Numerical study of the generalised Klein-Gordon equations - Archive ouverte HAL Access content directly
Journal Articles Physica D: Nonlinear Phenomena Year : 2015

Numerical study of the generalised Klein-Gordon equations


In this study, we discuss an approximate set of equations describing water wave propagating in deep water. These generalized Klein-Gordon (gKG) equations possess a variational formulation, as well as a canonical Hamiltonian and multi-symplectic structures. Periodic travelling wave solutions are constructed numerically to high accuracy and compared to a seventh-order Stokes expansion of the full Euler equations. Then, we propose an efficient pseudo-spectral discretisation, which allows to assess the stability of travelling waves and localised wave packets.
Fichier principal
Vignette du fichier
DD_MC_DC-2015.pdf (1.21 Mo) Télécharger le fichier
Origin : Files produced by the author(s)

Dates and versions

hal-00851030 , version 1 (12-08-2013)
hal-00851030 , version 2 (15-03-2015)


Attribution - NonCommercial - ShareAlike



Denys Dutykh, Marx Chhay, Didier Clamond. Numerical study of the generalised Klein-Gordon equations. Physica D: Nonlinear Phenomena, 2015, 304-305, pp.23-33. ⟨10.1016/j.physd.2015.04.001⟩. ⟨hal-00851030v2⟩
457 View
475 Download



Gmail Facebook Twitter LinkedIn More