our conviction that there exists a link between the prediction problem and the estimation problem in the unknown variance case, just as it has been shown in the known variance case (see [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF]. In order to make our point of view clear, recall that [START_REF] Brown | A heuristic method for determining admissibility of estimators-with applications[END_REF] argues that some decision-theoretic properties do not seem to depend on the choice of the loss function. This claim concerned the estimation problem, but the work of [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF], of [START_REF] Komaki | Bayesian prediction based on a class of shrinkage priors for location-scale models[END_REF] and the present work, showing inadmissibility of the best equivariant predictive density for any dimension d ≥ 1 under two different losses, seem to verify it also for the prediction problem. Such a relationship is particularly appealing since it was proved by [START_REF] Maruyama | Bayesian predictive densities for linear regression models under α-divergence loss: Some results and open problems[END_REF] that there exists a direct link between the prediction problem under R 1 -risk and the simultaneous estimation of the mean µ and the variance σ 2 . Indeed, the authors showed that, for π given in Equation (1.4),

R 1 ({µ, σ 2 }, pπ ) = c IQ R IQ (µ, μπ ) + c S R S (σ 2 , σ2 π ),
where R IQ and R S are respectively the invariant quadratic risk of the posterior mean μπ and Stein's risk of the posterior variance σ2 π defined by

R IQ (µ, μ) = E (µ,σ 2 ) 1 σ 2 μ -µ 2 R S (σ 2 , σ2 ) = E (µ,σ 2 ) σ2 σ 2 -log σ2 σ 2 -1 ,
and c IQ and c S are weights taking the dimension d into account. However, this parallel has been possible because the Bayesian predictive density under the risk R 1 actually reduces to a plug-in density, which is not the case here. Hence, it is not clear whether the link would still be possible under the Kullback-Leibler risk.

It is also worth noting that several arguments given by George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF] are still true under the unknown variance setting. First, it can easily be shown that the unbiased estimator with minimum variance (commonly referred to as the UMVU estimator) of (µ, σ 2 ) are equal to the posterior mean and variance under the right invariant prior, which led to the best equivariant predictive density. Also, both the UMVU estimators and the best equivariant distribution are minimax and inadmissible whatever the dimension is (this is true for the estimation problem since it is true for the UMVU estimator of σ 2 , see for instance [START_REF] Brown | Inadmissibility of the usual estimators of scale parameters in problems with unknown location and scale parameters[END_REF]). Finally, Theorem 2.1 expressing any Bayesian predictive density as a function of the best equivariant one is very similar to Lemma 2 of George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF]. The main difference lies in the ratio of variance estimators in the factor, which does not seem unreasonable for the unknown variance case. Theorem 2.1 also gives an expression of the difference in risks, which can be rewritten as

R KL ({µ, σ 2 }, pR ) -R KL ({µ, σ 2 }, pπ ) = n+1 n ∂ ∂l Q(l, µ, σ 2 )dl, where Q(l, µ, σ 2 ) = E (µ,σ 2 ) [log ρ π (z, v; l)] and ρ π (z, v; l) is given in Equation (2.4).
Hence, a sufficient condition for the difference in risks to be positive is that, for all (µ, σ 2 ) and all l ∈ [n, n + 1],

∂ ∂l Q(l, µ, σ 2 ) ≥ 0,
with strict inequality at least for one value (µ 0 , σ 2 0 ). This type of expression was the key element that helped George, [START_REF] George | Improved minimax predictive densities under Kullback-Leibler loss[END_REF] explicitely express the link with the estimation problem, but is much more difficult to derive under the unknown variance setting. It thus remains an open problem to find a similar result when the variance is unknown.

Appendix A: Useful lemmas

The first lemma expresses hypergeometric-type functions in special cases.

Lemma A.1 [START_REF] Maruyama | A new class of generalized Bayes minimax ridge regression estimators[END_REF]).

1. For α > 0 and β > 0,

1 0 λ α-1 (1 -λ) β-1 (1 + wλ) -γ dλ = (1 -u) α 1 0 t α-1 (1 -t) β-1 {1 -ut} -α-β+γ dt, for u = w/(1 + w). 2. For α > 0 and β > 0, 1 0 λ α-1 (1 -λ) β-1 (1 + wλ) -α-β dλ = (1 -u) α B(α, β), for u = w/(1 + w).
Proof. See [START_REF] Maruyama | A new class of generalized Bayes minimax ridge regression estimators[END_REF].

The following lemma gives bounds on power functions.

Lemma A.2. 1. Assume α > 0 and 0 < β < 1. (1 + α) β ≤ 1 + αβ ≤ (1 -β) -α . 2. For 0 < α, β, γ < 1, (1 -βγ) α ≥ (1 -γ) α + (1 -β) {1 -(1 -γ) α } .
Proof. [Part 1] The right-hand side inequality follows direclty from the Taylor expansion of (1 -β) -α , since we have

(1 -β) -α = 1 + αβ + ∞ i=2 Γ(α + i) Γ(α) β i i! ≥ 1 + αβ.
For the left-hand side of the inequality, notice first that

log (1 + βα) = log(1 + α) + (1 -β)α 1 + α 1 + α (1 -β)α log 1 - {1 -β}α 1 + α ,
and that the function x → x -1 log(1 -x) is decreasing on x ∈ (0, 1). Thus we obtain log

(1 + βα) ≥ log(1 + α) + (1 -β)α 1 + α 1 + α α log 1 - α 1 + α = β log(1 + α).
The desired inequality is derived by taking the exponential of the latter one.

[Part 2] Using again the Taylor expansion and the fact that β ∈ (0, 1), we have on the one side that

(1 -βγ) α = 1 -α ∞ i=1 Γ(1 -α + i) Γ(1 -α) {βγ} i i! ≥ 1 -αβ ∞ i=1 Γ(1 -α + i) Γ(1 -α) γ i i! ,
and on the other side that

(1 -γ) α = 1 -α ∞ i=1 Γ(1 -α + i) Γ(1 -α) γ i i! .
Gathering those two expressions yields

(1 -βγ) α ≥ 1 -β {1 -(1 -γ) α } = (1 -γ) α + (1 -β) {1 -(1 -γ) α } ,
thus completing the proof.

The following lemma gives results on the digamma function ψ(z) and related functions.

Lemma A.3. Let χ 2 2α be a chi-squared random variable with 2α degrees of freedom and let the functions ψ(z) and Ψ d (x) be defined by

ψ(α) = d dα log Γ(α) Ψ d (x) = ψ(x) -ψ(x -d/2).
Then, 1. ψ(z) is increasing and concave; 2. for any positive z, ψ(z + 1) = ψ(z) + 1/z;

3. for any positive z, 7. for any α such that α > 0, E log χ 2 2α = ψ(α) + log 2.

1
Proof. [Part 1 and 2] See [START_REF] Abramowitz | Handbook of mathematical functions with formulas, graphs, and mathematical tables[END_REF]. For even d = 2k, k ∈ N, Part 2 gives

ψ(x + 1) -ψ(x + 1 -k) = 1 x + • • • + 1 x + 1 -k ≤ k x + 1 -k , which implies (x + 1)Ψ d (x + 1) -xΨ d (x) ≤ - d 2 1 x -d/2 - 1 x + 1 -d/2 < 0.
For odd d = 2k + 1, note that Part 3 gives ψ(x + 1) -ψ(x + 1 -d/2) ≤ 1/2x + ψ(x + 1/2) -ψ(x + 1 -d/2).

Similarly as for even d, we have

ψ(x + 1/2) -ψ(x + 1/2 -k) ≤ k/(x + 1/2 -k).
Hence, we obtain The following result is essentially due to [START_REF] Komaki | A shrinkage predictive distribution for multivariate normal observables[END_REF].

(
Lemma A.4. For m ≥ 2 and l 1 ≤ l 2 , the expected logarithm of the ratio of two noncentral Chi-square random variables is bounded by

E log l 2 l 1 χ 2 m (l 1 ξ) χ 2 m (l 2 ξ) ≥ log l 2 l 1 e -l2ξ/2 .
Proof. Let us first recall the following inequality due to [START_REF] Komaki | A shrinkage predictive distribution for multivariate normal observables[END_REF] 

d dz E log χ 2 m (2z) z < -z -1 e -z .
Next, writing z as 2(z/2) yields

E log χ 2 m (2{l 1 ξ/2}) l 1 ξ/2 -E χ 2 m (2{l 2 ξ/2}) l 2 ξ/2 ≥ l2ξ/2 l1ξ/2
z -1 e -z dz.

Finally, since the function x → e -x is decreasing, we get the following lower bound

E log l 2 l 1 χ 2 m (l 1 ξ) χ 2 m (l 2 ξ)
≥ e -l2ξ/2 l2ξ/2 l1ξ/2 z -1 dz = log l 2 l 1 e -l2ξ/2 , thus completing the proof.

The last result is essentially due to [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF].

Lemma A.5. For l > m and d ≥ α,

E log F 1 + χ 2 l /χ 2 d (θ) -1 ; α, l ≥ E log F 1 + χ 2 m /χ 2 d (θ) -1 ; α, m where 
F (u; α, β) = 1 B(α/2, β/2) u 0 t α/2-1 (1 -t) β/2-1 dt.
Proof. The proof mainly relies on the expression of noncentral Chi-square random variables as mixtures of Chi-square random variables with respect to Poisson mixture density, and on the fact that the distribution F is star-ordered with respect to the parameter β, that is, the ratio F -1 (u; α, β 1 ) F -1 (u; α, β 2 ) is nondecreasing in u ∈ (0, 1) for 1 < β 1 < β 2 .

See [START_REF] Kato | Improved prediction for a multivariate normal distribution with unknown mean and variance[END_REF] for more details.
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 4 Let n = 2 and 1 ≤ d ≤ 4. Then, there exists a constant ν * depending only on the dimension d such that, g(n, d, ν) -h(n, d) ≥ 0 for any 0 < ν ≤ ν * . Proof of Lemma 3.4. By definition of Beta functions, we have that log B(ν, nd/2 -{d -ν}/n) -log B(ν, nd/2)

Fig 1 .

 1 Fig 1. Computation of ζ(n, d) in Equation (3.15) as a function of d for n ∈ {2; 3; 4}.

  .16) Note that Condition (3.16) includes the extension of the harmonic prior when π ≡ 1 and a = -2, or ν = d/2 -1 equivalently, thus enlarging Kato (2009)'s work. Our result actually relies on the proof of Theorem 3 by Kato (2009). Theorem 3.3. Let n ≥ 2, d ≥ 3, 0 < ν ≤ d/2 -1 and π be specified by Condition (3.16). Then, the inequality R({µ, η}, pR ) -R({µ, η}, pGM ) > 0 holds for any {µ, η} ∈ R d × R * + .

Fig 3 .

 3 Fig 3. Difference in Kullback-Leibler risks ∆R KL (p R , pGM ) = R KL ({ μ, η}, pR ) -R KL ({ μ, η}, pGM ) as a function of the shape parameter ν for ξ = η µ 2 = 1000, in the low dimensional case (1 ≤ d ≤ 4), with n = 2.

[

  Part 3] By Part 1, we haveψ(z + 1) -ψ(z + 1/2) ≤ ψ(z + 1/2) -ψ(z),which in turn yieldsψ(z + 1/2) ≥ {ψ(z + 1) + ψ(z)}/2.Reinjecting this inequality in the former one givesψ(z + 1) -ψ(z + 1/2) ≤ {ψ(z + 1) -ψ(z)}/2.Now, by Part 2, we obtain the right-hand side inequality. Similarly we haveψ(z + 1) -ψ(z + 1/2) ≥ {ψ(z + 3/2) -ψ(z + 1/2)}/2 = 1/(2z + 1).[Part 4] The positivity of Ψ d directly follows from Part 1.[Part 5] By the definition of Ψ d , we can easily see that(x + 1)Ψ d (x + 1) -xΨ d (x) = x {ψ(x + 1) -ψ(x + 1 -d/2) -ψ(x) + ψ(x -d/2)}+ ψ(x + 1) -ψ(x + 1 -d/2). x + 1) -ψ(x + 1 -d/2).

[

  Part 7] Making the change of variable z = 2x in the definition of the digamma function given in Equation (3.10), ψ(α) is written as ψ

Table 1

 1 Numerical approximation of ν * for several values of the dimension d.

	d	ν *
	1	0.253
	2	0.325
	3	0.175
	4	0.052
	Proof of Theorem 3.1. From Equation (2.6), the risk difference between the best
	equivariant predictive density and the Bayesian predictive density with respect
	to the prior π GM , where the function π is specified by Equation (3.3), is given
	by	

  x + 1)Ψ d (x + 1) -xΨ d (x) ≤ -Then, by definition of ψ(x) and Ψ d (x), and by Part 2, we have that

									1 2	d/2 x(x -d/2)	-	(d -1)/2 (x -d/2)(x + 1 -d/2)	,
	which is also negative.					
	[Part 6] Notice first that				
			log	n + 1 n	= -log 1 -	1 n + 1	=	∞ i=1	(n + 1) -i i	>	1 n + 1	.
		Ψ d 1 +	{n + 1}d 2	-Ψ d	{n + 1}d 2	=	1 (n + 1)d/2	-	1 nd/2	.
	Therefore									
	log	n + 1 n	+ Ψ d 1 +	{n + 1}d 2	-Ψ d	{n + 1}d 2	>	1 n + 1	1 -	2 nd	≥ 0.