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ABSTRACT  
 
Most of past researches on the skid resistance/road wetness relationship deal with thick 
water depths (> 1mm). Questions remain as to the variation of skid resistance with thin 
water films and the transition between the dry state and the so-called “damp” or “humid” 
state at which the skid resistance drop can be as high as 30-40%. This paper deals with a 
theoretical and experimental assessment of the friction/water depth relationship. The main 
objective is to estimate local water depths trapped between the tire and the road asperities 
and to define a so-called “critical” water depth which can be used for driver assistance 
systems. 
Tests are performed in laboratory and on test tracks. It was found that the friction-water 
depth curves have an inverse-S shape and present an initial constant-friction part before 
decreasing to a minimum value. A “critical” water depth, defined as the water depth above 
which the friction coefficient collapses significantly, is determined from observed friction-
water depth curves. Influence of test speed and road surface texture on critical water 
depth is discussed. 
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1 INTRODUCTION 

It is well known that tire/road friction decreases when the road surface is wet. Moore [1] 
showed that water acts as a lubricant and reduces the fraction of the tire/road contact area 
where friction forces are generated. Despite this widely accepted explanation, few works 
have dealt with the relationship between the water depth and the tire/road friction. Based 
on friction tests using a vehicle equipped with trailer, Veith [2] showed that the friction 
coefficient is independent of water depth at low speeds (up to 50 km/h) but it is strongly 
influenced by water depth at high speeds (96 km/h or greater). It was found that the friction 
coefficient varies as the logarithm of water depth. Water depths greater than 0.12 mm 
were studied. 
 
Models were also published on the calculation of the so-called “hydroplaning speed” [1][2] 
defined as the speed above which the driver can no more act on his vehicle to control its 
trajectory [3]. The related situation called “hydroplaning” – or aquaplaning – occurs on 
flooded roads. 
 
Even if the abovementioned works have contributed significantly to the reduction of 
hydroplaning risk, knowledge is still needed regarding the effect of thin water film on 
tire/road friction. This situation occurs after rainfalls or during drizzles where the damp 
aspect of the road surface provides a safety feeling; driving speeds are then as high as 
those practiced on dry roads. Nevertheless, experimental studies [4] showed that friction at 
a “damp” state can already be significantly lower than that at a “dry” state. This drastic 
drop of friction coefficient explains why accident records are generally high after rainfalls. 
The tire/road contact loss on damp road surfaces is sometime referred to as “viscoplaning” 
in order to emphasize the viscous effect of thin water depths.  
 
The single paper dealing with thin water depths is based on works conducted by 
Kulakowski and Harwood [5]. Using a dedicated laboratory device, they performed friction 
tests at different water depths and found that the relationship between the friction 
coefficient and the water depth can be approximated by an exponential function (Fig. 1): 

(1) F
he µµµ β +⋅∆= ⋅−  

Where µ: friction coefficient; 
  h: water depth; 
  µF: “final” friction coefficient;  

�µ: difference between µ(0) (µ at h = 0) and µF; 
β: parameter of the model. 
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Figure 1 – Relationship between tire-pavement frict ion and water-film thickness [5] 

 
 
Actually, Kulakowski and Harwood [5] supposed that the friction coefficient reaches a level 
– that is µF – at which there is no more variation with increasing water depths. These 
authors defined a critical water depth hcrit as the depth at which the dry friction µ(0) has 
lost an equivalent of 75% of �µ (Fig. 1). The 75% threshold was chosen arbitrarily. Field 
tests were conducted at 64 km/h to study the influence of the asphalt formulation and the 
tire on the induced critical water depth. Results indicate that critical water depth lies 
between 0.025 and 0.23 mm for different combinations of pavement surfaces and tire 
types. It is important to notice that the tested pavement surfaces are representative of a 
wide range of roads and results show that, for each test configuration, very thin water film 
thickness can decrease significantly the friction coefficient. The wide range of values of 
critical water depth points out the significant influence of both surface texture and tire.  

2 RESEARCH NEEDS AND METHODOLOGY 

From the brief review presented above, it can be said that research on the effect of thin 
water depths on tire/road friction is still needed to get a more comprehensive 
understanding of lubricated tire/road contact. In addition to scientific interests, results of 
this research can be useful for road authorities looking for a way to inform road users 
about slip risks under bad weather conditions. Applications can also be developed by car 
and tire manufacturers to assist drivers unaware of slippery road. 
 
Within the frame of the European project SKIDSAFE (7th Framework Program) dedicated 
to the modelling of tire/road friction at different scales (materials, tire, vehicle), Ifsttar has 
initiated a research aiming at developing a model predicting the onset of visco- and 
hydroplaning from the knowledge of road materials, tire characteristics and tire/road 
contact conditions (speed, wheel slip, water depth, etc.). The work presented in this paper 
is part of the Ph.D. carried out by the first author and focused on the viscoplaning aspect. 
It is composed of three parts: 
• in the first part, friction tests, both in-laboratory and on-site, at different water depths 

from dry to flooded states are presented; 
• in the second part, the shape of the friction-water depth plot is presented; 
• in the third part, definition of a critical water depth is derived in a more physical way 

than it has been done up to now. Analyses are then conducted to assess the influence 
of various test conditions on the critical water depth. 
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3 FRICTION TESTS 

3.1 In laboratory  

3.1.1 Dynamic Friction Tester machine 

The Dynamic Friction Tester (DFT) is widely used in North America, Asia and Oceania; the 
first DFT copy in France was acquired by Ifsttar in 2009. The machine is composed of a 
measuring unit (Fig. 2) and a control unit. The measuring unit consists of a horizontal fly 
wheel and disc which are driven by a motor. Three rubber sliders are attached to the disc 
by leaf springs. They are pressed on the test surface by the weight of the device and are 
loaded to 11.8 N each. 
 

  
Figure 2 – Dynamic Friction Tester (DFT) 

 
The slider (Fig. 3) is a rubber pad, whose dimensions are 6 mm × 16 mm × 20 mm, 
bonded to a steel plate. The rubber pad is shaped to provide a contact pressure of 0.15 
MPa. Full sliding conditions occur in the contact area between the DFT sliders and the test 
surface. The slider dimensions as well as the contact condition might then simulate tire 
tread rubber blocks sliding during a locked-wheel braking. 
 

 
Figure 3 – DFT rubber slider 

 
The test procedure is standardized by ASTM [8]. The test wheel (Fig. 2) is accelerated 
until it reaches a linear speed of 80 km/h. Water, provided by a water supply, is projected 
on the test surface by means of two pipes. The water depth is 1 mm by the time the test 
wheel speed reaches 80 km/h and the measurement is initiated. The motor is then 
stopped and the test wheel is dropped. When the rubber sliders are in contact with the test 
surface, the wheel rotational speed decreases due to the friction generated between the 
sliders and the surface. Due to the forces on the rubber sliders, displacement occurs in a 
spring balance. This displacement is then converted into an electrical signal. The speed of 
rubber sliders is measured from the output of a rotational speed dynamo. 
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The measurement output is a braking curve from 80 km/h to complete stop (Fig. 4). Values 
of the friction coefficient, typically at 20, 40 and 60 km/h, are extracted, recorded and 
displayed on the screen of the control unit.  
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Figure 4 – Typical DFT braking curve  

 
3.1.2 Measurement of water depths 

There are different ways to define a water depth; two of which are shown below (Fig. 5). 
 

a) b)   

Figure 5 – Definitions of water depth (a: above-asp erity; b: centreline-average) [2] 

 
The water depth above asperity summits can be measured by means of devices equipped 
with needles (usually two conducting electrodes moving vertically). The main drawback of 
this method is that the measurement is local and cannot represent the mean water depth 
on the surface unless measurements are done at many locations. Non-contact optical 
water depth sensors can be used too. Unfortunately, devices available at Ifsttar cannot 
measure water depths less than 1 mm – range of interest for this study. 
 
Thereby, a more basic method was chosen to evaluate the wetness of the surface. A 
spray was used to wet the surface. Before and after each friction measurement, the spray 
is weighed to know the amount of water sprayed on the test surface (Fig. 6). Dividing the 
volume of water by the wetted area, an average water depth can be calculated. This 
method takes into account the fact that water can fill voids in case of a rough surface. The 
derived water depth corresponds then to the second definition given in the figure 5. 
 
The calculated water depth is called the “initial equivalent water depth” as it is the 
thickness of the water film before the friction test is performed. Actually, when the test 
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wheel is in contact with the surface and spins, the water film thickness becomes non 
uniform. The determination of actual depths is complex and can be done only by models 
such as the one developed by Moore [9]. In the present study, the “initial equivalent water 
depth” is used for further analyses and referred to as, for the sake of simplicity, “water 
depth”.  
 

 
Figure 6 - Spray weighing 

 
3.1.3 Specimens 

Specimens are 520 mm × 375 mm × 30 mm slabs. Four slabs are produced in laboratory: 
a very thin asphalt concrete (VTAC) 0/6 (the numbers indicate the size range, in millimeter, 
of coarse aggregates); a semi-coarse asphalt concrete (SCAC) 0/6; a sand-asphalt and a 
mosaic composed of river coarse aggregates. Moreover, to study the effect of surface 
microtexture, the aggregate mosaic is sandblasted using 590µm corundum particles to 
simulate a microtextured surface. Actually, the sandblasting roughens the aggregate 
surface and, by consequent, modifies only the surface microtexture. VTAC and SCAC are 
representative of asphalt formulations used for main and secondary roads in France. 
Asphalt slabs are made by means of Ifsttar compactor. The mosaic is made by placing 
coarse aggregates in a mold (Fig. 7a) then covering the bottom with sand and resin. 
 

a)  b)  

Figure 7 - (a) Preparation of the mosaic; (b) VTAC specimen prepared for friction tests 

 
3.1.4 Test procedure 

The wetted surface is delimited by a plastic plate, in which a circle of 345 mm of diameter 
was cut (Fig. 7b), affixed to the specimen slab. The edge of the circle is filled with a 
sealant to avoid water flowing from the test area. Finally, the slabs are covered, except on 
their upper face, by a layer of waterproof material in order to prevent the water from 
flowing out of the sample. The spraying operation can be considered reasonably accurate 
with the specimens used for the tests. Actually, when 6 g (average sprayed quantity before 
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each friction measurement) is sprayed  on 0.1 m² (�
2

2
345.0

�
�

�
�
�

�×π ) and, assuming that 10% 

of this amount of water is sprayed outside the measurement area, it implies an error of 
only 0.006 mm on the estimated water depth. 
 
For each friction test, new sliders are used to ensure that slider wear does not affect 
results. The test surface is leveled and free of any contamination. The DFT is placed 
above the slab using visual markers to ensure that it is always placed at the same location. 
Compared with the ASTM standard [8], the test procedure is modified to study the 
influence of water depth on friction coefficient. Actually, the machine is programmed to run 
tests with no water from the supply unit; water is then added uniquely by the spray. After a 
first measurement performed on a perfectly dry surface, the following procedure is 
repeated 12 times: 
• Wetting of the slab surface by nine sprayings (� 6 g of water); 
• A friction measurement is performed; 
• Weighing of the spray. 
• At the end of the procedure, a test using the standard procedure for the DFT is 

performed. 
 
3.2 On site 

3.2.1 ADHERA device 

The Adhera device (Fig. 8) measures a Longitudinal Friction Coefficient (LFC) with a slip 
ratio of 100% (blocked wheel). The LFC is defined as the ratio between the horizontal 
force (FH) due to the friction in the tyre/road contact and the vertical load (Fv). The static 
value of FV corresponds to the load of the system (2 500 N). The speed of the vehicle can 
vary from 20 to 130 km/h and the water thickness in front of the test wheel ranges from 
0.25 mm to 3 mm. Both standardized test tyres as smooth PIARC tyres and commercial 
tyres from 155x65x15 to 205x45x16 can be tested. 
 

   
Figure 8 – ADHERA device 

 
3.2.2 Measurement of water depths 

The water depth provided by the ADHERA device is a standard value determined by 
considering the road surface as a smooth surface. The water film thickness is obtained by 
regulating the water flow of the water pump. The water flow depends on the vehicle speed. 
The theoretical values of water depth are given in figure 9. 
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Figure 9 – Water film thickness versus speed 

 
3.2.3 Test tracks 

Tests are performed on Ifsttar test tracks. Various pavement surfaces are considered in 
this study. The characteristics of the mixes, which represent actual pavement surfaces in 
France, are given in Table 1. A wide range of microtexture and macrotexture is covered. 
 

Table 1: Tested surface pavements characteristics 

Type of 
pavement

Size of 
aggregates 
(min/max)

Acronym Photography SFC MPD (mm)

Very Thin 
Asphalt 

Concrete
0/6 VTAC 0/6 0.56 1.00

Very Thin 
Asphalt 

Concrete
0/10 VTAC 0/10 0.71 1.30

Porous 
Asphalt 

Concrete
0/6 PAC 0/6 0.65 2.90

Surface 
Dressing

0.8/1.5 SD 0.8/1.5 0.90 0.45

Semi-coarse 
Asphalt 

Concrete 
(old)

0/10 SCAC 0/10 0.73 0.66

Semi-coarse 
Asphalt 

Concrete 
(new)

0/10 SCAC 0/10 0.59 0.82
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3.2.4 Test procedure 

The on-site tests aimed at representing the variation of LFC with water depth on various 
pavement surfaces at different test speeds. 
 
Three speeds are considered: 40, 60 and 90 km/h. For each speed, the device adapted 
automatically the water flow. The water pipe is opened few seconds before arriving on the 
testing area to obtain a stabilized water flow and a water depth as uniform as possible 
behind the tire. 
 
Tests are performed with six water depths: 0.1 – 0.25 – 0.50 – 0.75 – 1 – 1.5 mm. The 
operators let few minutes between two successive measurements to avoid water 
accumulation on test tracks. 

4 FRICTION/WATER DEPTH PLOT 

4.1 Shape of the friction/water depth curve 

Examples of friction/water depth plots derived respectively from in-laboratory and on-site 
test data are shown in figure 10. The X-axis represents the water depth. The Y-axis 
represents respectively the DFT friction coefficient (Fig. 10a) and the ADHERA LFC (Fig. 
10b). For the DFT plot, friction coefficient obtained by applying the ASTM procedure [8] is 
also shown. 
 

a) 
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b) 
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Figure 10 - Example of the variation of friction co efficient versus water depth (a: in-laboratory; b: on-
site) 

 
The observed shape is different from that found in previous works where an exponential 
variation of friction with water depth is observed [2][5]. During the first tests (unpublished) 
aiming at developing an appropriate test procedure, water was sprayed on the primarily 
dry surface until it appears wet. This procedure induced actually an exponential variation 
of friction with water depth. The difference between the figure 10 and published results can 
then be attributed to the water quantity sprayed on the dry test surface to obtain the first 
wet state. If too much water is sprayed, the transition from “dry” to “wet” can be missed. 
 
The shape of the curve derived from our experiments is similar to that of the well-known 
Stribeck curve (Fig. 11) although the X-axis is not the same. 
 

Figure 11 -  Stribeck curve [10] 

 
The Stribeck curve relates relative velocity (V), fluid viscosity (�) and pressure (p), using 
the number �V/p, to friction coefficient. Schipper [11] proved that there exists a relationship 
between the lubricant depth (h) and �V/p in the case of elasto-hydrodynamic lubrication: 
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(2) 

7,0

��
�

�
��
�

�∝
p

V
h

η
 

 

Based on Schipper results, it can reasonably be said that the obtained friction/water depth 
curve exhibits the same lubrication regimes as those identified in a Stribeck curve (Fig. 
11): boundary, mixed and hydrodynamic. It means that the understanding of tire/wet road 
friction mechanisms, and consequently their modeling, can be enhanced by taking benefit 
of existing knowledge acquired in tribology. Actually, the graph in figure 10a exhibits also a 
solid-contact phase. This phase is not considered in the following analyses as it occurs 
only on few surfaces – surfaces covered by a relatively thick binder layer or smooth river 
coarse aggregates – where water drops do not “stick” to the test surface during the first 
sprays and then some adhesions might occur. 
 
Figure 10a shows that the DFT friction coefficient measured by the ASTM procedure 
represents the lowest friction value that can be expected. 
 
Comparison between figures 10a) and 10b) also shows that in-laboratory and on-site 
observations are similar. The laboratory is more complete in terms of lubrication regimes. 
A plausible explanation is that water spray is more easily controlled in laboratory than on 
site and, by consequence, it is easier to follow the variation of friction with water depth in 
laboratory. As variations are similar, analyses presented in the following sections will be 
focused on laboratory results only. 
 
 
4.2  Modeling of the friction/water depth curve 

A model was developed to fit the shape of the friction/water depth curve derived from our 
experiments: 

(3) F
h

h

e µµµ

α

+⋅∆=
��
�

�
��
�

�
−

0  

 
Where µ: friction coefficient; 
  h: water depth; 
  µF: final friction coefficient;  

�µ: difference between µ(0) (µ at h = 0) and µF; 
h0, �: constants. 

 
The new model is similar to that proposed by Kulakowski [5] but can simulate other shapes 
than the exponential one. Actually, if � = 1, an exponential variation can be found. For � � 
1, other shapes can be found. The continuous line in figure 9a shows how the model (3) 
fits experimental data. 
 

5 CRITICAL WATER DEPTH 

5.1 Definition 

The word “critical” is used by road authorities to decide whether warnings must be sent to 
road users or not. The same word can be used by car manufacturers to activate driver 
assistance systems. In the context of warning or driver assistance on wet roads, people 
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look for a critical water depth, which can be measured or estimated in real time, above 
which something must be done. Based on the shape of the friction/water depth curve, it 
appears that the most critical phase is the transition from boundary to mixed lubrication 
regimes where friction can drop drastically even if the road surface still displays an 
apparent “safe” aspect.  
 
Dividing the friction/water depth curve into three parts: boundary, mixed and hydrodynamic 
lubrication, each part of the friction-water depth curve is linearized as shown in the figure 
12: a horizontal line to represent the stable friction level during the boundary lubrication 
phase (BL), a sloped line to represent the mixed lubrication phase (ML), and again a 
horizontal line to represent the hydrodynamic lubrication phase (HL). Actually, friction 
should increase slightly during the hydrodynamic phase due to drag forces. However, 
within the experimental set up, no variation curve experienced such a tendency; a 
horizontal constitutes then a good approximation. 
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Figure 12 - Linearization of the friction/water dep th curve 

 
The critical water depth is then defined as the amount of water obtained at the intersection 
between the boundary lubrication and mixed lubrication lines (arrow in figure 12). From 
this point, a small additional amount of water is sufficient to degrade significantly the 
friction coefficient. Within the frame of our experiments, critical water depths lower than 1 
mm were found. Such critical water depths can also determine the onset of viscoplaning 
as discussed in the introduction. 
 
The remaining of the paper focuses on the critical water depth and highlights how it is 
affected by factors related to the tire/road contact such as speed or road surface texture. 
 
5.2 Influence of the test speed 

Figure 13 shows the variation of the critical water depth with the test speed. The very thin 
asphalt concrete specimen (VTAC) is considered.  
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Figure 13 – Variation of critical water depth with speed 

 
Critical water depth tends to decrease with test speed. This tendency is logical since 
increasing speed leaves less time to evacuate water from the tire/road contact area and, 
consequently, induces a rapid transition to the mixed lubrication regime. It can be seen 
that critical water depths are similar at 20 and 40 km/h (0.34 and 0.31 respectively) and 
higher than that at 60 km/h (0.15). It suggests that the effect of speed on the critical water 
depth is only significant above a certain speed. This confirms observations made by Veith 
[2].  
 

 

5.3 Influence of the surface microtexture 

Since the present study deals with thin water films, it is thought that the influence of road 
surface microtexture is the most preponderant. Microtexture is conventionally defined as 
surface irregularities with wavelengths under 0.5 mm and peak-to-peak amplitudes from 1 
to 0.5 mm [14]. It is a function of the surface properties of the aggregate particles 
contained in the asphalt. It assists in squeezing thin water films in order to provide 
effective contact between road and tire. 
 
The influence of the surface microtexture can be assessed by comparison of results 
obtained from the aggregate mosaic before – smooth – and after – rough – sandblasting. 
Figure 14 shows that when the surface is dry, the smooth surface exhibit higher friction 
value than the sandblasted surface does. This is due to the fact that dry friction depends 
on available contact area, which is larger on smooth surfaces. However, the friction 
coefficient of the mosaic before sandblasting, called “smooth” in figure 14, drops rapidly as 
soon as the surface is wetted. In contrast, the sandblasted mosaic displays a more stable 
variation of the friction coefficient with the water depth. Also, it can be seen that, even if 
both surfaces experience friction decrease with water depth, the sandblasted curve is 
always above the initial-state curve. These observations corroborate those made by Moore 
on smooth and roughened spheres [1]. 
 
Figure 14 clearly highlights the role of the surface microtexture to mitigate the risk of a 
brutal degradation of wet pavement skid-resistance while maintaining a high friction level. 
When the surface is wetted, asperities, mainly sharp ones, are needed to squeeze out the 
water film. Otherwise, as it happened with the smooth mosaic, water, even at very thin 
thicknesses, can penetrate very quickly in the tire/road contact area and causes contact 
loss between the tire and the road. 
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The above analysis is a first attempt to assess the influence of microtexture on the onset 
of viscoplaning. A more rigorous analysis, using quantitative microtexture descriptors 
derived from surface profiles, is underway. 
 

 

Figure 14 – Influence of surface microtexture on fr iction coefficient 

 

6 CONCLUSIONS 

In this paper, study of tire/wet road friction was presented. Focus was made on the effect 
of thin water films (< 1 mm) which occur after rainfalls or during drizzles. Despite the 
apparent safety feeling provided by a damp aspect of the road surface, thin water films can 
alter already significantly the available road friction and reduces contact between the tire 
and the road. 
 
In the first part, friction tests both in laboratory and on site were presented. Using a basic 
method to wet the surface and estimate the average water depth, due to the absence of 
sensors to measure accurately thicknesses of tenth of millimeter on road surfaces, 
friction/water depth curves were obtained. Different in shape from previously published 
curves, the new curves are similar to the well-known Stribeck curve. It was then possible 
to identify different lubrication regimes occurring at the tire/road interface. Using a simple 
mathematical function to represent the observed results, a so-called “critical water depth” 
was derived. It represents the water depth at which transition between the boundary and 
the mixed lubrication regimes occurs. This new definition, compared with the few ones 
found in existing literature, is more physical and can be used to determine the onset of 
viscoplaning. 
 
Further analyses were made to assess the influence of some factors on the critical water 
depth. It was found that critical water depth decreases with speed, mainly above 60 km/h 
within the frame of our experiments. Observations are logical and can be explained by 
considering the way by which the water penetrates the tire/road contact area. The 
influence of road surface microtexture has been clearly demonstrated: friction coefficient 
on wet microtextured surfaces is maintained at a level comparable to that of a dry surface 
until a critical water depth is reached, whereas friction coefficient on smooth surfaces 
drops as soon as the surface is wet. Surface microtexture is then needed to prevent a 
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brutal degradation of skid resistance. Our results corroborate those from previous studies. 
Progress has been made because our observations have been made on actual road 
surfaces whereas those found in the literature are derived from modeled surfaces 
(spheres, cones, etc.). Efforts, mainly by means of modeling, are still needed to better 
assess the conditions of viscoplaning onset. 

7 ACKNOWLEDGEMENTS 

The authors gratefully thank the financial support of the SKIDSAFE project (Enhanced 
Driver Safety due to Improved Skid Resistance). Technical support of Mr. Patrick 
Maisonneuve for laboratory tests is highly appreciated. 
 
 
REFERENCES 
 
1. Moore, DF (1975) The Friction of Pneumatic Tyres. Elsevier Scientific Publishing Company. 
2. Veith AG (1983) Tires – Roads – Rainfall – Vehicles: The Traction Connection. Frictional Interaction of 

Tire and Pavement, ASTM STP 793 (W.E. Meyer and J.Reichter, Eds.), American Society for Testing 
and Materials, 3-40. 

3. Cerezo V, Gothié M, Menissier M, Gibrat T (2010) Hydroplaning speed and infrastructure characteristics. 
Proc. IMechE, Vol. 224 Part J: J. Enginnering Tribology. 

4. Delanne Y, Do MT, Gothié M, Delalande G (2006) Tyre/Road Friction Potential (in French). ERLPC 
(Etudes et Recherches des Laboratoires des Ponts et Chaussées), CR 43. 

5. Kulakowski BT, Harwood DW (1990) Effect of Water-Film Thickness on Tire-Pavement Friction. Surface 
Characteristics of Roadways: International Research and Technologies, ASTM STP 1031 (W.E. Meyer 
and J.Reichter, Eds.), American Society for Testing and Materials, Philadelphia, 50-60. 

6. Giles CG, Sabey BE, Cardew KHF (1964) Development and Performance of the Portable Skid-
Resistance Tester. Road Research Technical Paper No. 66. 

7. Do MT, Tang Z, Kane M, de Larrard F (2007) Pavement Polishing – Development of a Dedicated 
Laboratory Test and its Correlation with Road Results. Wear, Special Issues of WOM 2007, Vol. 263, 36-
42. 

8. ASTM E1911 (2009) Standard Test Method for Measuring Paved Surface Frictional Properties Using the 
Dynamic Friction Tester. 

9. Moore DF (1967) A Theory of Viscous Hydroplaning. International Journal of Mechanical Sciences, 
Volume 9, Issue 12, 797-810. 

10. Skakoon, J. G. (2009). There's the Rub, Mechanical Engineering Magazine Online, American Society of 
Mechanical Engineers. 

11. Schipper DJ (1988) Transitions in the Lubrication of Concentrated Contacts. Dissertation, University of 
Twente, NL. 

12. Leu MC, Henry JJ (1978) Prediction of Skid Resistance as a Function of Speed from Pavement Texture 
Measurements. Transportation Research Record, n° 66 6, 7-13. 

13. Mancosu F, Parry A, La Torre F (2000) Friction Variation Due to Speed and Water Depth. 4th 
International Symposium on Surface Characteristics SURF, Nantes, France. 

14. Permanent International Association of Road Congresses (PIARC) (1987) Report of the Committee on 
Surface Characteristics. Proc., 18th World Road Congress. 

15. Stout KJ (1993) The Development of Methods for the Characterisation of Roughness in Three 
Dimensions, Commission of the European Communities. 

16. Gothié, M. (2006) Use of PIARC test tyres for the characterisation of skid resistance, Routes/Roads 
n°330. 

17. Gothié, M. Maurer, P. and Bumma, P. (2007) PIARC test tyres representativity for skid resistance 
measurements, Routes/Roads n°334. 

18. Cerezo, V. and Gothié, M. (2009) Adhéra research : A new approach for pavement performances 
evaluation, WEAR vol.267, pp.1105-1110. 


