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Abstract. In this study, we discuss an approximate set of equations describing water

wave propagating in deep water. These generalized Klein–Gordon (gKG) equations pos-

sess a variational formulation, as well as a canonical Hamiltonian and multi-symplectic

structures. Periodic travelling wave solutions are constructed numerically to high accu-

racy and compared to a seventh-order Stokes expansion of the full Euler equations. Then,

we propose an efficient pseudo-spectral discretisation, which allows to assess the stability

of travelling waves and localised wave packets.

Key words and phrases: deep water approximation; spectral methods; travelling waves;

periodic waves; stability

∗ Corresponding author.



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Mathematical modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Model equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Symplectic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1 Canonical Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.2 Multi-symplectic structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.3 Conservation laws . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Travelling waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4.1 Stokes wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

5 Pseudo-spectral method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

6 Numerical results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.1 Periodic steady solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

6.2 Enveloppe soliton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.3 Shock wave formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

7 Conclusions and future work . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



D. Dutykh, M. Chhay & D. Clamond 4 / 24

1. Introduction

The water wave problem counts today more than 200 years of history (see A. Craik

(2004), [8]). Despite some recent progress [11, 15, 17, 18], the complete formulation remains
a mathematical difficult problem and a stiff numerical one. Consequently, researchers
have always been looking for specific physical regimes which would allow to simplify the
governing equations [47, 52]. There are two main regimes which attracted a particular
attention from the research community: shallow and deep water approximations [22, 32].

If λ is a characteristic wavelength and h is an average water depth, the shallow water
approximation consists to assume that h/λ≪ 1 or in other words, the water depth is much
smaller compared to the typical wavelength. This regime is relevant in coastal engineering
problems [29, 46, 54]. In open ocean only tsunami and tidal waves are in this regime
[12, 23].

The deep water approximation is exactly the opposite case when h/λ≫ 1, i.e. the water
depth is much bigger than the typical wavelength. In practice, some deep water effects
(defocussing type of the NLS equation) can already manifest when kh = 2πh/λ ≳ 1.36.
This regime is relevant for most wave evolution problems in open oceans [1]. In the present
paper, we present a detailed derivation of what we call a “generalized Klein–Gordon (gKG)”
equations using a variational principle [5]. To our knowledge, it is a novel model in deep
water regime. By making comparisons with the full Euler equations, we show that these
equations can, on some peculiar features, outperform the celebrated cubic Zakharov (cZ)
equations [24, 25]. Recently, a novel so-called compact Dyachenko–Zakharov equation was
proposed [14] which describes the evolution of the complex wave envelope amplitude in deep
waters. This promising equation results from a sequence of thoroughly chosen canonical
transformations, making the direct comparisons rather tricky.

The gKG equations have multiple variational structures. First of all, they appear as
Euler–Lagrange equations of an approximate Lagrangian that possesses also a canonical
Hamiltonian formulation [5]. In this study, we show that the gKG system can be recast
into the multi-symplectic form [3, 31] as well. The main idea behind this formulation is to
treat the time and space variables on equal footing [4] while, for instance in Hamiltonian
systems, the time variable is privileged with respect to the space. Based on this special
structure, numerous multi-symplectic schemes have been proposed for multi-symplectic
PDEs including the celebrated KdV and NLS equations [3, 34, 41, 56]. These schemes are
specifically designed to preserve exactly the discrete multi-symplectic form. However, these
schemes turn out to be fully implicit, thence advantageous only for long time simulations
using large time steps. Since in the present study we focus on the mid-range dynamics,
we opt for a pseudo-spectral method which can insure a high accuracy with an explicit
time discretisation [7, 17, 33, 49]. Since the periodic and localised solutions play an impor-
tant role in the nonlinear wave dynamics [38], we use the numerical method to study the
behaviour of these solutions.

The present paper is organised as follows. In Section 2 we briefly present the essence
of the deep water approximation and derive the gKG equations. In Secton 3, we discuss
some structural properties of the model and, in Section 4.1, we compare it to the classical
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Figure 1. Definition sketch of the fluid domain.

cubic Zakharov (cZ) equations. Periodic travelling wave solutions are computed in Sec-
tion 4. The numerical method for the gKG initial value problem is described in Section 5.
Some numerical tests are presented in Section 6. Finally, the last Section 7 contains main
conclusions of this study.

2. Mathematical modelling

Consider an ideal incompressible fluid of constant density ρ. The vertical projection of
the fluid domain Ω is a subset of R2. The horizontal independent variables are denoted
by x = (x1, x2) and the upward vertical one by y. The origin of the Cartesian coordinate
system is chosen such that the surface y = 0 corresponds to the still water level. The fluid
is bounded above by an impermeable free surface at y = η(x, t). We assume that the fluid
is unbounded below. This assumption constitutes the so-called deep water limiting case
which is valid if the typical wavelength is much smaller than the average water depth. The
sketch of the physical domain is shown in Figure 1.

2.1. Fundamental equations

Assuming that the flow is incompressible and irrotational, the governing equations of
the classical water wave problem over an infinite depth are the following [27, 32, 47, 52]:

∇
2φ + ∂ 2

y φ = 0 −∞ ⩽ y ⩽ η(x, t), (2.1)

∂tη + (∇φ) ⋅ (∇η) − ∂y φ = 0 y = η(x, t), (2.2)

∂tφ + 1

2
(∇φ)2 + 1

2
(∂yφ)2 + g η = 0 y = η(x, t), (2.3)

∣gradφ∣ → 0 y → −∞, (2.4)

with φ being the velocity potential (i.e. , u = ∇φ, v = ∂yφ), g the acceleration due to gravity
and where ∇ = (∂x1

, ∂x2
) denotes the gradient operator in horizontal plane.

The incompressibility condition leads to the Laplace equation for φ. The main difficulty
of the water wave problem lies on the nonlinear free boundary conditions and that the free
surface shape is unknown. Equation (2.2) expresses the free-surface kinematic condition,
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while the dynamic condition (2.3) expresses the free surface isobarity. Finally, the last
condition (2.4) means that the velocity field decays to zero as y → −∞.

The water wave problem possesses several variational structures [28, 40, 51, 55]. In
the present study, we will focus mainly on the Lagrangian variational formalism, but not
exclusively. Surface gravity wave equations (2.1)-(2.3) can be derived as Euler–Lagrange
equations of a functional proposed by Luke [28]

L = ∫
t2

t1
∫
Ω

L ρ d2xdt, L = −∫
η

−∞
[ g y + ∂t φ + 1

2
(∇φ)2 + 1

2
(∂y φ)2 ] dy. (2.5)

In a recent study, Clamond & Dutykh [5] proposed to use Luke’s Lagrangian (2.5) in
the following relaxed form

L = (ηt + µ̃ ⋅∇η − ν̃) φ̃ − 1

2
g η2

+ ∫
η

−∞
[µ ⋅u − 1

2
u2 + νv − 1

2
v2 + (∇ ⋅µ + νy)φ ]dy, (2.6)

where {u, v,µ, ν} are the horizontal velocities, the vertical velocity and the associated
Lagrange multipliers, respectively. The additional variables {µ, ν} (Lagrange multipliers)
are called pseudo-velocities. The over ‘tildes’ denote a quantity computed at the free
surface y = η(x, t).

While the original Lagrangian (2.5) incorporates only two variables (η and φ), the relaxed
Lagrangian density (2.6) involves six variables {η,φ,u, v,µ, ν}. These additional degrees
of freedom provide us with more flexibility in constructing various approximations. For
more details, explanations and examples we refer to [5].

2.2. Model equations

Now, we illustrate the practical use of the variational principle (2.6) on an example
borrowed from [5]. For progressive waves in deep water, the Stokes expansion shows that
the velocity field varies nearly exponentially along the vertical. Even for very large unsteady
waves (including breaking waves), accurate numerical simulations and experiments have
shown that the vertical variation of the velocity field is indeed very close to an exponential
[19, 21]. Thus, this property is exploited here to derive a simple approximation for waves
in deep water.

Let κ > 0 be a characteristic wavenumber corresponding, for example, to the carrier wave
of a modulated wave group or to the peak frequency of a JONSWAP spectrum. Following
the discussion above, it is natural to seek approximations in the form

{φ ; u ; v ; µ ; ν } ≈ { φ̃ ; ũ ; ṽ ; µ̃ ; ν̃ } eκ(y−η), (2.7)

where φ̃, ũ, ṽ, µ̃ and ν̃ are functions of x and t that will be determined using the varia-
tional principle. The ansatz (2.7) iscertainly the simplest possible that is consistent with
experimental evidences. This ansatz has already been used by Kraenkel et al. [26] for
building their approximation.
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For the sake of simplicity, we introduce the constraints µ̃ = ũ and ν̃ = ṽ. Thus, the
ansatz (2.7) substituted into the Lagrangian density (2.6) yields

2κL = 2κ φ̃ ∂tη − gκη2 + 1

2
ũ2 + 1

2
ṽ2 − ũ ⋅ (∇φ̃ − κφ̃∇η) − κ ṽ φ̃. (2.8)

The Euler–Lagrange equations for this functional yield

δ ũ ∶ 0 = ũ − ∇φ̃ + κ φ̃∇η,

δ ṽ ∶ 0 = ṽ − κ φ̃,

δ φ̃ ∶ 0 = 2κ∂tη + ∇ ⋅ ũ − κ ṽ + κ ũ ⋅ ∇η,

δ η ∶ 0 = 2gκη + 2κ∂tφ̃ + κ∇ ⋅ ( φ̃ ũ ).

The two first relations imply that this approximation is exactly irrotational and their use
in the last two equations gives

∂tη + 1

2
κ−1∇2φ̃ − 1

2
κφ̃ = 1

2
φ̃ [∇2η + κ (∇η)2 ] , (2.9)

∂tφ̃ + g η = −1

2
∇ ⋅ [ φ̃∇φ̃ − κ φ̃2∇η ] . (2.10)

Since equations (2.9)–(2.10) derive from an irrotational motion, they can also be obtained
from Luke’s Lagrangian (2.5) under ansatz (2.7). However, we prefer to keep the heavy
machinery of the relaxed variational principle since it allows to derive new models which
cannot be obtained from Luke’s variational principle. These examples will be investigated
in future works. Equations (2.9)–(2.10) physically are a deep water counterpart of Saint-
Venant equations for shallow water waves, in the sense given in [5].

Remark 1. To the linear approximation, after elimination of φ̃, equations (2.9)–(2.10)
yield

∂ 2

t η − 1

2
(g/κ)∇2η + 1

2
g κη = 0, (2.11)

that is a Klein–Gordon equation. For this reason, equations (2.9)–(2.10) are referred here
as “generalized Klein–Gordon (gKG)”. The Klein–Gordon equation is prominent in mathe-
matical physics and appears, e.g., as a relativistic generalisation of the Schrödinger equation.
The Klein–Gordon equation (2.11) admits a special (2π/k)-periodic traveling wave solution

η = a cosk(x1 − ct), c2 = 1

2
g (k2 + κ2) (κk2)−1.

Therefore, if k = κ the exact dispersion relation of linear waves ( i.e. , c2 = g/k) is recovered,
as it should be. This means, in particular, that the gKG model is valid for spectra narrow-
banded around the wavenumber κ.

3. Symplectic structures

In this section we unveil two other variational structures of the gKG equations.
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3.1. Canonical Hamiltonian

It is straightforward to verify that the gKG equations possess a canonical Hamiltonian
structure

(∂tη
∂tφ̃
) = J ⋅ (δH / δφ̃

δH / δη) , J = (0 −1
1 0

) ,
with the Hamiltonian functional H is defined as

H = ∫
Ω

{ 1

2
g η2 + 1

4
κ−1 [∇φ̃ − κ φ̃∇η ]2 + 1

4
κ φ̃2 } d2x. (3.1)

This ‘simple’ Hamiltonian H is quartic in nonlinearities and involves only first-order deriva-
tives. It has to be compared with Zakharov’s quartic Hamiltonian which involves second-
order derivatives and pseudo-differential operators. However, Zakharov’s quartic Hamil-
tonian is valid for broad spectra, while the gKG are limited to very narrow-banded spectra.
Note that the Hamiltonian (3.1) cannot be derived from the exact one, since the latter
assumes that irrotationality and incompressibility are both satisfied identically in the bulk,
while the incompressibility is not fulfilled by equations (2.9)–(2.10).

3.2. Multi-symplectic structure

In addition to the Lagrangian and Hamiltonian formulations, the gKG equations (2.9)–
(2.10) can be recast into a first-order PDE system:

2κ∂tη + ∇ ⋅ ũ = κ2 φ̃ − κ ũ ⋅α, (3.2)

−2κ∂tφ̃ − ∇ ⋅ γ = 2κg η, (3.3)

−∇φ̃ = −ũ − κ φ̃α, (3.4)

∇η = α, (3.5)

0 = γ − κ φ̃ ũ, (3.6)

where α = (α1, α2) and γ = (γ1, γ2) are auxiliary variables. These relations yield the
multi-symplectic canonical structure

M ⋅ z⃗t + K1 ⋅ z⃗x1
+ K2 ⋅ z⃗x2

= gradz⃗ S(z⃗), (3.7)

where z⃗ = (φ̃, η, ũ1, ũ2, γ1, γ2, α1, α2)T ∈ R8, S is the generalised Hamiltonian function

S(z⃗) = α ⋅ γ + κg η2 + 1

2
(κφ̃)2 − κ φ̃ ũ ⋅α − 1

2
ũ ⋅ ũ,

and where the eight-by-eight skew-symmetric matrices M, K1 and K2 are defined as

M = 2κ (e⃗1 ⊗ e⃗2 − e⃗2 ⊗ e⃗1) , (3.8)

K1 = e⃗1 ⊗ e⃗3 − e⃗3 ⊗ e⃗1 + e⃗5 ⊗ e⃗2 − e⃗2 ⊗ e⃗5, (3.9)

K2 = e⃗1 ⊗ e⃗4 − e⃗4 ⊗ e⃗1 + e⃗6 ⊗ e⃗2 − e⃗2 ⊗ e⃗6, (3.10)

e⃗j being j-th unitary vector of the Cartesian coordinates for the R8 space (⊗ the tensor
product).
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3.3. Conservation laws

The local multi-symplectic conservation law for (3.7) is

∂t ω + ∇ ⋅ τ = 0,

where the pre-symplectic forms are defined, for any solution of the first variation of (3.7),
as

ω = 1

2
dz⃗ ∧ (M ⋅ dz⃗), τ1 = 1

2
dz⃗ ∧ (K1 ⋅ dz⃗), τ2 = 1

2
dz⃗ ∧ (K2 ⋅ dz⃗),

that is to say

ω = 2κdη ∧ dφ̃, τ1 = dũ1 ∧ dφ̃ + dγ1 ∧ dη, τ2 = dũ2 ∧ dφ̃ + dη ∧ dγ2,

where ∧ is the usual exterior or wedge product [3, 37].
Along the multi-symplectic system solutions, local energy conservation law is verified

∂tE(z⃗) + ∇ ⋅F (z⃗) = 0,

with

E = S − 1

2
z⃗T
⋅K1 ⋅ z⃗x1

−
1

2
z⃗T
⋅K2 ⋅ z⃗x2

, Fj = 1

2
z⃗T
⋅Kj ⋅ z⃗t,

which can be explicitly expressed in terms of the physical variables as

2E = 2κg η2 − ũ2
+ (κφ̃)2 − κ φ̃ ũ ⋅ ∇η + κη∇ ⋅ (φ̃ũ) − φ̃∇ ⋅ ũ + ũ ⋅ ∇φ̃,

2F = κ φ̃ ũ∂tη − κη ∂t(φ̃ũ) + φ̃ ∂tũ − ũ∂tφ̃.

There exists also two local momentum conservation laws associated to each spatial direction

∂t I1(z⃗) + ∂x1
G11(z⃗) + ∂x2

G12(z⃗) = 0,

∂t I2(z⃗) + ∂x1
G21(z⃗) + ∂x2

G22(z⃗) = 0,

the corresponding quantities being

2 Ij = z⃗T
⋅M ⋅ z⃗xj

= 2κ (φ̃ ∂xj
η − η ∂xj

φ̃) ,
2G12 = z⃗T

⋅K2 ⋅ z⃗x1
= κ φ̃ ũ2 ∂x1

η − κη ∂x1
(φ̃ũ2) + φ̃ ∂x1

ũ2 − ũ2 ∂x1
φ̃,

2G21 = z⃗T
⋅K1 ⋅ z⃗x2

= κ φ̃ ũ1 ∂x2
η − κη ∂x2

(φ̃ũ1) + φ̃ ∂x2
ũ1 − ũ1 ∂x2

φ̃,

2G11 = 2S − z⃗T
⋅M ⋅ z⃗t − z⃗T

⋅K2 ⋅ z⃗x2

= 2κg η2 + (κφ̃)2 − ũ2
+ 2κ (η ∂tφ̃ − φ̃ ∂tη )

− (κ φ̃ ũ2 ∂x2
η − κη ∂x2

(φ̃ ũ2) + φ̃ ∂x2
ũ2 − ũ2 ∂x2

φ̃) ,
2G22 = 2S − z⃗T

⋅M ⋅ z⃗t − z⃗T
⋅K1 ⋅ z⃗x1

= 2κg η2 + (κφ̃)2 − ũ2
+ 2κ (η ∂tφ̃ − φ̃ ∂tη )

− (κ φ̃ ũ1 ∂x1
η − κη ∂x1

(φ̃ ũ1) + φ̃ ∂x1
ũ1 − ũ1 ∂x1

φ̃) .
The multi-symplectic form highlighted above can be used to construct various numerical

multi-symplectic schemes which preserve exactly the multi-symplectic form at the discrete
level [3, 34, 41, 56, 4]. These schemes are suitable for the long time integration using
rather coarse discretizations [13]. Since in the present manuscript we focus on mid-range,
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but highly accurate simulations we opt for the pseudo-spectral discretizations. However,
the multi-symplectic framework seems to be very promising for long time dynamics inves-
tigations employing only a moderate number of the degrees of freedom. The conserved
quantities derived above can be used to assess the accuracy of the numerical solution, even
if their physical meaning is not clear at the current stage.

4. Travelling waves

For the sake of simplicity we will consider hereinafter the special case of two-dimensional
wave motions, i.e. the dependent variables are independent of, say, the variable x2; for
brevity, we denote x = x1 and u = u1. The equations of motions become

ũ = φ̃x − κ φ̃ ηx, (4.1)

ṽ = κ φ̃, (4.2)

0 = 2κηt + ũx − κ ṽ + κ ũ ηx, (4.3)

0 = 2 g κη + 2κ φ̃t + [ ũ ṽ ]x, (4.4)

which can be reduced into a two equations system

ηt +
1

2
κ−1 φ̃xx −

1

2
κ φ̃ = 1

2
φ̃ [ηxx + κη 2

x ] , (4.5)

φ̃t + g η = −1

2
[ φ̃ φ̃x − κ φ̃2 ηx ]x . (4.6)

The equations can be combined to derive useful secondary relations. For instance, we
derive the conservative equations

ũt + [ 34 ũ2
+

1

4
ṽ2 + g η (1 − 1

2
κη) ]

x
= 0, (4.7)

[ 1
2
g κη2 + 1

4
(ũ2
+ ṽ2) ]

t
+ [ 1

2
ũ (ṽ ηt − φ̃t) ]x = 0, (4.8)

which physically describe (after division by κ) the conservations of the momentum and
energy fluxes, respectively.

For traveling waves of permanent form, the dependent variables are functions of the
single independent variable ξ = x−ct. The equations (4.7) and (4.8) can then be integrated
as

3

4
ũ2
+

1

4
ṽ2 + g η (1 − 1

2
κη) − c ũ = Kp, (4.9)

1

2
g κη2 − 1

4
ũ2
+

1

4
ṽ2 = Ke, (4.10)

where Kp and Ke are integration constants. Adding these two relations, one obtains

1

2
ũ2
+

1

2
ṽ2 + g η − c ũ = Kp + Ke, (4.11)

which is the Bernoulli equation, Kp +Ke being a Bernoulli constant. Subtracting the two
relations, one gets at once

ũ2
+ g η (1 − κη) − c ũ = Kp − Ke, (4.12)
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that can be used to express ũ in terms of η (or vice-versa), i.e. ,

ũ = 1

2
c ±

√
Kp − Ke +

1

4
c2 − g η (1 − κη) , (4.13)

ũξ = g ηξ (1 − 2κη) / (c − 2ũ). (4.14)

With these relations, the Lagrangian density (2.8) becomes

2κL = −2 c ṽ ηξ − g κη2 − 1

2
ũ2
−

1

2
ṽ2

= 2 c η 2

ξ [2 c − ũ − (g/κ) (1 − 2κη) / (c − 2ũ) ] − ũ2
− 2Ke, (4.15)

where ũ should be expressed via (4.13). An equation for η is then obtained from the
Beltrami identity

L − ηξ
∂L

∂ηξ
= constant ≡ (Kb − 2Ke) /2κ,

yielding

(dη
dξ
)2 = κ (Kb + ũ2) (c − 2ũ)

2 c [g (1 − 2κη) + κ (2c − ũ) (c − 2ũ) ] , (4.16)

where ũ is given by (4.13). Unfortunately, we were not able to solve equation (4.16) ana-
lytically. However, this solution might be useful for theoretical investigations of travelling
waves. In order to construct these solutions numerically to high accuracy (∼ 10−10), we em-
ploy a Newton Jacobian-free method combined with the Levenberg–Marquardt algorithm
[35]. The computed profiles will be shown below in Section 6.

4.1. Stokes wave

Despite the fact that we were not able to find exact analytical solutions to the gKG
equations, a Stokes-type expansion can help us to evaluate the accuracy of the approximate
model. To the seventh-order, a asymptotic expansion of the (2π/κ)-periodic progressive
wave of gKG equations is [5]:

κη = α cos ξ + 1

2
α2(1+ 25

12
α2
+

1675

192
α4) cos 2ξ

+
3

8
α3(1+ 99

16
α2
+

11807

320
α4) cos 3ξ + 1

3
α4(1+ 64

5
α2) cos 4ξ

+
125

384
α5(1+ 6797

300
α2) cos 5ξ + 27

80
α6 cos 6ξ + 16807

46080
α7 cos 7ξ + O(α8),

g−
1

2κ
3

2 φ̃ = α (1− 1

4
α2
−

59

96
α4
−

4741

1536
α6) sin ξ + 1

2
α2(1+ 11

12
α2
+

547

192
α4) sin 2ξ

+
3

8
α3(1+ 163

48
α2
+

221

15
α4) sin 3ξ + 1

3
α4(1+ 149

20
α2) sin 4ξ

+
125

384
α5(1+ 5057

375
α2) sin 5ξ + 27

80
α6 sin 6ξ + 16807

46080
α7 sin 7ξ + O(α8),

g−
1

2κ
1

2 c = 1 + 1

2
α2
+

1

2
α4
+

899

384
α6
+ O(α8).
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For comparison, the corresponding seventh-order Stokes expansion of the full Euler equa-
tions in deep water is given by the following formulas

κη = α cos ξ + 1

2
α2(1+ 17

12
α2
+

233

64
α4) cos 2ξ

+
3

8
α3(1+ 51

16
α2
+

3463

320
α4) cos 3ξ + 1

3
α4(1+ 307

60
α2) cos 4ξ (4.17)

+
125

384
α5(1+ 10697

1500
α2) cos 5ξ + 27

80
α6 cos 6ξ + 16807

46080
α7 cos 7ξ + O(α8),

g−
1

2κ
3

2 φ̃ = α (1− 1

4
α2
−

43

96
α4
−

2261

1536
α6) sin ξ + 1

2
α2(1+ 7

12
α2
+

81

64
α4) sin 2ξ

+
3

8
α3(1+ 281

144
α2
+

5813

1080
α4) sin 3ξ + 1

3
α4(1+ 431

120
α2) sin 4ξ (4.18)

+
125

384
α5(1+ 3369

625
α2) sin 5ξ + 27

80
α6 sin 6ξ + 16807

46080
α7 sin 7ξ + O(α8),

g−
1

2κ
1

2 c = 1 + 1

2
α2
+

1

2
α4
+

707

384
α6
+O(α8), (4.19)

The expansions of η and φ̃ of the gKG periodic solution match the exact Stokes wave up
to the third-order (non-matching coefficients are displayed in bold). This is not surprising
since the gKG equations are cubic in nonlinearities. However, it is much more surprising
is that the phase velocity c is correct up to the fifth-order.

5. Pseudo-spectral method

We briefly describe below a highly accurate Fourier-type pseudo-spectral method [2, 49]
that we use to simulate the dynamics of the gKG equations. These methods have been
proven to be extremely efficient (practically unbeatable) in the idealised periodic setting [2].
Below we show that the gKG system can be integrated up to the Riemann wave breaking
using the proposed pseudo-spectral scheme.

With V = (η, φ̃)T denoting the vector of dynamic variables, the gKG system (2.9), (2.10)
can be recast in the vector form

Vt + L ⋅ V = N(V ), (5.1)

where the operator N denotes the right-hand side of equations (2.9), (2.10) and the linear
operator L is defined as

L = [ 0 ∇
2−κ2

2κ

g 0
] , L̂ = [ 0 − ∣k∣2+κ2

2κ

g 0
] ,

where L̂ is the operator L in Fourier space. The equation (5.1) is solved applying the
Fourier transform in the spatial variable x. The transformed variables is denoted by
V̂ (t,k) = F{V (t,x)}, k being the Fourier transform parameter. The nonlinear terms are
computed in the physical space, while spatial derivatives are computed spectrally in the
Fourier space. For example, the term φ̃∇2η is discretised as:

F { φ̃∇2η } = F {F−1 (φ̂) × F−1{−∣k∣2η̂}} .
The other nonlinear terms are treated in a similar way. We note that the usual three-half
rule has to be applied for anti-aliasing [7, 17, 49].
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In order to improve the stability of the time discretisation procedure, we integrate exactly
the linear terms. This is achieved by making a change of variables [17, 33]:

Ŵ (t) = exp((t − t0)L̂) ⋅ V̂ (t), Ŵ (t0) = V̂ (t0), (5.2)

yielding the equation

Ŵt = exp((t − t0)L̂) ⋅ F {N(exp((t0 − t)L̂) ⋅ Ŵ)} .
The exponential matrix of the operator L̂ can be explicitly computed to give

exp((t − t0)L̂) = [ cos(ω(t − t0)) −(ω/g) sin(ω(t − t0))(g/ω) sin(ω(t − t0)) cos(ω(t − t0)) ] , ω2 =
g κ

2
+

g ∣k∣2
2κ

.

Finally, the resulting system of ODEs is discretised in space by the Verner’s embedded
adaptive 9(8) Runge–Kutta scheme [50]. The step size is chosen adaptively using the so-
called H211b digital filter [44, 45] to meet the prescribed error tolerance, set as of the order
of machine precision.

6. Numerical results and discussion

6.1. Periodic steady solutions

We begin the numerical study of gKG equations by computing numerically steady pe-
riodic Stokes-like solutions. We employ the Newton Levenberg–Marquardt method which
tends to the steepest descent far from the solution (to ensure the convergence) and be-
comes the classical Newton method in the vicinity of the root [35]. Then, we compare
the computed profile to the seventh-order Stokes expansion to the full Euler equations
(4.17)–(4.19). In order to fix the ideas, we choose the wavelength to be λ ≡ 2ℓ = 2π, i.e. the
computational domain is [−ℓ, ℓ]. Consequently, the parameter κ = 2π/λ = 1. For simplicity,
we take also g = 1 m/s2. In steady computations, we use only N = 128 Fourier modes. It is
sufficient to compute to high accuracy (∼ O(10−9)) the numerical solution at the collocation
points.

The comparison for various steepnesses is shown on Figure 2. We recall that the steepness
ε of a periodic wave is defined as

ε ≡ 1

2
(a+ − a−)κ, a+ ≡ max

x
{η(x)}, a− ≡ min

x
{η(x)}.

One can see on Figure 2 that the differences with the reference solution (4.17)–(4.19) are
unnoticeable (to the graphical resolution) up to ε ∼ 0.29. Additionally to the shape, it is
also instructive to compare the speed of travelling wave propagation with respect to the
exact asymptotic result (4.19). The comparison is shown on Figure 3. The agreement
up to very high steepnesses ε ∼ 0.28 is excellent. By using the numerical continuation
techniques, we can compute the travelling wave solutions up to ε ∼ 0.30. It is interesting
that at this steepness the periodic wave starts to develop an angular singularity at the
crest similarly to the classical limiting Stokes wave theory [48]. This shape is represented
on Figure 4. However, for the full Euler equations the limiting wave steepness is equal to
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Figure 2. Comparison of the travelling wave solutions to the gKG equations

with the seventh-order Stokes solution for various values of the wave steepness
parameter. The wavelength is fixed to 2π.

ε ∼ 0.4432 [53]. Nevertheless, we find the agreement to be quite satisfactory considering
that the gKG model has not been designed to represent such extreme solutions.

In order to validate further the computed travelling wave profiles, we use the dynamic
solver described in Section 5. Consider the computational domain composed of 16 periodic
waves with steepness ε = 0.095. The discretization was done with N = 4096 Fourier modes.
This initial condition was propagated up to T = 250, which corresponds to approximatively
∼ 40 wave periods. As one can see on Figure 5, the initial wave system propagates uniformly
in space without changing its shape. This simulation shows again that travelling waves
were computed correctly. To test the stability of these solutions we consider the same initial
condition with a long (∼ 4 wavelengths) and short (∼ 1/4 wavelength) wave perturbations.
Both situations were simulated numerically on the same time scale and results are presented
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Figure 3. Speed–steepness relation for periodic steady waves: blue solid line —
the gKG equations, red dashed line — seventh-order Stokes expansion. The
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Figure 4. Periodic travelling wave to the gKG equations for the steepness
parameter ε = 0.29967.
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(a) Long perturbation (b) Short perturbation

Figure 5. Evolution of 16 wavelengthes of computed periodic travelling waves
for ε = 0.0954 during about 160 periods: (a) long wave perturbation; (b) short

wave perturbation.

on Figures 5(a,b). We can see that the travelling wave solutions in the gKG equations
appear to be stable. However, a more detailed study is needed to answer this question
with more certitude.

6.2. Enveloppe soliton

In this Section, we consider an example stemming from the wave packet propagation
theory on deep waters. As it was shown for the first time by Zakharov [55], the free
surface complex envelope A(x, t) is governed by the classical Nonlinear Schrödinger Equa-
tion (NLS) [6, 20, 55]:

At + cg Ax +
i cg

4k0
Axx +

iω0 k
2
0

2
A ∣A∣2 = 0, (6.1)

where ω0 =
√
gk0 and cg = ∂ω0/∂k0 = ω0/2k0 is the linear group velocity. Equation (6.1)

admits the envelope soliton solution:

A(x, t) = a sech(√2k2

0(x − cgt)) exp(−ia2k2

0ω0t/4). (6.2)

The free surface elevation η(x, t) and the velocity potential φ(x, t) can be recovered from
the complex envelope A(x, t) in the following way:

η(x, t) = Re{A(x, t) ei(k0x−ω0t)}, φ(x, t) = Re{− iω0

k0
A(x, t) ei(k0x−ω0t)}. (6.3)

The evolution of this envelope soliton in higher-order models was studied in [6, 20]. Con-
sequently, we put this localised structure as the initial condition in the gKG equations.
Consider the computational domain [−128,128] with periodic boundary conditions and
the envelope soliton (6.2) (transformed to physical variables using formulas (6.3)) with
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Figure 6. Space–time plot of a localized wave packet under the gKG dynamics.

a = 0.1, κ ≡ k0 = 1.0 and g = 1. We simulated the evolution of this wave packet until
T = 1000.0 which was sufficient for the packet to go around the computational domain
three times. The space-time evolution is shown on Figure 6 and several individual snap-
shots of the free surface elevation are shown on Figure 7. The shape of the envelope
soliton is not preserved exactly, of course. However, during short times the preservation
is satisfactory. On snapshots 7 (b & c) one can notice a small wavelet travelling in the
opposite direction. The general effect is the broadening of the wave packet in agreement
with previous investigations [42, 43].

6.3. Shock wave formation

Finally, we present an additional test-case where the gKG system shows an interesting
behaviour. The initial condition is taken to be a localised bump on the free surface with
zero initial velocity:

η(x,0) = a sech2(kx), φ̃(x,0) = 0.

All the values of physical and numerical parameters are given in Table 1. The space-time
dynamics of this system is shown on Figure 10 and several snapshots of the free surface
elevation are depicted on Figure 8. The particularity of this simulation consists in two
shock waves which develop at the free surface. The snapshot at the final simulation time
T is shown on the upper panel of Figure 9. One can clearly see the sharp transitions at the
free surface. It is even more instructive to look at the energy spectrum which is depicted
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Figure 7. Evolution of initially localized wave packet under the gKG dynamics.

Gravity acceleration: g [ms
−2] 1.0

Characteristic wavenumber: κ [m−1] 0.7

Computational domain half-length: ℓ [m] π

Final simulation time: T [s] 11.5

Initial condition amplitude: a [m] 0.1

Initial bump width: k [m−1] π

Number of Fourier modes: N 4096

Table 1. Physical and numerical parameters used for the simulation of the
shock wave formation in gKG equations.

on the bottom panel of the same Figure. For the sake of comparison, we plot also the
energy spectrum of a breaking Riemann wave which was recently shown to be exactly of
the form ∣η̂k∣2 ∼ k−8/3 [36, 39]. This excellent agreement shows that the gKG system may
produce wave breaking of the similar type as classical shallow-water type systems. This
result was to be expected since the gKG system is a deep water counterpart of the classical
Saint-Venant equations [9].

7. Conclusions and future work

We discussed the derivation of some generalized Klein–Gordon (gKG) equations, which
are a new model for water waves propagating in deep water approximation. This model
already appeared as an illustration for the relaxed variational formulation [5]. However, in
the present study, the structure of this model is further investigated and a multi-symplectic
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Figure 8. Several snapshots of an initial bump evolution. See also Figure 10.
Free surface at the final simulation time is shown on Figure 9.
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Figure 9. Free surface elevation and the energy spectrum at the final simulation
time T = 11.5 s. The red dotted line shows the theoretical prediction of a
Riemann wave breaking spectrum [36, 39].

formulation was proposed. Moreover, we computed periodic travelling wave solutions and
we showed that they approximate fairly well the corresponding solutions of the full Euler
equations, including the formation of a limiting wave with a singular point at the crest
[30, 48].

The dynamics of regular periodic waves was studied and these solutions appear to be
stable under long and short wave perturbations. Finally, we showed also that solutions of
gKG equations may produce the shock wave formation phenomenon of the similar type as
the breaking of Riemann waves in shallow water models [36, 39]. To our knowledge, it is
the first approximate model in deep waters which shows this behaviour.

Although the results presented in this paper are encouraging, further investigations
would be necessary to assess the relevance and limitations of the generalized Klein–Gordon
(gKG) for modelling water waves in deep water. The comparisons with the compact
Dyachenko–Zakharov equation [14, 16] might be interesting. However, the gKG equations
may also be a relevant model in contexts different from water waves.

Concerning the perspectives, the stability of periodic travelling wave solutions to the
gKG equations has to be properly studied using the Floquet theory [10]. Moreover, all the
simulations presented hereinabove were performed in (1+1)D wave propagation. Similar
numerical analysis has to be performed in (2+1)D as well.
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Figure 10. Space–time dynamics of an initial bump posed on the free surface in
the gKG equations.
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