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Data dispersion near the boundaries:   
can it partially explain the problems of decision and utility theories?   

 
Alexander Harin 

aaharin@yandex.ru 
Modern University for the Humanities 

 
An existence theorem for non-zero restrictions on the mean of a 

function on a finite interval in the presence of a non-zero dispersion 
of the function is proved.  Here, "restriction" means the existence of 
a fixed distance from a border of the interval.  Within this distance, it 
is impossible for the mean to be located. Equivalently, this is the 
width of a "forbidden zone" for the mean.  The aims are to use this 
theorem in experiments interpretation, probability theory, statistics, 
economics and management.  The ultimate aims are to help answer 
the Aczél-Luce question of whether  W(1)=1  and to explain, at least 
partially, the well-known problems of decision and utility theory, 
such as risk aversion, the underweighting of high and the 
overweighting of low probabilities, the Allais paradox, the four-fold 
pattern paradox, etc.  All these ultimate aims should be attained by 
purely mathematical methods.   
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Introduction 

 
This article presents the first part of the whole research.  The research was 

motivated by the paradoxes of decision and utility theory.  The analysis of such 
paradoxes was started in 1738 by Bernoulli in [1].  Examples of these paradoxes 
include the Allais paradox [2], the Ellsberg paradox [3], the "four-fold pattern" 
paradox (see, e.g., [4]), etc.  In 2002 Kahneman received the Prize in Economic 
Sciences in Memory of Alfred Nobel for research in this field.  In 2006, Kahneman 
and Thaler [5] pointed out that preferences inconsistencies in the paradoxes have 
still not been adequately overcome.   
 

One possible way to solve these paradoxes was widely discussed, e.g., in [6]-
[8].  The essence of this way consists in a proper attention to noise, imprecision, and 
other reasons that might cause dispersion, scattering, or spread of the data.   
 

Aczél and Luce [9] emphasized a fundamental question: whether  W(1)=1  
(whether Prelec’s weighting function is equal to  1  at  p=1).  This question opens 
one more way which consists in paying proper attention to the boundaries.   
 

The research partially presented in this article combines these two ways.  That 
is, it considers a dispersion of the data near the boundaries (or influence of a 
dispersion of the data near the boundaries).   
 

Simple considerations of the research have an applied mathematical character 
but a significant practical importance.  The ultimate aims are to provide pure 
mathematical support both for works that are based on the dispersion of data and for 
works that are concerned the Aczél-Luce question (or Luce question).   
 

This article, as the first part of the research, deals with the general case of the 
restrictions on the mean of a function on finite intervals in the presence of a non-
zero dispersion of the function.   

The second part of the research will deal with the estimation of restriction 
values.   

The third part of the research will deal with restrictions on the probability 
estimation and for the probability.   

The fourth part of the research will deal with possible explanations of the 
above mentioned paradoxes of utility and decision theory and with the Aczél-Luce 
question.   

The results may be used to estimate preferences, choices, decisions, 
(ir)rational behavior at data uncertainty, noises, experimental errors in management, 
investment, insurance, etc. 
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An illustrative example of restrictions 

Two points 
 

Let us suppose given an interval  [A, B]  (see Figure 1).  Let us suppose that 
two points are determined on this interval:   a left point  xLeft  and a right point     
xRight : xLeft<xRight.  The coordinates of the middle, mean point may be calculated as  
M=(xLeft+xRight)/2.   

 
Figure 1. An interval  [A, B].  Left  xLeft,  right  xRight   

and middle,  mean  M  points on it 
 

Let us suppose that  xRight-xLeft≥2σ=2Constσ>0.  So, of course,  xRight≥xLeft+2σ  
and  xLeft≤xRight-2σ.   For the sake of simplicity,  Figures 1-3 represent the case of the 
equality  xRight-xLeft=2σ  and also, of course,  xRight=xLeft+2σ,    xLeft=xRight-2σ  and  
M-xLeft=xRight-M=σ=Constσ>0.   

So,  M=xLeft+σ>xLeft  and  M=xRight-σ<xRight.   
 

Suppose further that  xLeft≥A  and  xRight≤B.   
 

One can easily see that two types of zones for  M  can exist in the interval:   
1)  The mean point  M  can be located only in the zone which will be referred 

to as "allowed" (see Figure 2).   
2)  The mean point  M  cannot be located in the zones which will be referred 

to as "forbidden" (see Figure 3).   
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Allowed zone 

 
Due to the conditions of the example, the left point  xLeft  may not be located 

further left than the left border of the interval  xLeft≥A  and the right point  xRight  may 
not be located further right than the right border of the interval  xRight≤B.   

For  M,  we have  M=xLeft+σ≥A+σ>A  and  M=xRight-σ≤B-σ<B  (see Figure 2).   

 
Figure 2. Allowed zone for  M 

 
The width of the allowed zone for  M  is equal to   

σσσ 2)()( −−=+−− ABAB .  
It is less than the width  (B-A)  of the total interval  [A, B]  by 2σ.  Also, the allowed 
zone is a proper subset of the total interval.   
 

If the distance  2σ  between the left  xLeft  and right  xRight  points is non-zero, 
then the difference between the width of the allowed zone and the width of the 
interval is non-zero also.  If the distance is greater than 2σ, then the difference is 
greater than 2σ  also.   
 

So, the mean point  M  can be located only in the allowed zone of the interval.   
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Forbidden zones, restrictions 

 
Let us define the term "restriction" for the purposes of this article:   
Definition.  A restriction (more exactly, a restriction on the mean) signifies 

the impossibility for the mean to be located closer to a border of the interval than 
some fixed distance.  In other words, a restriction implies here a forbidden zone for 
the mean near a border of the interval.   

The value of a restriction or the width of a forbidden zone signifies the 
minimal possible distance between the mean and a border of the interval.  For 
brevity, the term "the value of a restriction" may be shortened to "restriction." 
 

If  A≤xLeft,  xRight≤B  and  xRight-xLeft=2σ,  then restrictions, forbidden zones 
with the width of one sigma  σ  exist between the mean point and the borders of the 
interval (see Figure 3).  So there are two forbidden zones, located near the borders 
of the interval.  The mean point M can not be located in these forbidden zones.   

 
Figure 3. Forbidden zones, restrictions on  M 

 
The restrictions, the forbidden zones are shown by two dotted lines and by 

painting in the bottom part of Figure 3.   
As we can easily see, restrictions on the mean or forbidden zones exist 

between the allowed zone of the mean  M  and the borders  A  and  B  of the interval  
[A; B]. The value of the restriction, or, equivalently, the width of the forbidden 
zone, is equal to  σ.   
 

So, the restrictions of the value  σ  on the mean point  M  exist near the 
borders of the interval.   
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1.  Preliminary notes 

1.1.  Interval and function 
 

Let us suppose given a finite interval,  X=[A, B] : 0<ConstAB≤(B-A)<∞,  a set 
of points  xk : k=1, 2, … K : 2≤K≤∞,  and a finite non-negative function  fK(xk)  such 
that for  xk<A  and  xk>B  the statement  fK(xk)≡0  is true; for  A≤xk≤B  the statement  
0≤fK(xk)< ∞  is true, and   

K

K

k
kK Wxf =∑

=1

)( ,  

where  WK  (the total weight of  fK(xk))  is  a constant such that   
∞<< KW0 .  

Without loss of generality, the function  fK(xk)  may be normalized so that  WK=1.   
 
 

1.2.  Analog of moments 
 

Definition 1.1.  Let us define an analog of the moment of  n-th  order of the 
function  fK(xk)  relative to a point  x0:   

∑∑
==

−=−=−
K

k
kK

n
k

K

k
kK

n
k

K

n xfxxxfxx
W

XXE
1

0
1

00 )()()()(1)( .  

From now on, for brevity, we refer to this analog of the moment of  n-th  order as 
simply the moment of  n-th  order.   
 

Let us suppose the mean  M≡E(X)  of the function  fK(xk)  exists   

Mxfxxfx
W

XE
K

k
kKk

K

k
kKk

K

≡=≡ ∑∑
== 11

)()(1)( .  

Let us suppose at least one central moment  E(X-M)n : 2≤n<∞,  of the function  
fK(xk)  exists  

∑∑
==

−=−=−
K

k
kK

n
k

K

k
kK

n
k

K

n xfMxxfMx
W

MXE
11

)()()()(1)( .  
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2.  Maximality  

 
Let us search for a function which attains the maximal possible central 

moment.  The intuitively evident maximal possible absolute value of a central 
moment is obtained for the function which is concentrated at the borders of the 
interval. 
 

2.1.  A couple of elements 
 

Let us consider the mean  M  of the function  fK(xk),  a couple of points  xA  
and  xB,  such as   

BxMxA BA ≤≤≤≤  ,  
and a couple of elements  fK(xA)  and  fK(xB)  (of the function  fK(xk))  such that they 
are tied together by the conditions of having a constant total weight  f  and a 
constant mean point  M   

fxfxf BKAK =+ )()(  ,  
)()()()( BKBAKA xfMxxfxM −=−  .  

A central moment  ECouple(X-M)n  of this couple of elements may be written as 
)()()()()( BK

n
BAK

n
A

n
Couple xfMxxfMxMXE −+−≡− . 

Its absolute value does not exceed the sum of the absolute values of its parts   

)()()()(

)(|)(|)(|)(||)(|

BK
n

BAK
n

A

BK
n

BAK
n

A
n

Couple

xfMxxfxM

xfMxxfMxMXE

−+−=

=−+−≤−
. 

 
 

2.2.  Modification of the basic expression 
 

After replacing  fK(xB)  by  

)()()( AKAK
B

A
BK xffxf

Mx
xMxf −=

−
−

=    

and replacing  fK(xA)  and  fK(xB)  by functions of  xA  and  xB   

fxf
Mx
xxxf

Mx
xMMxxfxf AK

B

AB
AK

B

AB
BKAK =

−
−

=
−

−+−
=+ )()()()( , 

we obtain the function  fK(xk):   

f
xx
Mxxf

AB

B
AK −

−
=)(     and    f

xx
xMxf

AB

A
BK −

−
=)( .  

Hence, the expression for the central moment  ECouple(X-M)n  of the couple may be 
rewritten as an expression which depends only on  xA  and  xB   

f
xx
xMMxf

xx
MxxMMXE

AB

An
B

AB

Bn
A

n
Couple −

−
−+

−
−

−≤− )()(|)(| . 
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2.3.  Derivatives 

 
Let us use the analysis of derivatives to find a maximum of the absolute value 

of the central moments  |ECouple(X-M)n|  of this couple of elements.   
Let us differentiate the expression for the absolute value of a central moment 

with respect to  xA   

f
xx
MxMxxMxx

xMxMxxn

f
xx

xMxxMx

fMx
xx

xMxxxMn

f
xx
xMMxf

xx
MxxM

AB

Bn
BAAB

n
AAAB

AB

AABn
B

B
AB

n
AAB

n
A

x
AB

An
B

AB

Bn
A A

2
1

1

2

2

1

)(
)(}))](()([

))](()({[

)(
)()()(

)(
)(

)()()(

])()[(

−
−

−−+−−+

+−−+−−=

=
−

−+−−
−+

+−
−

−+−−−
=

=′
−
−

−+
−
−

−

−

−

−

 

 
Since  n≥2:   

 
If  (xB-xA)=(M-xA),  that is, if  xB=M,  then from  

)()()()( BKBAKA xfMxxfxM −=−  .  
we obtain  

0
)(
)()()( =−=−

AK

BK
A xf

xfMMxM    

or  xA=M,  and hence all the central moments are zero.  
So, at  (xB-xA)=(M-xA),  that is, at  xB=M=xA,   

0])()[( =′
−
−

−+
−
−

−
Ax

AB

An
B

AB

Bn
A f

xx
xMMxf

xx
MxxM . 

This is a stable equilibrium state.  If  xB=M=xA  then all the central moments are 
independent of  xA  and are equal to zero. 
 

If  (xB-xA)>(M-xA),  that is, if  xB>M,  then 

0}))](()([

))](()({[
1

1

<−−+−−+

+−−+−−
−

−

n
BAAB

n
AAAB

MxxMxx
xMxMxxn

 

and 

0])()[( <′
−
−

−+
−
−

−
Ax

AB

An
B

AB

Bn
A f

xx
xMMxf

xx
MxxM . 

So, for non-zero  ECouple(X-M)n,  the first derivative with respect to  xA  is 
strictly less than zero for any  A≤xA<M,  independently of  xB,  for any  M<xB≤B.  
The closer is  xA  to  A,  the greater is  |ECouple(X-M)n|.   

Hence, for any  xB : M<xB≤B,  the maxima of the absolute value of a central 
moment  ECouple(X-M)n  are attained at the minimal  xA,  that is, at  xA=A.   
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Let us differentiate the expression for the absolute value of a central moment  

ECouple(X-M)n  of the couple  f  with respect to  xB   

f
xx
xMMxMxxxn

xMMxxx

fxM
xx

MxxxMxn

f
xx

MxxxxM

f
xx
xMMxf

xx
MxxM
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An
BBAB

n
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n
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1
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−
−
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=−
−

−−−−
+

+
−

−−−
−=

=′
−
−

−+
−
−

−

−

−

−

. 

 
Since  n≥2:   

 
If  (xB-xA)=(xB-M),  that is, if  xA=M,  then  xB=M  also, and hence all the 

central moments are zero.  
So, at  (xB-xA)=(M-xA),  that is, at  xB=M=xA,   

0])()[( =′
−
−

−+
−
−

−
Ax

AB

An
B

AB

Bn
A f

xx
xMMxf

xx
MxxM . 

This is a stable equilibrium state.  If  xA=M=xB  then all the central moments are 
independent of  xB  and are equal to zero.   
 

If  (xB-xA)>(xB-M),  that is, if  xA<M,  then   

0}))](()([

))]((){[(
1

1

>−−−−+

+−−−−
−

−

n
BBAB

n
ABAB

MxMxxxn
xMMxxx

 

and 

0])()[( >′
−
−

−+
−
−

−
Bx

AB

An
B

AB

Bn
A f

xx
xMMxf

xx
MxxM . 

So, for non-zero  ECouple(X-M)n,  the first derivative with respect to  xB  is 
strictly greater than zero for any  M<xB≤B,  independently of  xA  for any  A≤xA<M.  
The closer is  xB  to  B  the greater is  |ECouple(X-M)n|.   

Hence, for any  xA : A≤xA<M,  the maxima of the absolute value of a central 
moment  ECouple(X-M)n  are attained at the maximal  xB,  that is, at  xB=B.   
 

So, for non-zero central moments  ECouple(X-M)n  of a couple  f  of elements  
fK(xA)  and  fK(xB), the maxima of the absolute value of  ECouple(X-M)n  are attained at  
xA=A  and  xB=B.  That is, they are attained for the functions that are concentrated at 
the borders of the interval  [A, B]  and  

f
AB
AMMBf

AB
MBAMMXEMax nnn

Couple −
−

−+
−
−

−≤− )()(|))((| . 
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2.4.  Dividing by couples 

 
Let us analyze whether any function of Chapter 1 and its central moments may 

be completely divided and represented by such couples of elements.   
Let us divide the points  xk  into three groups:  xk(A)<M,  xk(M)=M  (zero central 

moments) and  xk(B)>M.  Hence,  k(A)≤KA,  k(M)≤KM,  k(B)≤KB  and   
KKKK BMA =++ .  

For  E(X-M)n>0  we have  KA≥1  and  KB≥1  and hence  k(A)=1, …, KA  and  
k(B)=1, …, KB.   
 

The definition of the mean  

MxfxXE
K

k
kKk ≡≡∑

=1
)()(   

may be transformed to the first central moment   

0)()( =−∑
≤Kk

kKk xfMx   

and to   

0)()()()(

)()()()(

)(
)()(

)(
)()(

)(
)()(

=−+−+

+−=−

∑∑

∑∑

≤≤

≤≤

BM

A

A

KBk
BkKBk

KMk
MkKMk

K

KAk
AkKAk

Kk
kKk

xfMxxfMx

xfMxxfMx

.  

Due to 
0)( ≡−Mx Mk  ,  

we have 

0)()()()(

)()(

)(
)()(

)(
)()( =−+−=

=−

∑∑

∑

≤≤

≤

BA KBk
BkKBk

KAk
AkKAk

Kk
kKk

xfMxxfMx

xfMx
  

and it may be transformed to a balance  

∑∑
≤≤

−=−
BBkAAk Kx

BkKBk
Kx

AkKAk xfMxxfxM
)()(

)()()()( )()()()( .  
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Let us consider sequentially cases with various numbers of elements  

KAB=KA+KB  from  KAB=0  to a general case.  
 

Case  0.  If  KAB=0,  then  E(X-M)n=0.   
 

Case  1.  Evidently, due to the definition of the mean, the case  KA=0  and  
KB≥1  and the case  KA≥1  and  KB=0   cannot occur.  
 

Case  2.  If  KAB=2,  KA=1  and  KB=1,  then   
)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −=−   

and the pair  fK(x1(A))  and  fK(x1(B))  is the required couple of the previous 
subchapters.   
 

Let us enumerate  the points  xk(A)  and  xk(B),  for example, from those furthest 
from  M  and with maximal weights, to those closest to  M  and with minimal 
weights.   
 

Case  3.  If, for example,  KA=2  and  KB=1,  then we divide the element  
fK(x1(B))  into two parts  fK.1(x1(B))  and  fK.2(x1(B))  such that   

)()()( )(12.)(11.)(1 BKBKBK xfxfxf +=   
and   

)()()()( )(11.)(1)(1)(1 BKBAKA xfMxxfxM −=−  .   
The pair  fK(x1(A))  and  fK.1(xB1)  is the required couple of the previous subchapters.  
The balance remains  

)()()()(

)()()()(

)(12.)(1)(11.)(1

)(2)(2)(1)(1

BKBBKB

AKAAKA

xfMxxfMx
xfxMxfxM

−+−=

=−+−
 ,   

and we come to Case 2   
)()()()( )(12.)(1)(2)(2 BKBAKA xfMxxfxM −=−  .   

The pair  fK(x2(A))  and  fK.2(xB1)  is the required couple of the previous subchapters 
also.   
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The general case  L.  Suppose we are in the case  KAB=L≥4,  KA≥1  and  

KB≥1.   
 

If  
)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −=−  ,  

then the pair  fK(x1(A))  and  fK(x1(B))  is the required couple of the previous 
subchapters.  The number of uncoupled elements is diminished by two and we come 
to  Case  L-2.   
 

If  
)()()()( )(1)(1)(1)(1 BKBAKA xfMxxfxM −≠−  ,  

then let us divide the appropriate element as in Case  3  and we diminish the number 
of uncoupled elements by one and come to Case  L-1.   
 

So, we may consecutively diminish the number of uncoupled elements from 
any  L  to  2  and, so, we may come to fully coupled elements.  Hence, any function 
of Chapter 1 may be completely divided by couples of elements, except  xk(M).   
 

So, any function of Chapter 1 and its central moments may be completely 
divided and represented by couples of elements except for points  xk(M)  which do 
not contribute to the central moment.   

So, the function  fMax.K(xk),  which possesses maximal central moments (in 
modulus), should be concentrated at the borders  x1=A  and  x2=B  of the interval.   
 

Under the condition of norm one  (WK=1)  of Chapter 1, the function  
fMax.K(xk)≡fBorders.K(xk)  should have the form   

AB
MBAf KBorders −

−
=)(.    and   

AB
AMBf KBorders −

−
=)(.  .  

The central moments  EBorders(X-M)n  of the function  fBorders.K(xk)  are  

AB
AMMB

AB
MBMAMXE nnn

Borders −
−

−+
−
−

−=− )()()( . 

The modulus of a central moment  EBorders(X-M)n  of the function  fBorders.K(xk)  is not 
greater than  

AB
AMMB

AB
MBAMMXE nnn

Borders −
−

−+
−
−

−≤− )()(|)(| . 

For the even orders  2n  of the central moments  EBorders(X-M)n  the inequality is 
reduced to an equality without the modulus   

AB
AMMB

AB
MBAMMXE nnn

Borders −
−

−+
−
−

−=− 222 )()()( . 

 
So, the moduli of the central moments of any function  fK(xk)  of Chapter 1 are 

not greater than  

AB
AMMB

AB
MBAMMXEMax nnn

−
−

−+
−
−

−≤− )()(|))((|    (2.1). 
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2.5.  Two notes  

 
Let us analyze the maximal central moments  EBorders(X-M)n  for   

2
ABM −

=   

and for   
AM ≈   or  BM ≈ .  

 
 

The mean is in the center of the interval 
 

Let us analyze the maximal central moments for   

2
ABM −

= .  

 
Let us differentiate the expression for the absolute value of a central moment  

EBorders(X-M)n  with respect to  M   

])()()(

)()()([1

])()()()[(1

1

1

nn

nn

M
nn

MBAMMBn

AMMBAMn
AB

AMMBMBAM
AB

−+−−−

−−−−−
−

=

=′−−+−−
−

−

−   

and, at  M=(B-A)/2,   

0]11[)
2

(1

])
2

()
2

()
2

(

)
2

()
2

()
2

([1
])()()(

)()()([1

1

1

1

1

=+−−
−

−
=

=
−

+
−−

−

−
−

−
−−

−
=

=−+−−−

−−−−−
−

−

−

−

−

nnAB
AB

ABABABn

ABABABn
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So, at  M=(B-A)/2,  for any  n≥2  there is an extremum or a point of inflection.   
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Let us differentiate  EBorders(X-M)n  once more   
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That is, at  M=(B-A)/2:   

 
For  n=2  there is a well-known maximum, the moment of inertia of two 

material points whose weights are equal to each other   
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For  n=3  there is a point of inflection.   

 
For  n>3  there are minima.   
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The mean is near a border of the interval 

 
Let us search maximums which are close to the borders of the interval.   
Let us differentiate the absolute value of the central moment  EBorders(X-M)n  

with respect to  M  for  M≈A  and  n>>1   
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The second derivative is  
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For  M≈A  and  n>>1   
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and, for  M≈A+(B-A)/(n+1)  and  n>>1,   
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So, the second derivative is negative and there are maxima at the points  
M≈A+(B-A)/(n+1).   

 
The analog of the central moments  EBorders(X-M)n  of  the function  
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So, for  M≈A+(B-A)/(n+1)  and  n>>1,  the maxima (those are attained for even  n)  
of  EBorders(X-M)n  are curiously   
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Evidently, for  M≈B-(B-A)/(n+1),  at  n>>1,  the maxima (those are attained for 
even  n)  of  EBorders(X-M)n  are analogously  
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3.  Theorem  

3.1.  Lemma about the tendency to zero for central moments 
 

Lemma 3.1.  If, for the function  fK(xk)  defined in Section 1,  M≡E(X)  tends 
to  A  or to  B,   

then, for  n : 2≤n<∞,  E(X-M)n  tends to  zero.   
Proof.  For  MA,  the estimate (2.1) gives  
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This rough estimate is already sufficient for the purpose of this article.  But a more 
precise estimate may be obtained:   

Let us transform  
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Let us consider the terms  (M-A)/(B-A)  and  (B-M)/(B-A).  Keeping in mind that  
A≤M≤B  we obtain  0≤(M-A)/(B-A)≤1  and  0≤(B-M)/(B-A)≤1.  For  n≥2  we have   
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So,  
0)()(|)(| 1  →−−≤− →

−
AM

nn AMABMXE      (3.1). 
For  MB,  the proof is similar and gives   
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So, if  (B-A)  and  n  are finite and  MA  or  MB,  then  E(X-M)n0.   
The lemma has been proved.   
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3.2.  Existence theorem for restrictions on the mean 

 
Let us define two terms for the purposes of this article:   

 
Definition 3.1.  A restriction on the mean  rMean  (or, simply, a restriction) 

signifies the impossibility for the mean to be located closer to a border of the 
interval than some fixed distance.  In other words, a restriction implies here a 
forbidden zone for the mean near a border of the interval.   

The value of a restriction or the width of a forbidden zone signifies the 
minimal possible distance between the mean and a border of the interval.  For 
brevity, the term "the value of a restriction" may be shortened to "restriction." 
 

Definition 3.2.  Let us define "restriction on dispersion of the  n-th  order"  
rn

Dispersion.n≡rn
Disp.n : rDisp.n>0  (where dispersion is taken in the broad sense, as 

scattering, spread, variation, etc.) to be the minimal absolute value of the analog of 
the  n-th  order central moment  E(X-M)n  such that  |E(X-M)n|≥rn

Disp.n>0.   
For  n=2  the restriction on the dispersion of second order is the minimal 

possible dispersion (in the particular sense)  r2
Disp.2=σ2

Min.   
Note  rDisp.n<(B-A).  This follows from   
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Theorem 3.2.  If,  for the finite non-negative discrete function  fK(xk)  defined 
in Section 1,  with the mean  M≡E(X)  and the analog of an  n-th  (2≤n<∞)  order 
central moment  E(X-M)n  of the function, a non-zero restriction on dispersion of the  
n-th  order  rn

Disp.n=ConstDisp.n>0 : |E(X-M)n|≥rn
Disp.n,  exists,  

then the non-zero restriction  rMean>0  on the mean  E(X)  exists and  
A<(A+rMean)≤M≡E(X)≤(B-rMean)<B.   
 

Proof.  From the conditions of the theorem and from (3.1) for  MA,  we 
have   
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For  MB,  the proof is similar and gives   
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n
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rrMB       (3.4). 

 
 

So, as long as  (B-A)  and  n  are finite  and  rn
Disp.n=ConstDisp.n>0,   

then  rMean=ConstM>0  and  A<(A+rMean)≤M≤(B-rMean)<B.   
The theorem has been proved.   

 
 

Note 
 

This estimate is an ultra-reliable one.  It is, in a sense, as ultra-reliable as the 
Chebyshev inequality.  Preliminary calculations [10] which were performed for real 
cases, such as the normal, uniform and exponential distributions with the minimal 
values  σ2

Min  of the analog of the dispersion (in the particular sense), gave the 
restrictions  rMean  on the mean of the function, which are not worse than   

3
Min

Meanr σ
≥  .  

 
 

3.3.  Comments on the theorem 
 

We may reformulate the essence of the theorem in some variants:   
 

Suppose the analog of a finite  (n<∞)  central moment  E(X-M)n  of a finite 
non-negative function, which is defined for a finite interval,  cannot approach zero 
closer than a non-zero constant  rn

Disp.n : |E(X-M)n|≥rn
Disp.n>0.  Then the mean of the 

function also cannot approach any border of this interval closer than the other non-
zero constant  rMean>0.   

More particularly:  Suppose the analog of the dispersion  (in the particular 
sense)   E(X-M)2   of a finite non-negative function,   which is defined for a        
finite interval,  cannot approach zero closer than a non-zero constant  σ2

Min :       
E(X-M)2≥σ2

Min>0.  Then the mean of the function also cannot approach any border 
of this interval closer than the other non-zero constant  rMean>0.   
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In other words:  Suppose for a finite non-negative function, which is defined 

on a finite interval, a non-zero constant restriction  rn
Disp.n>0  on dispersion exists.  

That is:  between the zone of possible values of the analog of a finite  (n<∞)  central 
moment  E(X-M)n  of the function and zero there is a forbidden zone for the 
dispersion values, i.e.,  |E(X-M)n|≥rn

Disp.n>0.  Then other non-zero constant 
restrictions  rMean>0  on the mean exist also.  That is:  between the zone of possible 
values of the mean of this function and any border of the interval, there is another 
forbidden zone for the mean,  i.e.,  A<(A+rMean)≤M≤(B-rMean)<B.   

More particularly:  Suppose for a finite non-negative function, which is 
defined on a finite interval, a non-zero constant restriction  σ2

Min>0  on dispersion 
exists.  That is:  between the zone of possible values of the analog of the dispersion 
(in the particular sense)  E(X-M)2  of the function and zero, there is a forbidden zone 
for the dispersion values, i.e.,  E(X-M)2≥σ2

Min>0.  Then other non-zero constant 
restrictions  rMean>0  on the mean exist also.  That is:  between the zone of possible 
values of the mean of this function and any border of the interval there is another 
forbidden zone for the mean, i.e.,  A<(A+rMean)≤M≤(B-rMean)<B.   
 

In other words:  If there is a zero restriction  rn
Disp.n=0  on the dispersion (in 

the broad sense)  E(X-M)n  of a function,  then there are zero restrictions  rMean=0  
on the mean of the function.  The greater restriction  rn

Disp.n>0  there is on the 
dispersion, the greater restrictions  rMean>0  there are on the mean.   

So, a restriction  rn
Disp.n>0  on the dispersion biases the boundaries of the zone 

of possible values of the mean away from the borders of the interval, towards the 
middle of the interval.   

So, a restriction  rn
Disp.n>0  on the dispersion biases the mean away from the 

borders, towards the middle of the interval.   
 

To put the matter more simply:  A non-zero dispersion of a finite non-negative 
function leads to the existence of non-zero restrictions on the mean of this function. 

To put the matter even more simply:  
A non-zero dispersion leads to a non-zero bias of the mean. 

In its simplest form, this can be stated:   
Dispersion biases the mean. 
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4.  Applications of the theorem to economics and management 

 
Sketches of the proof of the theorem have also been provided (see, e.g., [11]) 

for estimating probabilities.  In the presence of data dispersion, scattering, spread, 
variation, etc., restrictions can exist on probability estimation and on the probability 
near the borders of the probability scale.   

The estimation of a probability possesses the properties assumed for the 
function of Chapter 1 (in fact, these properties have been chosen to be those 
satisfied by probability estimations).  So, the theorem is true for the estimation of a 
probability.   

The probability is a limit of the estimation of probability as the number of 
attempts tends to infinity.  If the probability estimation is greater (less) than or equal 
to a quantity, then a limit of the probability estimation is greater (less) than or equal 
to the quantity also.   
 

The hypothesis of the restrictions and the sketches of the proof of the theorem 
have been used in economics.  The first international paper [12] of the item was 
published in 2005.  The hypothesis and the sketches of the proof have explained the 
well-known problems and paradoxes of decision theory and utility theory, such as 
risk aversion, the underweighting of high and the overweighting of low 
probabilities, the four-fold pattern paradox, etc. (see, e.g., [13]-[16]).  They may be 
used also in management for the same and analogous aims.   

In the presence of data dispersion, the restrictions, that can exist on the 
probability near the borders of the probability scale, can bias the results of 
experiments in comparison with those without data dispersion.  The preliminary 
researches, including considerations of the restrictions as a hypothesis, showed that 
this bias can explain (at least partially) the well-known problems and paradoxes of 
decision and utility theories.  It should be noted that this explanation is true not only 
for a particular combination of parameters but both for high and low probabilities 
and both for gains and losses (see, e.g., [13]-[16]).   

The new fields of application of the theorem might be concerned with the 
Aczél-Luce question [9] whether  W(1)=1  (whether Prelec’s weighting function is 
equal to  1  at  p=1).   
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Conclusions 

 
The possibility of the existence of non-zero restrictions in the presence of non-

zero dispersion (both in the particular sense, as the analog of the second central 
moment, and in the broad sense, as scattering or spread) has been analyzed in this 
article.   

The existence of non-zero restrictions on the mean of a discrete finite non-
negative function on an interval  X=[A, B],  when the analog of a central moment of 
the function takes a non-zero value, has been proved.  Suppose there is a non-zero 
restriction   rDispersion.n≡rDisp.n>0   on the analog of the  n-th central moment        
|E(X-M)n| (∞>n≥2)  of a discrete finite non-negative function,  that is,                
|E(X-M)n|≥rn

Disp.n>0.   Then other non-zero restrictions  rMean>0  on the mean  M  of 
this function exist at the borders  A  and  B  of the interval  [A, B].  The value of the 
restriction  rMean  at  A  is (see (3.3))   
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The value of the restriction  rMean  at  B  is also (see (3.4)) 
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For  n=2  the analog of the central moment is the analog of the dispersion (in 

the particular sense),  and  rMean  at  A  may be rewritten for the minimum  σMin  of 
the analog of the standard deviation  σ,  i.e.,  σ≥σMin≡rDisp.2>0,  as   
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The value of the restriction  rMean  at  B  may be also rewritten for the minimum  
σMin  of the analog of the standard deviation  σ  as  
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The above estimates for the restrictions  rMean  on the mean  are, in a sense, as 

ultra-reliable as the Chebyshov inequality.  For real cases such as the normal 
distribution, for the minimal values  σ2

Min  of the analog of the dispersion  (in the 
particular sense), the preliminary calculations of [10] give the restrictions  rMean  on 
the mean, which are no worse than   

3
Min

Meanr σ
≥  .  
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The theorem may have a significant practical value (it is considered and 

proved here mainly due to this value):   
 

The considered non-zero restrictions on the mean are equivalent to non-zero 
biases of the mean.   

Such biases are observed in a wealth of experiments and in practice.   
So, the theorem may explain, at least partially, a number of the well-known 

problems of decision theory and utility theory.   
 

Sketches of the proof of the theorem have been provided (see, e.g., [11]) for 
estimating probabilities.  In the presence of data dispersion, scattering, spread, 
variation, etc,  restrictions can exist on probability estimation and on the probability 
(as the limit of the probability estimation) near the borders of the probability scale.   

The hypothesis of the restrictions and the sketches of the proof of the theorem 
have been used in economics and have qualitatively explained the well-known 
problems and paradoxes of decision theory and utility theory, such as risk aversion, 
the underweighting of high and the overweighting of low probabilities, the four-fold 
pattern paradox, etc. (see, e.g., [13]-[16]).   

New applications of the theorem might be concerned with research into the 
Aczél-Luce question (or Luce question) [9] whether Prelec’s weighting function is 
equal to  1  at  p=1.   

The ultimate aims are to use the theorem and its applications in estimating 
preferences, choices, decisions, (ir)rational behavior at data uncertainty, noises, 
experimental errors in management, investment, insurance, etc.   
 

So, the theorem of this article states:   
Data dispersion near the boundaries may not be excluded to be able to 

partially explain the problems of decision and utility theories.   
 

The ultimate aim of the whole research is to conclude: 
Data dispersion near the boundaries can (at least partially) explain the 

problems of decision and utility theories.   
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