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Abstract

This paper describes the formulation and numerical implementation of

a family of anisotropic and unilateral damage models for the prediction

of damage and final rupture in engineering structures. The damage can

be load-oriented, microstructure-oriented or (for the first time within this

modeling framework) softening. The local equations are solved using a com-

bination of fixed-point and Newton-Raphson algorithms, whose efficiencies

are drastically improved through Aitken’s relaxation and BFGS approxima-

tion. A delay-effect method is used to control the localization of damage,

which leads to an objective calculation of the final rupture of structures.
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1. Introduction1

Since continuum damage mechanics (CDM) first appeared [Kachanov,2

1958, 1999], it has been studied and improved by many research groups3

worldwide [Leckie, 1978; Ladevèze, 1983; Murakami, 1983; Lemâıtre, 1985;4

Simo and Ju, 1987; Chaboche, 1988], taught in many universities [Kachanov,5

1986; Lemâıtre, 1992; Krajcinovic, 1996], and has become one of the classical6

tools of the structural mechanics community [Lemâıtre and Desmorat, 2005].7

In practice, CDM consists in developing a model of the macroscopic8

behavior of a material in which microscopic damage is represented as a stiff-9

ness reduction. The form of the stiffness reduction is defined by the damage10

kinematics using damage variables, which are internal variables in thermo-11

dynamical terminology. The stiffness reduction, i.e. the magnitude of the12

damage variable, is defined as a function of the applied stress or strain using13

the damage kinetics. Damage models, and in particular their damage kinet-14

ics, usually involve several parameters (in addition to the classical Young15

and shear moduli and Poisson ratios) which must be identified experimen-16

tally through classical coupon tests. Then these models can be used to pre-17

dict damage in engineering structures subjected to possibly complex loading18

and, for example, become part of a structural optimization process. Let us19

point out that homogenization techniques were recently used to derive dam-20

age kinematics and kinetics formally from an analysis on the damage scale,21

leading to generic models (i.e. models which are valid for a whole family of22

materials) for laminated composites [Ladevèze and Lubineau, 2002].23

While early works concerned “only” unidirectional damage models,24

with applications to the creep rupture of metals [Kachanov, 1958, 1999;25

Leckie, 1978], CDM was rapidly extended to multidirectional models26
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involving damage anisotropy [Cordebois and Sidoroff, 1982; Ladevèze,1

1983; Murakami, 1983; Chaboche, 1984; Chow and Wang, 1987b], with2

applications to the ductile [Lemâıtre, 1985; Chow and Wang, 1987a] and3

fatigue [Chow and Wei, 1991] rupture of metals. More recently, CDM was4

applied to laminated [Talreja, 1985, 1986; Voyiadjis and Kattan, 1993;5

Ladevèze and Lubineau, 2002], woven [Lesne and Saanouni, 1993; Aubard,6

1995; Ladevèze, 1995] and braided [Gorbatikh et al., 2007] composites,7

to concrete [Peerlings et al., 1998; Pensée et al., 2002; Desmorat et al.,8

2007; Badel et al., 2007], etc. However, only a few published models are9

capable of reproducing all aspects of cracks, including anisotropy and10

unilaterality, especially when the orientation of damage is determined11

by the loading, i.e. when the damage kinematics is not known a priori.12

Indeed, in that case, anisotropy requires a tensor damage variable and the13

construction of a continuously differentiable potential involving tensors,14

and tension/compression partitioning is not straightforward [Ladevèze,15

1983; Chaboche, 1992; Carol and Willam, 1996; Desmorat, 2000; Ladevèze16

and Letombe, 2000; Ladevèze, 2002]. This theoretical problem was solved17

by Ladevèze within the anisotropic and unilateral damage theory, first18

for second-order damage tensors [Ladevèze, 1983], then for more general19

representations of damage [Ladevèze and Letombe, 2000; Ladevèze, 2002].20

Basically, the approach relies on a specific tension/compression partitioning21

of stress or strain which takes into account the damage state in order22

to ensure the continuity of the state law. Let us mention that another23

solution to this problem for fourth-order damage tensors was proposed in24

[Chaboche, 1995].25

26

In this paper, we discuss several aspects of the formulation and nu-27
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merical implementation of the family of models which belong to the sec-1

ond version of the anisotropic and unilateral damage theory. This discus-2

sion follows the classical Newton-Raphson/Finite Element framework. Al-3

though other methods can be used to solve nonlinear partial differential4

equations over a domain [Ladevèze, 1999; Passieux et al., 2010], this is the5

most common method for dealing with material nonlinearities in science and6

engineering. All the developments presented here were carried out within7

Abaqus/Standard as C++ UMats based on the software development plat-8

form of [Leclerc, 2010].9

In the first part of the paper, we review the theory’s basis and present10

several damage evolution laws which differ in the nature of the damage11

mechanisms they represent. Regarding the modeling, the first fundamental12

question concerning a crack network is whether its orientation is governed13

by the loading (e.g. the inter-yarn cracking of woven ceramic matrix com-14

posites (CMCs) [Ladevèze et al., 1994; Ladevèze, 1995; Lamon, 2001], the15

cracking of concrete [Desmorat et al., 2007], etc.) or by the microstruc-16

ture (e.g. the intra-yarn cracking of woven CMCs [Ladevèze et al., 1994;17

Ladevèze, 1995; Lamon, 2001], the cracking of laminated composites [Tal-18

reja, 1985, 1986; Lafarie-Frenot et al., 2001; Ladevèze and Lubineau, 2002],19

etc.). The second question is whether the crack network becomes saturated20

or reaches a critical value beyond which it localizes to form a macroscopic21

crack [Needleman, 1988; Pijaudier-Cabot and Benallal, 1993; Peerlings et al.,22

1998; Ladevèze et al., 2000]. Examples are presented for each situation. It23

is worth mentioning that the softening case is addressed in this modeling24

framework for the first time.25

In the second part, we discuss the resolution of the local behavior at26

the integration point level. We use a fixed-point algorithm to solve the27
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local equations; we also present and evaluate several relaxation schemes,1

including Aitken’s. We also focus on the inversion of the state law. As will2

be seen later on, this law is nonlinear even if all the internal variables are3

fixed, and it requires a specific solver. Therefore, we use a Newton-Raphson4

algorithm; we also present and evaluate several optimization techniques,5

including BFGS operator updating and Aitken’s relaxation.6

In the third part, we discuss the control of damage localization be-7

yond the critical point of a softening model. We use a delay-effect method8

[Ladevèze et al., 2000] to overcome the loss of ellipticity [Pijaudier-Cabot and9

Benallal, 1993; Peerlings et al., 1998] and control the localization of damage10

in the form of a macroscopic crack, which eliminates any pathological mesh11

dependency. Again, let us mention that the simulation of localization in the12

context of this damage framework is presented here for the first time.13

We end up with a relatively complete, efficient and robust computa-14

tional environment for anisotropic and unilateral damage within the popular15

Abaqus/Standard finite element code.16

2. The anisotropic and unilateral damage theory17

2.1. State potential and state law18

State potential. The damage framework introduced in [Ladevèze and19

Letombe, 2000; Ladevèze, 2002] is based on the following general form of20

the potential of elastic energy:21

2ρφ

(
σ, S, Z

)
= 〈σ〉S+ : S : 〈σ〉S+ + 〈σ〉S0

− : S0 : 〈σ〉S0
− + σ : Z : σ (1)

where S0 is the compliance tensor of the undamaged material, which is22

always active in compression; S is a damaged compliance, which is active23
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only in tension (initially, S (t = 0) = S0); and Z is an additional compliance,1

which is active both in tension and in compression (initially, Z (t = 0) = 0).2

Let us first observe that this potential gives maximum freedom in terms3

of damage modeling, which enables one to deal with load-oriented damage,4

i.e. damage whose direction is not known a priori : the damage kinematics5

is not set a priori, but is defined completely by the damage evolution laws.6

Actually, there are no damage variables associated with specific damage7

mechanisms; the damage variables of the model are the whole compliance8

tensors S and Z. Thus, any compliance can be reached from the initial9

compliance, which makes the model equivalent to an eighth-order damage10

tensor model [Lemâıtre et al., 2009].11

Let us mention that we also considered strain-based formulations, but we12

had to abandon that idea because it could lead to cases in which the damaged13

stiffness tensor ceases to be positive definite before the actual stiffness in the14

loading direction gets to zero, which would make it impossible to model final15

rupture.16

In order to deal with the crack closure effect, the model distinguishes17

clearly the tension state from the compression state: the stress tensor is18

divided into a positive part and a negative part, each associated with a dif-19

ferent compliance operator. To ensure the continuous differentiability of the20

state potential, i.e. the continuity of the state law, this partitioning is carried21

out in a specific way which takes into account the middle operator. It is well-22

known that the coupling between tensorial damage and tension/compression23

partitioning is not straightforward [Ladevèze, 1983; Chaboche, 1992]. There-24
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fore, we use the following definitions of positive and negative stresses:1 
〈σ〉S+ = S−1/2 : 〈S1/2 : σ〉+

〈σ〉S0
− = S0

−1/2 : 〈S01/2 : σ〉−
(2)

where 〈 〉+/− denotes the positive/negative decomposition of a second-2

order symmetric tensor (obtained by taking the positive/negative eigen-3

values alone). It is important to note that unless both the positive part4

and the negative part are defined that way the state law is discontinuous.5

With these definitions, the continuous differentiability of the potential can6

be clearly shown by introducing Equation (2) into Equation (1):7

2ρφ

(
σ, S, Z

)
= 〈S1/2 : σ〉+ : 〈S1/2 : σ〉++〈S01/2 : σ〉− : 〈S01/2 : σ〉−+σ : Z : σ

(3)

whose continuous differentiable property is trivial [Ladevèze and Letombe,8

2000; Desmorat, 2000]. As a direct consequence of this property, the state9

law (which is the first derivative of the potential) will always be contin-10

uous, and the compliance operator (the second derivative) will always be11

symmetric.12

Finally, our framework also enables us to distinguish between dam-13

age which is highly dependent on the tension/compression state (i.e. ten-14

sion damage, added to S) and damage which is independent of the ten-15

sion/compression state (i.e. shear damage, added to Z).16

State law. The state law, derived from the elastic energy potential, is simply:17

18

ε =
∂ρφ

∂σ
= S : 〈σ〉S+ + S0 : 〈σ〉S0

− + Z : σ (4)
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2.2. Thermodynamic forces1

First of all, let us define the following two thermodynamic forces, which2

are linked directly to the energy release rates associated with the evolutions3

of the damage variables:4 
YS = 2

∂ρφ

∂S
= 〈σ〉S+ ⊗ 〈σ〉S+

YZ = 2
∂ρφ

∂Z
= σ ⊗ σ

(5)

These thermodynamic forces or the corresponding damage variables cannot5

be associated with specific damage mechanisms and, therefore, cannot be6

used as such to drive all damage mechanisms; several additional thermody-7

namic forces must be defined in order to drive any type of damage.8

For example, we will see that while tension damage can be driven cor-

rectly by YS (which is highly load-oriented, see Equation (5)) or its projec-

tions onto specific directions, this is not the case for shear damage. Because

of the positive part of σ, only the tension part (i.e. the positive eigenvalue)

drives the evolution of damage. Besides, since YZ is active also in compres-

sion, we will not use it to drive any type of damage. Therefore, we must

define another thermodynamic force to drive shear damage (see Sections

2.3.1 and 2.3.2). This additional force is simply a rotation of YS defined as:

YS′ =

(
Rπ/2 〈σ〉S+

)
sym

⊗
(
Rπ/2 〈σ〉S+

)
sym

(6)

with Rπ/2 =

 0 −1

1 0


Since all the previous thermodynamic forces are proportional to stresses,9

they could not be used to model the localization of damage (i.e. the soften-10

9



ing phenomenon). Therefore, we will need to define an additional thermo-1

dynamic force which is proportional to strains (see Section 2.3.3):2

XS = S YS S (7)

2.3. Damage evolution laws3

Several damage evolution laws can be defined depending on the very4

nature of the damage they represent: is this damage load-oriented or5

microstructure-oriented? Does it reach saturation or does it localize into6

a macroscopic crack? We present examples for each situation, including7

(for the first time) localizing damage. The proposed formulation is closely8

modeled after the associated classical framework with normality rule and9

isotropic hardening [Lemâıtre et al., 2009].10

2.3.1. The case of load-oriented damage11

For the sake of simplicity, from here on, we will use essentially the clas-12

sical engineering notations .̂ for second- and fourth-order tensors[Lemâıtre13

et al., 2009].14

In the case of load-oriented damage, one can use the load-oriented ther-15

modynamic forces directly to drive the evolution of damage. Thus, we define16

the following effective thermodynamic force and its maximum over time:17 
z =

(
a Tr

(
ŶS

)n+1
+ (1− a) Tr

(
ŶS

n+1
))1/n+1

z̄ (t) = supτ≤t z (τ)

(8)

Then the corresponding evolution of the damage variables is:18 
˙̂
S = α̇

∂z

∂ŶS
= α̇

a Tr
(
ŶS

)n
1 + (1− a) ŶS

n

z̄n

˙̂
Z = α̇

b ŶS′
n

z̄n

(9)
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where α is the “hardening variable”, a function of z̄ which must be cali-1

brated experimentally. Usually, one assumes a shape depending on several2

parameters which must be identified. For example, the following shape was3

used in [Ladevèze and Letombe, 2000; Ladevèze, 2002; Genet et al., 2012]:4

α = k〈
√
z̄ − σ0
σ0

〉2+ (10)

where σ0 characterizes the onset of cracking and k its intensity. (In the case5

of a unidirectional load,
√
z̄ is simply the magnitude of the stress.) The6

corresponding responses of this and other laws are compared in Figure 3 of7

Section 2.3.3.8

The dissipation associated with this evolution law is:9 
ωS =

∂ρφ

∂Ŝ
:

˙̂
S =

α̇

2z̄n

(
a Tr

(
ŶS

)n+1
+ (1− a) Tr

(
ŶS

n+1
))

ωZ =
∂ρφ

∂Ẑ
:

˙̂
Z =

bα̇

2z̄n
Tr

(
σ

(
Rπ/2 〈σ〉S+

)
sym

)2

Tr
(
ŶS′

n−2) (11)

which is trivialy positive.10

As can be seen in Equation (9), the evolution of damage can be tuned

using parameters a, b and n and can be made highly load-oriented. For

example, if a = 1, the tension damage is fully isotropic; but if a = 0, the

larger n, the more anisotropic the tension damage. Regarding shear damage,

its magnitude is directly proportional to b. To illustrate the influence of a

11



and b, let us define the relative angular tension and compression moduli:

Ẽt (θ) =

N (θ) : S0 : N (θ)

N (θ) :

(
S + Z

)
: N (θ)

Ẽc (θ) =

N (θ) : S0 : N (θ)

N (θ) :

(
S0 + Z

)
: N (θ)

(12)

with N (θ) = n (θ) tn (θ)

and n (θ) =

 cos θ

sin θ


These relative angular tension and compression moduli corresponding to1

a given amount of damage in different directions for an initially isotropic2

material are presented in Figure 1 for several values of a and b. (In all3

cases, n = 2; due to symmetry, only one quadrant was required for each set4

of parameters.) One can see that a rotation of the load leads simply to a5

rotation of the damage morphology.6

2.3.2. The case of microstructure-oriented damage7

In this case, the load-oriented thermodynamic forces cannot be used8

directly, but must be projected onto the a priori known damage directions.9

For example, for a crack network which is orthogonal to n and parallel to t,10

we define the projectors:11 
Pnn = n tn, Ptt = t tt, Pnt =

(
n tt

)
sym

P̂nnnn = P̂nn
t
P̂nn, P̂tttt = P̂tt

t
P̂tt, P̂ntnt = P̂nt

t
P̂nt

(13)

and the effective thermodynamic force:12 
z =

(
a Tr

(
ŶS

)n+1
+ (1− a) Tr

(
P̂nnnn ŶS

n+1
P̂nnnn

))1/n+1

z̄ (t) = supτ≤t z (τ)

(14)
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Figure 1: Damaged angular tension and compression moduli using a load-oriented damage

evolution law and two load directions for several values of a and b (top: shear damage

activated, b = 4; bottom: no shear damage, b = 0; left: anisotropic tension damage, a = 0;

right: isotropic tension damage, a = 1)
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The corresponding evolution of the damage variables is:1 
˙̂
S = α̇

∂z

∂ŶS
= α̇

a Tr
(
ŶS

)n
1 + (1− a) P̂nnnn ŶS

n
P̂nnnn

z̄n

˙̂
Z = α̇

b Tr
(
P̂nnnn ŶS

n
P̂nnnn

)
P̂ntnt

2nz̄n

(15)

where α is again the “hardening variable” to be calibrated experimentally2

(see Section 2.3.1).3

Let us note that in the case of a unidirectional tension load normal to the4

crack this evolution law is almost the same as the load-oriented law defined5

in Section 2.3.1. The only small difference is due to the positive stress,6

which is slightly different from the complete stress even for a unidirectional7

tension load and, therefore, slightly modifies the effect of projections. This8

difference is not significant, as can be seen in Figure 3 of Section 2.3.3 where9

the evolution laws are compared.10

In this case, the dissipation is:11 
ωS =

∂ρφ

∂Ŝ
:

˙̂
S =

α̇

2z̄n

(
a Tr

(
ŶS

)n+1
+ (1− a) Tr

(
P̂nnnn ŶS

n
P̂nnnn ŶS

))
ωZ =

∂ρφ

∂Ẑ
:

˙̂
Z =

bα̇

2n+1z̄n
Tr
(
P̂nnnn ŶS

n
P̂nnnn

)
Tr
(
P̂ntnt ŶZ

)
(16)

which is also positive.12

Equation (15) clearly shows that in this case the evolution of damage is13

oriented by the microstructure. Relative angular tension and compression14

moduli corresponding to a given amount of damage in different directions15

are presented in Figure 2 for several values of a and b (in all cases, n = 2).16

One can see that in this case a change in the load direction modifies the17

amount of damage, but not its morphology.18
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Figure 2: Damaged angular tension and compression moduli using a microstructure-

oriented damage evolution law and two load directions for several values of a and b (top:

shear damage activated, b = 4; bottom: no shear damage, b = 0; left: anisotropic tension

damage, a = 0; right: isotropic tension damage, a = 1)
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2.3.3. The case of softening damage1

This is the first presentation of a softening damage evolution law in the2

proposed anisotropic and unilateral damage theory. In this case, formula-3

tions similar to those presented in Section 2.3.1 for load-oriented damage4

and in Section 2.3.2 for microstructure-oriented damage can be applied, but5

thermodynamic forces proportional to strains rather than stresses must be6

used (see Section 2.2). Indeed, beyond the critical point, the stress decreases7

and, thus, a thermodynamic force dependent on the stress alone could not8

cause the damage to increase. Therefore, one must consider a force based9

either on the effective stress or on the strain. We chose the latter. Thus, for10

a load-oriented mechanism, we use the effective thermodynamic force:11 
z =

(
a Tr

(
X̂S

)n+1
+ (1− a) Tr

(
X̂S

n+1
))1/n+1

z̄ (t) = supτ≤t z (τ)

(17)

with the evolution of the damage variable:12

˙̂
S = α̇

∂z

∂X̂S

= α̇
a Tr

(
X̂S

)n
1 + (1− a) X̂S

n

z̄n
(18)

For a microstructure-oriented mechanism, we use the effective thermody-13

namic force:14 
z =

(
a Tr

(
X̂S

)n+1
+ (1− a) Tr

(
P̂nnnn X̂S

n+1
P̂nnnn

))1/n+1

z̄ (t) = supτ≤t z (τ)

(19)

with the evolution of the damage variable:15

˙̂
S = α̇

∂z

∂X̂S

= α̇
a Tr

(
X̂S

)n
1 + (1− a) P̂nnnn X̂S

n
P̂nnnn

z̄n
(20)
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α is still the “hardening variable” to be calibrated experimentally (see Sec-1

tion 2.3.1), but it must be redefined because the effective thermodynamic2

forces are now proportional to the strains. For example, one can use the3

following shape:4

α =


0 if

√
z̄ ≤ ε0

k

(√
z̄ − ε0

ε1 −
√
z̄

)2

if ε0 ≤
√
z̄ ≤ ε1

+∞ if
√
z̄ ≥ ε1

(21)

where ε0 characterizes the onset of cracking, ε1 the final rupture, and k the5

amount of damage. (In the case of a unidirectional load,
√
z̄ is simply the6

longitudinal strain.) The responses of this and previous laws are compared7

in Figure 3.8

In this case, the dissipation is:9

ω =
∂ρφ

∂Ŝ
:

˙̂
S =

α̇

2z̄n

(
a Tr

(
X̂S

)n
Tr
(
ŶS

)
+ (1− a) Tr

(
P̂nnnn X̂S

n
P̂nnnn ŶS

))
(22)

which is also positive.10

Let us mention that only tension damage was considered here because11

the introduction of shear damage would lead to the same problem as strain-12

based formulations (see the remark in Section 2.1): sometimes the damaged13

stiffness tensor could cease to be positive definite before the actual stiffness14

in the loading direction gets to zero.15

Another element must be added to this law in order to control the end16

of the damaging process. Since tension damage alone is being considered,17

the only internal variable is the tensor S itself. (The case of shear damage18

with a softening law, which involves the second internal variable Z, has not19

yet been addressed.) Thus, the full damage criterion can be based directly20

17



on the eigenvalues of Ŝ:1

∃i /
1

M E0
≤ λi

Ŝ
≤ M

E0
=⇒ rupture (23)

where λi
Ŝ

are the eigenvalues of Ŝ and M is a large number (in practice, we2

use M = 103). When this limit is reached, the corresponding integration3

point is considered to be broken and the damage ceases to evolve. It is worth4

mentioning that this criterion can be applied at no substantial additional5

cost because Ŝ must be diagonalized anyway in order to calculate
√
Ŝ.6

The responses of the model under unidirectional tension-compression7

loading using the damage evolution laws presented in Sections 2.3.1, 2.3.28

and 2.3.3 are compared in Figure 3. (In the case of the microstructure-9

oriented law, the load was orthogonal to the cracks.) One can see that10

every model recovers its stiffness in compression, that the load-oriented and11

microstructure-oriented non-softening models are nonseparable, and that12

the law presented in this section does have a softening character.13

-1.5
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-5  0  5  10  15  20  25
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load-oriented non-softening
microstructure-oriented non-softening

microstructure-oriented softening

Figure 3: The responses of the model under unidirectional tension-compression loading

(k = 10−5, ε1/ε0 = 10) using different damage evolution laws
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3. Calculation of the local behavior1

Let us now present the key aspects of the numerical implementation of2

the family of models presented in Section 2 based on the anisotropic and3

unidirectional damage theory. In this section, only non-softening damage4

evolution laws are considered. The softening case will be discussed in Section5

4.6

3.1. The local loop7

The local loop is run for each integration point and at each global itera-8

tion of each load increment. The input is εl,i, the total strain tensor at load9

increment l and global iteration i, and the output consists of the damage10

tensors Sl,i and Z l,i, the corresponding damage “hardening” variable αl,i,11

and the stress tensor σl,i. Starting here, in order to simplify the notation,12

the subscripts l, i will be omitted.13

3.1.1. The fixed-point solver14

This set of nonlinear equations could be solved using a Newton-Raphson15

method, but the very different units and magnitudes of the unknowns would16

lead to very unbalanced problems. Besides, most of the derivatives in the17

equations are difficult to calculate or even to approximate. For these reasons,18

19



we chose to use the following fixed-point algorithm instead:1 

initialization: j = 0 ; αj = αl−1 ; Sj = Sl−1 ; Zj = Z l−1

loop:∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

stress: σj/ε = Sj : 〈σj〉Sj

+ + S0 : 〈σj〉S0
− + Zj : σj

residual: Rj = α
(
σj
)
− αj

exit test:
|Rj |

|αj − αl−1|
< tolerance =⇒ exit

damage:



αj+1 = αj +Rj

Sj+1 = S

(
Sl−1, αj+1 − αl−1

)
Zj+1 = Z

(
Z l−1, αj+1 − αl−1

)
end loop: j = j + 1

(24)

where α is the function defined in Equations (10) or (21), and S and Z are2

the functions defined in Equations (9) or (15). Concerning the tolerance,3

in the absence of a reference value for the magnitude of the residual of the4

proposed algorithm, we used a stagnation criterion with a tolerance of 10−3.5

3.1.2. Acceleration of the solver6

The fixed-point method can be viewed as a Newton-Raphson method7

with a unit search direction and, therefore, can oscillate greatly. This is8

particularly true in our case because of the presence of unilateral conditions9

(damage can only increase, see Equations (8) and (14)) and because in10

practice Algorithm (24) has very poor convergence or no convergence at all.11

Therefore, we propose two relaxation methods which improve the algorithm12

convergence drastically. The only modification to Algorithm (24) concerns13

20



the damage increase line, which becomes:1

αj+1 = αj + sjRj (25)

where sj is defined as follows:2

Basic relaxation. One can consider that relaxation is required only if con-3

vergence fails to occur after a given number of iterations. This leads to the4

following very simple relaxation scheme:5

sj =
1

1 + E (j/N)
(26)

where E is the classical integer part operator and N is the predefined number6

of iterations.7

Aitken’s relaxation. Another acceleration scheme considered here is Aitken’s8

relaxation, whose excellent performance was demonstrated in recent works9

[Kassiotis et al., 2010]. This can be viewed as a search direction optimization10

based on previous iterations. Then, sj is defined as:11

sj =


1 if j = 0

−sj−1 Rj−1

Rj −Rj−1
if j > 0

(27)

3.1.3. Performance12

The performance of each of the options proposed for the resolution of13

the model’s equations was evaluated using a very simple problem involving14

no structural effect: a single linear quadrangular element with four integra-15

tion points was subjected to pure unidirectional tension through symmetry16

conditions and prescribed displacements (see Figure 4). The damage law17

considered was that of Section 2.3.1, which leads to the most difficult local18

loop because damage is stress-driven (see Figure 3). Figure 5 shows how the19

21



methods compare in terms of the number of iterations and time. Clearly,1

Aitken’s relaxation was found to be much more efficient than fixed-value2

relaxation, and it will be used from now on. For example, Figure 5(b) shows3

a 75% gain compared to the case where relaxation occurs after 10 uncon-4

verged iterations. Figure 5(c) also shows that this acceleration reduces the5

cost of the local loop to about 10% of that of the global loop, which is a6

very satisfactory ratio.7

  

²g1

Figure 4: The problem used for the evaluation of the performance of the solver (εg1 denotes

the applied strain)

3.2. The behavior loop8

In the previous discussion of the local loop (see Section 3.1), we never9

explained how to calculate σ when all the internal variables are fixed (see10

the second line of Algorithm (24)). While this step is straightforward for11

most existing models, it is not for ours. Because of the partitioning of σ12

into positive and negative parts, Equation (4) is nonlinear even with fixed13

operators, so the problem can be formulated as follows:14 
with ε, S, S0 and Z known, find σ such that

ε = S : 〈σ〉S+ + S0 : 〈σ〉S0
− + Z : σ

(28)
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Figure 5: Performances of the local loop acceleration methods

23



3.2.1. The Newton-Raphson solver1

This nonlinear problem is solved using a Newton-Raphson algorithm:2 

initialization: k = 0 ; σk = σl−1

loop:∣∣∣∣∣∣∣∣∣∣∣∣

residual: Rk = ε− S : 〈σk〉S+ − S0 : 〈σk〉S0
− − Z : σk

exit test: ‖Rk‖ < tolerance =⇒ exit

stress: σk+1 = σk +Dk : Rk

end loop: k = k + 1

(29)

for which several search directions Dk can be used. The actual tangent3

direction is not an option because one cannot derive the state law (4) with4

respect to σ in the general case where 〈σ〉S+ 6= 0 and 〈σ〉S0
− 6= 0. One can5

choose, for example, the initial operator H0 = S0
−1, which is not a good6

direction, especially when the damage is significant, but which is fast because7

the calculation of the operator is very inexpensive. Another option is to use8

the quasi-secant operator, defined as:9

Dk =


(
Sl−1 + Z l−1

)−1
if Tr

(
σk
)
> 0(

S0 + Z l−1
)−1

if Tr
(
σk
)
< 0

(30)

which is a much better search direction, but also a more expensive one10

because these operators are usually not saved and must be recalculated at11

each iteration. Other means of drastically improving the performance of the12

solver will be presented in Section 3.2.2.13

Regarding tolerance, in practice, since the residual of the proposed al-14

gorithm is a strain, we use 10−9.15
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3.2.2. Acceleration of the solver1

In practice, the initial operator converges very slowly, or even does not2

converge at all if the damage is significant. The secant operator defined3

in Equation (30) generally converges very poorly, too. Therefore, we pro-4

pose two acceleration methods in order to improve the convergence of the5

algorithm drastically.6

BFGS search direction. The first acceleration scheme one can consider is7

the BFGS method [Matthies and Strang, 1979], whose ability to provide a8

very good compromise between cost and quality for the search direction is9

well-known: a quasi-tangent direction is generated at the cost of 4k addi-10

tional scalar products compared to the initial direction [Matthies and Strang,11

1979]. The algorithm for the calculation of Dk is well-known and will not12

be recalled here; the only specificity is that the secant operator defined in13

Equation (30) is used for the central operator because the tangent operator14

cannot be derived formally.15

Aitken’s relaxation. Another acceleration considered here is Aitken’s relax-

ation, which was already used in Section 3.1.2 and which can also be viewed

as a search direction optimization based on previous iterations. The only

modification to Algorithm (29) is the last line, which becomes:

σk+1 = σk + skDk : Rk (31)

with sk =


1 if k = 0

−sk−1
Rk−1 :

(
Rk −Rk−1

)(
Rk −Rk−1

)
:
(
Rk −Rk−1

) if k > 0

For the same reason as for the BFGS acceleration, we use the secant operator16

defined in Equation (30) for Dk.17
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3.2.3. Performance1

Let us now evaluate the performances of the different methods proposed2

for the inversion of the state law of the model. We used the same test case3

as in Section 3.1.3 (see Figure 4), but the damage law considered was that4

of section 2.3.3, which is the most difficult behavior loop because damage5

increases until it reaches the criterion defined in (23) (see Figure 3). The6

methods are compared in terms of the number of iterations and time in7

Figure 6. Clearly, the secant operator performs very poorly and should not8

be used. The Aitken and BFGS operators have comparable performance in9

terms of both the number of iterations and time. Figure 6(b) shows that10

they lead to a gain by a factor 2 to 200 compared to the secant operator and11

reduce the cost of the inversion of the state law to approximately 50% of that12

of the local loop (see Figure 6(c)) even when damage approaches saturation.13

The BFGS operator, which is slightly more efficient than Aitken’s, will be14

used from now on. In order to appreciate the importance of this gain, one15

should bear in mind that this loop is run at each local iteration of each16

global iteration of each time increment, which makes it the key factor in the17

performance of the implementation.18

4. Control of the damage localization19

The calculation of softening models such as those defined in Section 2.3.320

over a domain goes through a critical point where a loss of ellipticity, i.e.21

a loss of uniqueness of the solution [Needleman, 1988; Pijaudier-Cabot and22

Benallal, 1993; Peerlings et al., 1998], occurs and leads to pathological mesh23

dependencies [Ladevèze et al., 2000; Desmorat et al., 2010]. Several remedies24

exist for damage models, including nonlocal formulations [Pijaudier-Cabot25

26



 1

 10

 100

 1000

 0  10  20  30  40  50  60  70  80  90  100

N
u
m

b
e
r 

o
f 

st
a
te

 l
a
w

 l
o
o
p
s

p
e
r 

lo
ca

l 
lo

o
p
 o

f 
th

e
 i
n
cr

e
m

e
n
t

Increment number

Secant operator
Aitken's relaxation

BFGS operator

(a) iterations

 0.0001

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60  70  80  90  100

To
ta

l 
ti

m
e
 (

s)
 i
n
 s

ta
te

 l
a
w

 l
o
o
p
s 

p
e
r 

in
cr

e
m

e
n
t

Increment number

Secant operator
Aitken's relaxation

BFGS operator

(b) time

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  10  20  30  40  50  60  70  80  90  100

R
a
ti

o
 (

%
) 

o
f 

ti
m

e
 i
n
 s

ta
te

 l
a
w

 l
o
o
p
s

to
 t

im
e
 i
n
 l
o
ca

l 
la

w
 l
o
o
p
s

Increment number

Secant operator
Aitken's relaxation

BFGS operator

(c) time ratio

Figure 6: Performance of the state law inversion methods

27



and Benallal, 1993; Peerlings et al., 1998; Voyiadjis et al., 2004; Desmorat1

et al., 2010] and delay-effect approaches [Ladevèze et al., 2000; Kerfriden2

et al., 2009; Desmorat et al., 2010]. The latter was chosen for our work3

because it is a local method, which is easy to implement in FE codes such4

as Abaqus/Standard.5

4.1. The delay-effect method6

First, in order to have a damage variable with an order of magnitude of7

1, let us rewrite Equation (21) as follows:8 

d =



0 if
√
z̄ ≤ ε0(√

z̄ − ε0
ε1 − ε0

)2

if ε0 ≤
√
z̄ ≤ ε1

1 if
√
z̄ ≥ ε1

α = k
d

1− d

(32)

Now, the delay-effect method for controlling the localization of damage con-9

sists in replacing the evolution of this damage variable by an evolution with10

a bounded rate:11

ḋ =
1

τc

(
1− e−〈dstatic−d〉+

)
(33)

where dstatic is the static function defined in Equation (32) and τc a ficti-12

tious time parameter which must be chosen in order to avoid uncontrolled13

localization [Ladevèze et al., 2000; Kerfriden et al., 2009]. The numerical14

resolution of such a simple nonlinear, but scalar, equation is straightforward15

and will not be discussed here.16

The behavior law is modified with the introduction of this viscous-like17

parameter. Figure 7 shows the stress-strain curves obtained with different18

values of τc.19
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ε1/ε0 = 3, ε̇g1 = 4ε0/s) using different characteristic times for the delay-effect law

4.2. Illustrative examples1

CT specimen. The effectiveness of the delay-effect method in controlling the2

localization of damage was evaluated using a simple CT-like test, i.e. a pre-3

cracked specimen subjected to tension (see Figure 8). The model consisted of4

an initially isotropic material (with E0 = 250 MPa and ν0 = 0.3) whose state5

evolution was modeled using a microstructure-oriented softening damage6

law (see Equations (19) and (20) of Section 2.3.3, with a = 0, n = 2 and7

n orthogonal to the initial crack) and the limited-rate kinetics of the delay-8

effect method (see Equations (32) and (33) of Section 4.1, with ε0 = 1 10−3,9

ε1 = 3 10−3, k = 10−5 and τc = 3 10−2 s). The response and the damage10

fields for different meshes (generated with GMSH [Geuzaine and Remacle,11

2009]) are shown in Figure 9. One can clearly observe that the solution is12

objective, i.e. mesh-independent, in terms of both the mechanical response13

and the damage fields. Indeed, while the response of the coarse mesh is14

slightly different, the responses of the medium and fine meshes are very15
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similar.1

  

u; F¡u;¡F

10
m
m

Figure 8: The problem used for the evaluation of localization control based on delay-effect

damage (u is the applied displacement, F is the calculated force, and u̇ = 0.2 mm/s)

Plate with an open hole. Now let us consider a first structural example which2

consists in a plate with an open hole (see Figure 10). The model was the3

same as for the CT specimen, except for τc = 1 10−2 s. Figure 11 shows the4

response of the model using different meshes (again generated with GMSH5

[Geuzaine and Remacle, 2009]). Once again, the response of the coarse mesh6

is slightly different, but the responses of the medium and fine meshes are7

very similar, which attests to the fact that the method can be used to make8

an objective prediction of the structure’s final rupture.9

5. Conclusion10

This paper examined several key aspects of the formulation and numer-11

ical implementation of a family of models belonging to the anisotropic and12

unilateral damage theory. This modeling framework is based on a general13

expression of the damaged elastic energy potential which enables one to14

distinguish between tension behavior and compression behavior throughout15
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Figure 10: Structural case: plate with an open hole (u is the applied displacement, F is

the calculated force, and u̇ = 0.1 mm/s)

the evolution of the damage, even when the orientation of the damage is not1

known a priori (see Section 2.1).2

Several damage evolution laws were presented in order to deal with all3

types of damage: load-oriented or microstructure-oriented; reaching satura-4

tion or localizing into a macroscopic crack (see Section 2.3). The formulation5

of the microstructure-oriented damage law was modified slightly compared6

to the previous formulation [Ladevèze, 2002] in order to make it equivalent7

to the load-oriented laws when the load is normal to the crack (see Sec-8

tion 2.3.2). In addition, softening laws were presented in this framework for9

the first time (see Section 2.3.3). Let us note that even though this paper10

discusses only models with a single damage evolution law, it is possible to11

define models with several laws, each associated with a different damage12

mechanism. For example, in the model proposed for CMCs in [Ladevèze,13

2002; Genet et al., 2012], three damage evolution laws were defined: one14

load-oriented law for inter-yarn cracking and two microstructure-oriented15

laws for intra-yarn cracking of the longitudinal and transversal yarns.16

Then we presented our current implementation of the whole family of17

models in Abaqus/Standard. The local equations are solved using a fixed-18

point method. Among several relaxation schemes which were considered,19

32



 0

 2000

 4000

 6000

 8000

 10000

 12000

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08

F 
(N

)

u (mm)

Coarse
Medium

Fine

(a) Response

(b) Coarse mesh (1330

DOFs)

(c) Medium mesh (5850

DOFs)

(d) Fine mesh (7100 DOFs)

Figure 11: The response and the damage field for the open hole specimen at t = 1 s (dark

grey: undamaged; light gray: full damage criterion reached, see Equation (23) of Section

2.3.3): objectivity of the mesh and prediction of the final rupture

33



Aitken’s appears to be the most efficient and reduces the cost of the local1

resolutions to approximately 10% of that of the global iterations (see Section2

3.1). Since the model’s state law is nonlinear even when all the internal3

variables are fixed, its inversion is carried out using a Newton-Raphson4

method. Once again, several acceleration schemes were considered, among5

which the BFGS quasi-tangent method appears to be the most efficient.6

This reduces the cost of inverting the state law to approximately 50% of7

that of the local iterations, even with significant damage (see Section 3.2).8

Finally, a delay-effect method was used to control damage localization9

in the case of softening evolution laws. This enabled us to simulate the10

propagation of a macroscopic crack and the final rupture of a structure11

with no mesh dependency (see Section 4).12

13

Regarding perspectives, since this framework has already been applied to14

the case of CMCs [Ladevèze, 2002; Genet et al., 2012], the new capabilities15

of simulating the creation and propagation of macroscopic cracks will replace16

the simple criterion used until now (see [Cluzel et al., 2009; Genet et al.,17

2012]). In addition, microanalyses of cracked media will be carried out in18

order to derive in a generic way some of the model parameters, such as those19

which define the damage anisotropy (see Sections 2.3.1 and 2.3.2) or the20

projectors (see Section 2.3.2). This has already been done for the kinematics21

of a macroscopic damage model for concrete [Delaplace and Desmorat, 2007]22

and for both the kinematics and the kinetics of a mesoscopic damage model23

for laminated composites [Ladevèze and Lubineau, 2002].24
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Pierre Ladevèze. Nonlinear Computational Structural Mechanics: New Ap-

proaches and Non-Incremental Methods of Calculation. Mechanical Engi-

neering. Springer, 1999.

Pierre Ladevèze. An anisotropic damage theory with unilateral effects: ap-

plications to laminate and three- and four-dimensional composites. In

Olivier Allix and François Hild, editors, Continuum Damage Mechanics

of Materials and Structures, pages 205–233. Elsevier, 2002.
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1993. ISSN 0034-1223.

Hermann Matthies and G Strang. Solution of non-linear finite-element equa-

tions. International Journal for Numerical Methods in Engineering, 14

(11):1613–1626, 1979.

S. Murakami. Notion of continuum damage mechanics and its application to

anisotropic creep damage theory. Journal of Engineering Materials and

Technology - Transactions of the ASME, 105(2):99–105, 1983.

Alan Needleman. Material rate dependance and mesh sensitivity in localiza-

tion problems. Computer Methods in Applied Mechanics and Engineering,

67(1):69–85, March 1988.

Jean-Charles Passieux, Pierre Ladevèze, and David Néron. A scalable time-
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