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Introduction

The well known generalized cancellation problem asks the following question.

Generalized cancellation problem. Given two complex affine varieties V 1 and V 2 with the property that V 1 × C m and V 2 × C m are isomorphic for some m ∈ N. Does this imply that V 1 and V 2 are isomorphic?

An affirmative answer was given by Abhyankar, Eakin and Heinzer [START_REF] Shreeram | On the uniqueness of the coefficient ring in a polynomial ring[END_REF] for the case of affine curves. The cancellation property holds also in the case where V 1 (or V 2 ) has nonnegative logarithmic Kodaira dimension. This was shown by Iitaka and Fujita in [START_REF] Iitaka | Cancellation theorem for algebraic varieties[END_REF].

However, the answer to the generalized cancellation problem turns out to be negative in general. The first counterexamples are surfaces due to Danielewski [START_REF] Danielewski | On a cancellation problem and automorphism groups of affine algebraic varieties[END_REF] (see also [START_REF] Fieseler | On complex affine surfaces with C + -action[END_REF]). Later on, Danielewski's construction was generalized by Dubouloz [START_REF] Dubouloz | Additive group actions on Danielewski varieties and the cancellation problem[END_REF] to produce counterexamples of every dimension d ≥ 2 (see also [START_REF] Finston | The automorphism group of certain factorial threefolds and a cancellation problem[END_REF] and [START_REF] Dubouloz | Noncancellation for contractible affine threefolds[END_REF] for factorial and contractible 3-dimensional examples).

In 2004, Makar-Limanov, van Rossum, Shpilrain and Yu [START_REF] Makar-Limanov | The stable equivalence and cancellation problems[END_REF] considered the following analogous problem.

Stable equivalence problem. If two hypersurfaces in C n are stably equivalent, are they equivalent?

Recall that two algebraic varieties V 1 , V 2 in C n are said to be equivalent if there exists a polynomial automorphism of C n which maps V 1 onto V 2 , and that they are said to be stably equivalent if there is an integer m ∈ N such that the cylinders V 1 ×C m and V 2 ×C m are equivalent varieties in C n+m . The stable equivalent problem has a positive answer for affine plane curves, as already shown by Makar-Limanov, van Rossum, Shpilrain and Yu in [START_REF] Makar-Limanov | The stable equivalence and cancellation problems[END_REF]. In the same vein of the result of Iitaka-Fujita, Drylo proved in [START_REF] Drylo | Non-uniruledness and the cancellation problem[END_REF] that two stably equivalent hypersurfaces in C n are equivalent, if one of them is not C-uniruled. The first counterexamples in C 3 , consisting in families of Danielewski hypersurfaces, were provided by Moser-Jauslin and the author [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF]. Also, contractible 3-dimensional counterexamples appeared in [START_REF] Dubouloz | Noncancellation for contractible affine threefolds[END_REF].

In this note, we complete the analogy between the results on the generalized cancellation and stable equivalence problems. Indeed, we produce counterexamples to the stable equivalence problem for every n ≥ 3. These new examples are easy generalizations of those of [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF], inspired by the construction in [START_REF] Dubouloz | Additive group actions on Danielewski varieties and the cancellation problem[END_REF].

We will actually give two kinds of counterexamples. On one hand, polynomials P, Q ∈ C[X 1 , . . . , X n ] whose zero-sets V (P ) and V (Q) are non-isomorphic varieties, but such that the cylinders V (P ) × C and V (Q) × C are equivalent hypersurfaces in C n+1 . On the other hand, polynomials P, Q ∈ C[X 1 , . . . , X n ] with the properties that V (P ) × C and V (Q) × C are equivalent hypersurfaces in C n+1 and that V (P ) and V (Q) are nonequivalent hypersurfaces in C n , although the fibers V (P -c) and V (Q -c) of P and Q are pairwise isomorphic for all c ∈ C. More precisely, we will prove the following result.

Theorem. The following assertions hold for every natural number n ≥ 1.

(1) The hypersurfaces

H 1 , H 2 ⊂ C n+2 defined by the equation x 2 1 • • • x 2 n y + z 2 + x 1 • • • x n (z 2 -1) = 1 and x 2 1 • • • x 2 n y + z 2 + x 1 • • • x n (z 2 -2) = 1, respectively, are non-isomorphic algebraic varieties such that H 1 × C and H 2 × C are equiva- lent hypersurfaces in C n+3 . (2) The polynomials Q k = x 2 1 • • • x 2 n y + z 2 + x 1 • • • x n (z 2 -1) k ∈ C[x 1 , . . . , x n , y, z] are stably equivalent for all k ≥ 1, whereas the hypersurfaces V (Q k ) ⊂ C n+2 are pairwise non-equivalent. However, the varieties V (Q k -c) and V (Q k ′ -c) are isomorphic for all k, k ′ ≥ 1 and every c ∈ C.
It is worth mentioning that the special case of affine spaces is still open, for both cancellation and stable equivalence problems. Recall that the question to know whether an isomorphism V × C m ≃ C n+m implies V ≃ C n is usually referred to as the "Zariski cancellation problem". It has a positive solution for n = 1 and for n = 2 by the results of Fujita and Miyanishi-Sugie ( [START_REF] Fujita | On Zariski problem[END_REF], [START_REF] Miyanishi | Affine surfaces containing cylinderlike open sets[END_REF]), whereas it is still an unsolved problem for n ≥ 3.

Similarly, it was asked in [START_REF] Makar-Limanov | The stable equivalence and cancellation problems[END_REF] if every hypersurface in C n+1 , which is stably equivalent to a (linear) hyperplane, is already equivalent to this hyperplane. Note that it is true for n = 1 and also, using the cancellation property of the affine plane and a result of Kaliman [START_REF] Kaliman | Polynomials with general C 2 -fibers are variables[END_REF], for n = 2. Moreover, as noticed in [START_REF] Makar-Limanov | The stable equivalence and cancellation problems[END_REF], a positive answer to this question for an integer n ≥ 3 would imply that the n-dimensional affine space has the cancellation property.

Four hypersurfaces in C n+2

Let us fix some notations. Notation 2.1. Given a ring R and an integer m ∈ N, we denote by R [m] the polynomial ring in m variables over R. Throughout this paper, we fix a positive integer n and we denote by C[x] the polynomial ring C[x 1 , . . . , x n ] ≃ C [n] in the variables x 1 , . . . , x n .

For every integer k ∈ N, we denote by x [k] the element

x [k] = x k 1 • • • x k n ∈ C[x]
and, for every polynomial q ∈ C [1] , by P q the polynomial of C[x 1 , . . . , x n , y, z] = C[x][y, z] defined by P q = x [2] y + z 2 + x [1] q(z 2 ).

The counterexamples to the stable equivalent problem mentioned in the introduction are realized as hypersurfaces in C n+2 given by the fibers V (P q -c) of some polynomials P q . We will determine the isomorphism classes of these varieties. This will be done by using techniques mainly developed by Makar-Limanov in [START_REF] Makar-Limanov | On the group of automorphisms of a surface x n y = P (z)[END_REF]. The idea is to exploit the fact that this kind of hypersurfaces admit additive group actions, but not too many. For instance, their Makar-Limanov invariants are non trivial.

It is in general very difficult and technical to compute such invariants. But we are in a good situation, since the method of Kaliman and Makar-Limanov ( [START_REF] Kaliman | AK-invariant of affine domains[END_REF]) applies to the varieties that we are considering. Moreover, we can even use directly the results of Dubouloz [START_REF] Dubouloz | Additive group actions on Danielewski varieties and the cancellation problem[END_REF], who already did the computation for the case where the polynomial q is constant. Remark that, thanks to the next lemma, it suffices to consider only this special case. [1] and c ∈ C, we let g c ∈ C [1] be the polynomial such that the equality q(z 2 ) -

Lemma 2.2. Let R = C[x] ≃ C [n] . Given q ∈ C
q(c) = g c (z 2 )(z 2 -c) holds in C[z]. Then, the endomorphism ϕ c ∈ End R R[y, z] of R[y, z] fixing R and defined by ϕ c (y) = 1 + x [1] g c (z 2 ) y + q(c)g c (z 2 ) and ϕ c (z) = z
induces an isomorphism between the rings C[x, y, z]/(P q -c) and C[x, y, z]/(P q(c) -c).

Proof. First, one checks that ϕ c (P q -c) = 1 + x [1] g c (z 2 ) P q(c) -c . Thus, ϕ c induces a morphism between C[x, y, z]/(P q -c) and C[x, y, z]/(P q(c) -c). The latter is invertible.

To see this, one checks that the inverse morphism is induced by the endomorphism

ψ c ∈ End R R[y, z] defined by ψ c (y) = 1 -x [1] g c (z 2 ) y -q(z 2 )g c (z 2 ) and ϕ c (z) = z.
We will now compute, for all q ∈ C [1] and all c ∈ C, the set LND(B q,c ) of locally nilpotent derivations on the coordinate ring B q,c of the varieties V (P q -c). Recall that a derivation δ of a C-algebra B is called locally nilpotent if there exists, for every element

b ∈ B, an integer m = m(b) ≥ 1 such that δ m (b) = 0. Let ∆ be the derivation of C[x, y, z] defined by ∆ = x [2] ∂ ∂z -2z(1 + x [1] q ′ (z 2 )) ∂ ∂y ,
where q ′ denotes the derivative of q. Note that ∆ is locally nilpotent (it is a triangular derivation) and that it annihilates the polynomial P q -c. Therefore, it induces a locally nilpotent derivation on B q,c , which we still denote by ∆. It turns out that all other locally nilpotent derivations on B q,c are multiple of ∆ by elements of C[x].

Proposition 2.3. Let q ∈ C [1] , c ∈ C and B q,c = C[x, y, z]/(P q -c), where P q = x [2] y + z 2 + x [1] q(z 2 ) ∈ C[x, y, z]. Then, the following hold for every nonzero locally nilpotent derivation δ of B q,c .

(1) Ker(δ) = C[x] and Ker(δ

2 ) = C[x]z + C[x]. (2) There exists h(x) ∈ C[x] such that δ = h(x)∆
, where ∆ is the locally nilpotent derivation on B q,c defined above.

Proof.

(1) First of all, remark that we can suppose that q is a constant polynomial. Indeed, take the isomorphism φ : B q,c → B q(c),c given by Lemma 2.2 and let δ ∈ LND(B q,c )\ {0} be a nonzero locally nilpotent derivation. Then,

δ = φ • δ • φ -1 ∈ LND(B q(c),c ) \ {0}
and we have Ker(δ) = φ -1 (Ker( δ)) and Ker(δ

2 ) = φ -1 (Ker( δ 2 )). Since φ -1 maps C[x] onto C[x] and C[x]z + C[x] onto C[x]z + C[x], it suffices to prove Ker( δ) = C[x] and Ker( δ 2 ) = C[x]z + C[x].
So, let q, c ∈ C be two constants and let δ be a nonzero locally nilpotent derivation on B q,c . We are now in the case considered by Dubouloz in [START_REF] Dubouloz | Additive group actions on Danielewski varieties and the cancellation problem[END_REF], where he proved (see paragraph 2.7 in [START_REF] Dubouloz | Additive group actions on Danielewski varieties and the cancellation problem[END_REF]) that Ker(δ) = C[x] and Ker(δ 2 ) ⊂ C[x, z] hold. This implies easily Ker(δ

2 ) = C[x]z + C[x].
Indeed, let a ∈ Ker(δ 2 ) \ Ker(δ) and write a = d i=0 α i (x)z i with d ≥ 1 and

α i (x) ∈ C[x]. Then δ(a) = δ(z) d i=1 iα i (x)z i-1
is a nonzero element of Ker(δ). Since the kernel of a locally nilpotent derivation is factorially closed, it follows that δ(z) lies in Ker(δ). Thus, z ∈ Ker(δ 2 ) and so

C[x]z + C[x] ⊂ Ker(δ 2 ). On the other hand, δ(a) ∈ Ker(δ) implies d = 1, since Ker(δ) = C[x]. Therefore, a ∈ C[x]z + C[x]
and (1) is proved.

(2) Let δ ∈ LND(B q,c ) \ {0}. By (1), Ker(δ) = C[x] and there exists a polynomial a(x) ∈ C[x] \ {0} such that δ(z) = a(x). To prove [START_REF] Danielewski | On a cancellation problem and automorphism groups of affine algebraic varieties[END_REF], it suffices to find an element h(x) ∈ C[x] such that a(x) = x [2] h(x), since 0 = δ(P q -c) = x [2] δ(y) + a(x)2z(1 + x [1] q ′ (z 2 )).

The equality above means that there exist polynomials F, R ∈ C [n+2] such that X [2] F (X, Y, Z) + a(X)2Z(1 + X [1] q ′ (Z 2 )) = R(X, Y, Z)(X [2] Y + Z 2 + X [1] q(Z 2 ) -c).

From this, it follows that a(X) and R(X, Y, Z) are both divisible by X [1] . Setting a(X) = X [1] a(X) and R(X, Y, Z) = X [1] R(X, Y, Z), we obtain the equality X [1] F (X, Y, Z) + a(X)2Z(1 + X [1] q ′ (Z 2 )) = R(X, Y, Z)(X [2] Y + Z 2 + X [1] q(Z 2 ) -c).

The latter implies that a(X) is divisible by X [1] . Thus, a(x) = x [2] h(x) for an element h(x) ∈ C[x]. This completes the proof.

We are now in position to classify all hypersurfaces in C n+2 given by an equation of the form P q = c. They have exactly four isomorphism classes. Each of them is given by one of the following varieties. Notation 2.4. We denote by V 0,0 , V 0,1 , V 1,0 , V 1,1 the hypersurfaces in C n+2 defined by the equation x [2] y + z 2 = 0, x [2] y + z 2 -1 = 0, x [2] y + z 2 + x [1] = 0 and x [2] y + z 2 + x [1] -1 = 0, respectively.

These varieties are pairwise non-isomorphic and we have the following result, which was already proved in [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF] for the case n = 1. Proposition 2.5. Let q ∈ C [1] , c ∈ C. and let P q = x [2] y + z 2 + x [1] q(z 2 ) ∈ C[x, y, z] as in Notation 2.1. Then, the variety V (P q -c) is isomorphic to:

(1) V 0,0 if an only if c = 0 and q(c) = 0;

(2) V 1,0 if an only if c = 0 and q(c) = 0;

(3) V 0,1 if an only if c = 0 and q(c) = 0;

(4) V 1,1 if an only if c = 0 and q(c) = 0.
Proof. By Lemma 2.2, the variety V (P q -c) is isomorphic to the hypersurface of equation

x [2] y + z 2 + x [1] q(c) -c = 0.

The "if parts" of the proposition follow then easily.

In order to prove that V 0,0 , V 0,1 , V 1,0 and V 1,1 are non-isomorphic, we consider two polynomials q 1 , q 2 ∈ C [1] and two constants c 1 , c 2 ∈ C. For j = 1, 2, let B j denotes the ring B j = C[x, y, z]/(P q j -c j ) and let x i j , y j , z j denote the images of x i , y, z in B j . We also denote by C x j the ring C[x 1 j , . . . , x n j ]. Suppose now that ϕ : B 1 → B 2 is an isomorphism.

Let δ ∈ LND(B 1 ) \ {0} be a nonzero locally derivation on B 1 . Then, δ = ϕ • δ • ϕ -1 is a nonzero locally derivation on B 2 and we have Ker( δ) = ϕ(Ker(δ)) and Ker(( δ) 2 ) = ϕ(Ker(δ 2 )). By Proposition 2.3, we have Ker

(δ) = C[x 1 ] and Ker( δ) = C[x 2 ]. Thus, ϕ restricts to an isomorphism between C[x 1 ] and C[x 2 ]. Moreover ϕ(z 1 ) ∈ Ker(( δ) 2 ) = C[x 2 ]z 2 + C[x 2 ]. Therefore, ϕ(z 1 ) = α(x 2 )z 2 + β(x 2 )
for some polynomials α and β. Repeating the same argument with ϕ -1 , we obtain that ϕ -1 (z 2 ) = a(x 1 )z 1 + b(x 1 ) for some polynomials a and b. From this, we get that the elements α(x 2 ) ∈ C[x 2 ] and a(x 1 ) ∈ C[x 1 ] are in fact invertible, thus nonzero constants.

If we take the derivation δ = ∆ (see Proposition 2.3), one checks that δ(z 2 ) = ϕ(∆(az

1 + b(x 1 ))) = aϕ(x [2]
1 ). Consequently, there exists, again by Proposition 2.3, a polynomial h such that aϕ(x

[2] 1 ) = h(x 2 )x [2] 2 . Since ϕ : C[x 1 ] → C[x 2
] is an isomorphism, this implies that there exist a bijection σ of the set {1, . . . , n} and nonzero constants

λ i ∈ C * such that ϕ(x i ) = λ i x σ(i) for all 1 ≤ i ≤ n.
Let λ = n i=1 λ i and suppose from now on that q 1 and q 2 are constant. Since

λ 2 x [2] 2 ϕ(y 1 ) + (αz 2 + β(x 2 )) 2 + λx [1] 2 q 1 -c 1 = ϕ(x [2] 1 y 1 + z 2 1 + x [1] 1 q 1 -c 1 ) = 0 in B 2 , there exist polynomials F, A ∈ C [n+2] such that λ 2 x [2] F (x, y, z) + (αz + β(x)) 2 + λq 1 x [1] -c 1 = A(x, y, z)(x [2] y + z 2 + q 2 x [1] -c 2 ).
Looking at this equality modulo (x [2] ), it follows that β(x) lies in the ideal of C[x] generated by x [2] , and that c 1 = A(0, 0, 0)c 2 and λq 1 = A(0, 0, 0)q 2 . This shows that V 0,0 , V 0,1 , V 1,0 , V 1,1 are pairwise non-isomorphic and proves the proposition. Remark 2.6. Even if they are non-isomorphic, the varieties V 0,1 and V 1,1 are biholomorphic. Indeed, the analytic automorphism Ψ of C[x, y, z] defined by Ψ(x i ) = x i for all 1 ≤ i ≤ n, Ψ(y) = exp(-x [1] )y -exp(-x [1] ) -1 + x [1] x [2] and Ψ(z) = exp(-1 2

x [1] )z, satisfies Ψ(x [2] y + z 2 + x [1] -1) = exp(-x [1] )(x [2] y + z 2 -1). The case n = 1 is due to Freudenburg and Moser-Jauslin [START_REF] Freudenburg | Embeddings of Danielewski surfaces[END_REF] and it was, to our knowledge, the first explicit example in the literature of two algebraically non-isomorphic varieties that are holomorphically isomorphic. Note that Jelonek [START_REF] Jelonek | Simple examples of affine manifolds with infinitely many exotic models[END_REF] has recently constructed other examples, in every dimension d ≥ 2, of rational varieties with these properties.

Stable equivalence

In this paper, we will consider two notions of equivalence.

Definition 3.1.

(1) Two hypersurfaces H 1 , H 2 ⊂ C n are said to be equivalent if there exists a polynomial automorphism Φ of C n such that Φ(H 1 ) = H 2 . (2) Two polynomials P, Q ∈ C [n] are said to be equivalent if there exists a polynomial automorphism Φ of C n such that Φ * (P ) = Q.

These two notions are of course closely related, the zero-sets V (P ) and V (Q) of irreducible polynomials P, Q ∈ C [n] being equivalent hypersurfaces in C n if and only if there exists a nonzero constant µ ∈ C * such that P and µQ are equivalent polynomials in C [n] .

The next proposition gives the classification, up to equivalence, of all polynomials P q (see Notation 2.1) and of their fibers V (P q -c). It is an easy generalization of results of [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF] to the case n ≥ 2. Proposition 3.2. Let q 1 , q 2 ∈ C [1] be two polynomials and c 1 , c 2 ∈ C be two constants. For i = 1, 2, let P q i = x [2] y + z 2 + x [1] q i (z 2 ) ∈ C[x, y, z] as in Notation 2.1. Then, the following hold.

(1) The polynomials P q 1 -c 1 and P q 2 -c 2 of C [n+2] are equivalent if and only if c 1 = c 2 and there exists a nonzero constant λ ∈ C * such that q 2 = λq 1 .

(2) The hypersurfaces

H 1 = V (P q 1 -c 1 ), H 2 = V (P q 2 -c 2 ) ⊂ C n+2 are equivalent if
and only if there exist two nonzero constants λ, µ ∈ C * such that c 2 = µ -1 c 1 and such that the equality q 2 (t) = λq 1 (µt) holds in C[t].

Proof. (1) Suppose that P q 1 -c 1 and P q 2 -c 2 are equivalent polynomials of C[x, y, z] and let Φ be an automorphism of C[x, y, z] such that Φ(P q 1 -c 1 ) = P q 2 -c 2 . The key of the proof is to show that Φ(x [1] ) = λx [1] for some constant λ ∈ C * . Afterwards, we can conclude exactly as in [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF].

Remark that Φ induces, for every c ∈ C, an isomorphism Φ c between the rings B 1 = C[x, y, z]/(P q 1 -c 1 -c) and B 2 = C[x, y, z]/(P q 2 -c 2 -c). Therefore, as we have seen in the proof of Proposition 2.5, the element Φ c (x [1] ) lies in the ideal x [1] B 2 . Thus, Φ(x [1] ) ∈ c∈C x [1] , P q 2 -c 2 -c = c∈C x [1] , z 2 -c 2 -c = x [1] .

Since Φ is an automorphism, this implies that there exists a nonzero constant λ ∈ C * such that Φ(x [1] ) = λx [1] , as desired. Now, since Φ(P q 1 -c 1 + αx [1] -c) = P q 2 -c 2 + αλx [1] -c, the varieties V (P q 1 +α -c 1 -c) and V (P q 2 +αλ -c 2 -c) are isomorphic for all α, c ∈ C. By Proposition 2.5, this implies that c 1 = c 2 and then that the zeros of the polynomials q 1 + α and q 2 + αλ are the same for all α ∈ C. Thus, q 2 = λq 1 .

Conversely, if q 2 = λq 1 for some λ ∈ C * , it suffices to check that Φ(P q 1 ) = P q 2 , where Φ is the automorphism of C[x, y, z] defined by Φ(x 1 ) = λx 1 , Φ(x i ) = x i for all 2 ≤ i ≤ n, Φ(y) = λ -2 y and Φ(z) = z. This proves the assertion (1).

(2) The hypersurfaces H 1 = V (P q 1 -c 1 ) and H 2 = V (P q 2 -c 2 ) are equivalent if and only if there exists a nonzero constant µ ∈ C * such that the polynomials P q 1 -c 1 and µ(P q 2 -c 2 ) are equivalent. Then, Assertion (2) follows from Assertion (1), noting that µ(P q 2 -c 2 ) is equivalent to the polynomial P q 2 -µc 2 , where q 2 denotes the element of C[t] defined by q 2 (t) = q 2 (µ -1 t). Indeed, one checks that this equivalence is realized by the automorphism of C n+2 defined by (x 1 , x 2 , . . . , x n , y, z) → (µ -1 x 1 , x 2 , . . . , x n , µy, ǫz), where ǫ is any complex number such that ǫ 2 = µ -1 .

Before we state the next result, let us recall the notion of stable equivalence. Definition 3.3.

(1) Two hypersurfaces H 1 , H 2 ⊂ C n are said to be stably equivalent if there exists a m ∈ N such that H 1 × C m and H 2 × C m are equivalent hypersurfaces in C n+m .

(2) Two polynomials P, Q ∈ C [n] are said to be stably equivalent if there exists a m ∈ N such that P and Q are equivalent polynomials of C [n+m] .

In this context, we have the following obvious generalization of Theorem 2.5' of [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF].

Lemma 3.4. For every q ∈ C [1] , the polynomials P q and P q(0) are stably equivalent.

Proof. The case n = 1 was proved in [START_REF] Moser-Jauslin | Embeddings of a family of Danielewski hypersurfaces and certain C + -actions on C 3[END_REF], where an explicit automorphism Φ of C[x, y, z, w], fixing x and satisfying Φ(x 2 y + z 2 + xq(z 2 )) = x 2 y + z 2 + xq(0), is constructed. Since this automorphism fixes x, it suffices to replace formally x by x [1] to get an automorphism of C[x, y, z, w] which maps P q onto P q(0) . For the sake of completeness, let us give the formula.

Let r ∈ C[t] be the polynomial such that the equality q(t) -q(0) = 2tr(t) holds. We let Φ(x i ) = x i for all 1 ≤ i ≤ n, Φ(z) = (1 -x [1] r(P q(0) ))z + x [2] w and Φ(w) = (1 + x [1] r(P q(0) ))w -(r(P q(0) )) 2 z. Note that Φ(z 2 + x [1] q(z 2 )) ≡ z 2 + x [1] q(0) mod (x [2] ). Therefore, we can choose Φ(y) ∈ C[x, y, z, w] such that Φ(P q ) = P q(0) . Doing so, we get an endomorphism (we will show that it is in fact an automorphism) Φ of C[x, y, z, w] which maps P q onto P q(0) .

Similarly, we define an endomorphism Ψ of C[x, y, z, w] such that Ψ(P q(0) ) = P q by posing Ψ(x i ) = x i for all 1 ≤ i ≤ n, Ψ(z) = (1 + x [1] r(P q ))z -x [2] w and Ψ(w) = (1 -x [1] r(P q ))w + (r(P q )) 2 z. Now, one checks that Φ • Ψ(z) = z and that Φ • Ψ(w) = w. Moreover, since Φ • Ψ(P q(0) ) = P q(0) , we have x [2] Φ • Ψ(y) + z 2 + x [1] q(0) = Φ • Ψ(P q(0) ) = P q(0) = x [2] y + z 2 + x [1] q(0). This implies that Φ • Ψ(y) = y. Therefore, Ψ is the inverse morphism of Φ. This proves the lemma.

Together with Propositions 2.5 and 3.2, Lemma 3.4 leads to many counterexamples to the "stable equivalence problem" of every dimension d ≥ 2. Finally, let us emphasize two particular examples.

Example 3.5.

(1) The polynomials P = x [2] y+z 2 +x [1] (z 2 -1)-1 and Q = x [2] y+z 2 +x [1] (z 2 -1)-1 of C[x, y, z] are stably equivalent, but the hypersurfaces V (P ) and V (Q) in C n+2 are not equivalent. Indeed, they are even non-isomorphic varieties. (2) The polynomials Q k = x [2] y+z 2 +x [1] (z 2 -1) k ∈ C[x, y, z] are stably equivalent for all k ≥ 1, whereas the hypersurfaces V (Q k ) ⊂ C n+2 are pairwise non-equivalent. However, the varieties V (Q k -c) and V (Q k ′ -c) are isomorphic for all k, k ′ ≥ 1 and every c ∈ C.