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Stabilization of Persistently Excited Linear Systems
by Delayed Feedback Laws

Guilherme Mazanti

August 9, 2013

Abstract

This paper considers the stabilization to the origin of a persistently excited linear system
by means of a linear state feedback, where we suppose that the feedback law is not applied
instantaneously, but after a certain positive delay (not necessarily constant). The main result
is that, under certain spectral hypotheses on the linear system, stabilization by means of a
linear delayed feedback is indeed possible, generalizing a previous result already known
for non-delayed feedback laws.

1 Introduction
Consider a control system of the form

ẋ(t) = Ax(t)+α(t)Bu(t), x(t) ∈ Rd, u(t) ∈ Rm, α ∈ G, (1.1)

where x is the state variable, u is a control input, A and B are matrices of appropriate dimensions,
and α belongs to a certain class G of measurable scalar signals α :R+→ [0,1]. This corresponds
to the introduction on the linear control system ẋ = Ax+Bu of a certain signal α that determines
when and how much the control u is active. Note that, when α takes its values on {0,1}, (1.1)
is actually a switched system between the dynamics of the uncontrolled system ẋ = Ax and the
controlled one ẋ = Ax+Bu.

Several different phenomena may be modeled by signal α in (1.1), such as a failure in
the transmission of the control u to the plant, a time-varying parameter affecting the control
efficiency, or the allocation of control resources, among other possible phenomena. We are
interested in general on robust control techniques of (1.1) with respect to α: we suppose that α

is not precisely known and we wish our control strategy for (1.1) to be chosen independently of
α and to be valid for any signal α in a certain class G.

The problem of controlling (1.1) by a suitable choice of u is obviously not interesting when
α ≡ 0, or when α is zero for a large amount of time, since in this case the control u has
a very limited effect on (1.1). The class G should thus ensure that the control input has a
sufficient amount of action on the system. Among the possible choices for G, the class of
(T,µ)-persistently exciting signals has attracted much interest recently (see, for instance, [7–
10, 13, 16, 20, 22], and also [17] for a similar condition) and, for T ≥ µ > 0, it consists on the
signals α ∈ L∞(R+, [0,1]) such that, for every t ∈ R+,

w t+T

t
α(s)ds≥ µ. (1.2)
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The class of these signals α is noted G(T,µ).
The condition of persistence of excitation (1.2) arises naturally in identification and adaptive

control problems (see, e.g., [1–3,6,18]). In this context, we are led to study systems of the kind
ẋ =−P(t)x, x ∈ Rd , where P(t) is a symmetric non-negative definite matrix for every t. If P is
bounded and has bounded derivative, it has been shown in [22] that the persistence of excitation
of P, in the sense that α(t) = ξ TP(t)ξ is (T,µ)-persistently exciting for all unitary vectors ξ ∈
Rd and for certain constants T ≥ µ > 0 independent of ξ , is a necessary and sufficient condition
for the global exponential stability of ẋ = −P(t)x. This is what motivates the assumption that
α is persistently exciting in (1.1). Further examples of systems similar to (1.1) where the
persistent excitation condition appears are given in [7, 9, 16], where the motivation for the use
of persistently exciting signals is also more deeply discussed.

We consider the problem of stabilization of system (1.1) to the origin by means of a linear
state feedback u = −Kx, where we require the choice of the gain matrix K not to depend on a
particular signal α but instead on the class G(T,µ). In many practical situations, this feedback
cannot be done instantaneously, for a certain state x(t) may not be available for measure before a
certain delay τ has elapsed, and so the state measured in time t is actually x(t−τ(t)). This paper
considers the problem of stabilization of (1.1) by a delayed feedback u(t) = −Kx(t − τ(t)),
where the delay τ(t) may depend on t, and the closed-loop system becomes

ẋ(t) = Ax(t)−α(t)BKx(t− τ(t)),
α ∈ G(T,µ),τ ∈ L∞(R+,T)

(1.3)

where T ⊂ R+ is the set where the delay τ takes its values. The goal of this paper is to present
a stabilization result for system (1.3), showing that, under certain hypotheses on A and B, given
T ≥ µ > 0 and τ0 ≥ 0, there exist a neighborhood T of τ0 in R+ and K ∈Mm,d(R) such that,
for any α ∈ G(T,µ) and any delay function τ ∈ L∞(R+,T), system (1.3) is exponentially stable,
uniformly with respect to α and τ . This generalizes [10, Theorem 3.2], where the same result
is given in the case of the non-delayed feedback u(t) =−Kx(t), corresponding thus to T = {0}.

Let us comment briefly on the technique used in [10] to prove this result in the non-delayed
case. The main problem when dealing with the class G(T,µ) is that a signal α ∈ G(T,µ)
may be zero on certain time intervals, and so the system follows its uncontrolled dynamics
ẋ = Ax. On the other hand, for every ρ > 0, it is known by a result from [11] that one can
choose a linear feedback u(t) = −Kx(t) that stabilizes (1.1) uniformly with respect to α ∈
L∞(R+, [ρ,1]). The main idea in [10] is to perform a change of variables corresponding to a time
contraction by a factor ν > 0, which transforms a (T,µ)-signal α into a (T/ν ,µ/ν)-signal αν

with αν(t) = α(νt). It is possible to show that the family (αν)ν>0 admits a weak-? convergent
subsequence (ανn)n∈N∗ in L∞(R+, [0,1]) with νn→+∞ and that any weak-? subsequential limit
α? of (αν)ν>0 as ν → +∞ satisfies α?(t) ≥ µ/T almost everywhere. The idea is thus to study
a certain limit system obtained as ν → +∞, for which stabilization can be obtained using the
result from [11] mentioned above. It can then be shown by a limit procedure that the same
feedback gain K also stabilizes a time-contracted system for a certain ν > 0 large enough, and
one may finally adapt such a feedback gain K in order to obtain a stabilizer for the original
system.

This time-contraction technique used in [10] is well-adapted to deal with delays in the feed-
back, since a delay τ(t) in the original system will correspond to a delay τ(νt)

ν
in the time-

contracted system. We may thus expect to obtain a non-delayed limit system as ν → +∞ sim-
ilar to the one obtained in [10] and to conclude the stabilizability of the original system by a
similar argument. This intuition is actually true, as proved in Theorem 2.5 below, where we
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prove our stabilizability result by following the same time-contraction argument of the proof
of [10, Theorem 3.2].

In their article [10], the authors first prove their stabilization result in the particular case
where the dynamics are given by the Jordan block Jd (see (3.1) below), since it is a representa-
tive example containing most of the difficulties of the proof of the general case. We also treat
the case of the Jordan block separately in this article (see Theorem 3.1), but in this particular
case we have a stronger result, showing that stabilizability is possible for any bounded interval
T ⊂ R+ where the delay τ ∈ L∞(R+,T) may take its values, whereas in the general case we
may only guarantee stabilizability for delays τ which are perturbations around a certain con-
stant prescribed value τ0. This difference between the statements of our result in the general
case and in the particular case of the Jordan block is more deeply discussed in Section 5.

The plan of the paper is the following. In Section 2, we present the notations and definitions
used throughout this paper and recall the previous result of [10]. We then proceed to prove,
in Section 3, the main theorem of this paper in the particular case of the Jordan block, which
allows us to highlight the main ideas of the proof in a setting where the notations are much
clearer than in the general case, and also leads to a stronger result than in the general case. The
proof of our main theorem is presented in Section 4, and Section 5 discusses the results we
obtained, and specially the difference in the statements of Theorems 3.1 and 2.5. The proofs of
some technical lemmas used in this paper are given in the Appendices A and B.

2 Notations, Definitions and Previous Results
In this paper, Md,m(R) denotes the set of d×m matrices with real coefficients, which is denoted
simply by Md(R) when d = m. As usual, we identify column matrices in Md,1(R) with vectors
in Rd . The identity matrix in Md(R) is denoted by Idd and 0d×m ∈Md,m(R) denotes the matrix
whose entries are all zero, the dimensions being possibly omitted if they are implicit. The
block-diagonal matrix whose diagonal blocks are the square matrices a1, . . . ,ad is denoted by
diag(a1, . . . ,ad). The notation ‖x‖ indicates both the Euclidean norm of a vector x ∈ Rd and
the associated matrix norm. The real and imaginary parts of a complex number z are denoted
by ℜ(z) and ℑ(z) respectively. The sets R+ and N∗ denote, respectively, the sets of the non-
negative real numbers R+ = [0,+∞) and the positive integers N∗ = {1,2,3,4, . . .}. For two
topological spaces X and Y , we denote by C0(X ,Y ) the set of all continuous functions from X
to Y .

Throughout this paper, we consider the system

ẋ(t) = Ax(t)+α(t)Bu(t), x(t) ∈ Rd, u(t) ∈ Rm, α ∈ G(T,µ), (2.1)

where A∈Md(R), B∈Md,m(R), and we take persistently exciting signals α in the class G(T,µ)
defined as follows.

Definition 2.1. Let T , µ be two positive constants with T ≥ µ . We say that a measurable
function α : R+→ [0,1] is a (T,µ)-signal if, for every t ∈ R+, one has

w t+T

t
α(s)ds≥ µ.

The set of (T,µ)-signals is denoted by G(T,µ). System (2.1) with α ∈ G(T,µ) is called a
persistently excited system (PE system for short).
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We shall consider the problem of stabilization of system (2.1) by means of a delayed linear
state feedback u(t) =−Kx(t− τ(t)), where the delay τ is a function in L∞(R+,T) for a certain
bounded set T ⊂ R+ and K ∈Mm,d(R). With this feedback, system (2.1) takes the form

ẋ(t) = Ax(t)−α(t)BKx(t− τ(t)),
α ∈ G(T,µ),τ ∈ L∞(R+,T).

(2.2)

Note that, for T ≥ µ > 0 and T ⊂ R+ bounded, for every α ∈ L∞(R+, [0,1]) and every τ ∈
L∞(R+,T), (2.2) satisfies the Carathéodory conditions for delayed equations (see, for instance,
[12, Section 2.6 and Theorem 6.1.1]), and so, noting r = supT, for any given initial condi-
tion x0 ∈ C0([−r,0],Rd), (2.2) admits a unique continuous solution x defined on [−r,+∞),
which is absolutely continuous on R+, coincides with x0 on [−r,0], and satisfies ẋ(t) = Ax(t)−
α(t)BKx(t − τ(t)) for almost every t ∈ R+. In order to make explicit the dependence of the
solution x on τ , x0, α and K, we denote x(t) = x(t;τ,x0,α,K).

In the context of delayed systems, stability is defined in terms of the uniform norm of the
initial condition (see, for instance, [12, Chapter 5]), which motivates the following definition.

Definition 2.2. Let T ≥ µ > 0 and T be a bounded subset of R+, and denote r = supT.
We say that K ∈ Mm,d(R) is a (T,µ,T)-stabilizer for (2.2) if there exist constants C ≥ 1
and γ > 0 such that, for every α ∈ G(T,µ), every τ ∈ L∞(R+,T), and every initial condition
x0 ∈ C0([−r,0],Rd), the solution x(t;τ,x0,α,K) of (2.2) satisfies

‖x(t;τ,x0,α,K)‖ ≤Ce−γt sup
s∈[−r,0]

‖x0(s)‖ , ∀t ≥ 0.

Remark 2.3. If K is a (T,µ,T)-stabilizer for (2.2), then, for every constant α? ∈ [µ/T ,1] and
every constant delay τ? ∈ T, the linear delayed system

ẋ(t) = Ax(t)−α?BKx(t− τ?) (2.3)

is exponentially stable. This is an important remark, since the stability and stabilization of
systems with a constant delay of the form (2.3) can be more easily studied (see, for instance,
[21,23]), giving rise to necessary conditions for K to be a (T,µ,T)-stabilizer. We shall use this
approach later in Example 5.1.

Let us recall that a pair of matrices (A,B) ∈Md(R)×Md,m(R) is said to be stabilizable if
there exists a matrix K ∈Mm,d(R) such that A−BK is Hurwitz. This is equivalent to saying
that there exists an invertible matrix P ∈Md(R) such that

PAP−1 =

(
A1 A3
0 A2

)
, PB =

(
B1
0

)
,

where A2 is Hurwitz and (A1,B1) is controllable. Stabilizability of a pair (A,B) means that the
linear control system ẋ = Ax+Bu admits a linear state feedback u =−Kx such that the closed-
loop system ẋ = (A−BK)x is exponentially stable, and thus, in order to achieve the required
stabilizability property for system (2.2), the stabilizability of (A,B) is a necessary condition
when 0∈ T. This is what motivates us to consider only stabilizable pairs (A,B) in what follows.

The stabilizability of (2.2) by means of a non-delayed feedback law has been studied in [10]
in the case of a single-input system, i.e., when m = 1, and it has been generalized to the multi-
input case in [9]. In terms of Definition 2.2, this result can be stated as follows.
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Theorem 2.4. Let (A,B)∈Md(R)×Md,m(R) be a stabilizable pair and assume that the eigen-
values of A have non-positive real part. Then, for every T ≥ µ > 0, there exists a (T,µ,{0})-
stabilizer for (2.2).

The hypothesis that the eigenvalues of A have non-positive real part may seem restrictive,
but it was shown in [10] that Theorem 2.4 is not true for certain stabilizable pairs (A,B) and
certain values of T,µ when A admits an eigenvalue with positive real part. This is actually an
effect of the signal α in the dynamics of the system; note that, when α(t) ∈ {0,1}, the closed-
loop system actually switches between the dynamics given by ẋ = Ax and ẋ = (A−BK)x, and
the phenomena related to this switch, such as the overshooting phenomenon, may lead to the
non-stabilizability of the switched system when A has an eigenvalue with positive real part, as
detailed in [10]. For more general information on the behavior of switched systems, we refer
to [4, 5, 14, 15, 19, 25].

The main result of this paper is the following generalization of Theorem 2.4.

Theorem 2.5. Let (A,B)∈Md(R)×Md,m(R) be a stabilizable pair and assume that the eigen-
values of A have non-positive real part. Then, for every T ≥ µ > 0 and every τ0 ≥ 0, there
exists a neighborhood T of τ0 in R+ and a (T,µ,T)-stabilizer for (2.2).

We prove this theorem here by generalizing the proof given in [10] in the non-delayed case.
The main point is that the time-contraction argument given in [10], when applied to a delayed
system, reduces the effects of the delay in the system, in such a way that the limit system
obtained by making the time-contraction parameter tend to infinity is essentially the same in the
delayed and the non-delayed cases. In order to highlight these main ideas, we first consider a
particular case of Theorem 2.5.

3 The d-Integrator
Before turning to the proof of Theorem 2.5, let us first consider the particular case where the
dynamics of the system are given by the d-integrator, defined by the Jordan block

Jd =



0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
0 0 0 0 · · · 0 0
...

...
...

... . . . ...
...

0 0 0 0 · · · 0 1
0 0 0 0 · · · 0 0


(3.1)

and by taking m = 1 and B =
(
0 · · · 0 1

)T ∈Md,1(R). This particular case will allow us to
highlight the main ideas of the proof of Theorem 2.5, since it contains most of the difficulties of
the general case. Furthermore, we can give in this case a stronger result, showing the existence
of a (T,µ,T)-stabilizer for any bounded interval T ⊂R+, and not only for perturbations around
a certain value as in the general case of Theorem 2.5.

Theorem 3.1. Let A = Jd , B =
(
0 · · · 0 1

)T ∈ Rd , and let T ≥ µ > 0 and r > 0 be given.
Then there exists a (T,µ, [0,r])-stabilizer K ∈M1,d(R) for (2.2).
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Proof. The proof follows the same idea of the proof of [10, Theorem 3.1]: we first perform
a change of variables corresponding to a time contraction in order to relate (T,µ, [0,r])-
stabilizers to (T/ν ,µ/ν , [0,r/ν ])-stabilizers for ν > 0. We then study the stabilizability of
a certain limit system, and this allows us to conclude the stabilizability of the original system
for a certain ν > 0 large enough, thanks to the continuity result presented in the Appendix
A.

Step 1. Time contraction

The system we consider is

ẋ(t) = Jdx(t)−α(t)BKx(t− τ(t)),
α ∈ G(T,µ),τ ∈ L∞(R+, [0,r]).

(3.2)

For ν > 0, we define
Dd,ν = diag(νd−1, . . . ,ν ,1), (3.3)

which satisfies the relations

νD−1
d,νJdDd,ν = Jd, Dd,νB = B. (3.4)

Noting, for simplicity, x(t) = x(t;τ,x0,α,K), and defining

xν(t) = D−1
d,νx(νt), (3.5)

xν satisfies
d
dt

xν(t) = Jdxν(t)−α(νt)νBKDd,νxν

(
t− τ(νt)

ν

)
(3.6)

and hence

xν(t) = x
(

t;
τ(ν ·)

ν
,D−1

d,νx0(ν ·),αν ,νKDd,ν

)
with αν(t) = α(νt), which is a (T/ν ,µ/ν)-signal. Thus K is a (T,µ, [0,r])-stabilizer for
(3.2) if and only if νKDd,ν is a (T/ν ,µ/ν , [0,r/ν ])-stabilizer. This equivalence is crucial
in what follows: instead of looking for a (T,µ, [0,r])-stabilizer for (3.2), we look for a
(T/ν ,µ/ν , [0,r/ν ])-stabilizer for a certain ν > 0 large enough. The technique is thus to
study a certain limit system obtained as ν → +∞, obtain a stabilizer for this non-delayed
system and then show that this stabilizer is actually a (T/ν ,µ/ν , [0,r/ν ])-stabilizer for a
certain ν > 0 large enough.

Step 2. Limit system

We turn to the system
ẋ(t) = Jdx(t)−α?(t)BKx(t),
α? ∈ L∞(R+, [µ/T,1]).

(3.7)

It has been proved in [10, Theorem 3.1], using a result from [11], that one can find K ∈
M1,d(R) and a positive definite matrix S ∈Md(R), both independent of the particular signal
α? ∈ L∞(R+, [µ/T,1]), such that (3.7) is globally uniformly exponentially stable and V (x)=
xTSx decreases along all trajectories of (3.7), uniformly with respect to α?. In particular,
there exists a time σ such that every trajectory of (3.7) starting in BV

2 = {x ∈Rd |V (x)≤ 2}
at time 0 lies in BV

1 = {x ∈ Rd |V (x)≤ 1} for every time larger than σ .
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Step 3. Study of (3.6) through the limit system.

We wish to deduce from the conclusion obtained in the previous step that (3.2) admits
a (T/ν ,µ/ν , [0,r/ν ])-stabilizer for a certain ν > 0 large enough. We claim that, for some
ν > 0 large enough, every trajectory of

ẋ(t) = Jdx(t)−α(t)BKx(t− τ(t)),
α ∈ G(T/ν ,µ/ν),τ ∈ L∞(R+, [0,r/ν ]),

with initial condition x0 ∈ C0([−r/ν ,0],BV
2 ) stays in BV

1 for every time larger than 2σ . In
particular, by homogeneity, this will imply that K is a (T/ν ,µ/ν , [0,r/ν ])-stabilizer of
(3.2) and thus ν−1KD−1

d,ν is a (T,µ, [0,r])-stabilizer, concluding the proof. To prove this,

assume, by contradiction, that for every n ∈ N∗ there exist τn ∈ L∞(R+, [0,r/n]), x(n)0 ∈
C0([−r/n,0],BV

2 ), αn ∈ G(T/n,µ/n), and tn ∈ [2σ ,4σ ] such that, for every n ∈ N∗,

x
(

tn;τn,x
(n)
0 ,αn,K

)
/∈ BV

1 . (3.8)

Up to the extraction of a subsequence, we can suppose that, as n→+∞, tn→ t? ∈ [2σ ,4σ ],
x(n)0 (0)→ x?0 ∈ BV

2 , and αn ⇀ α? ∈ L∞(R+, [0,1]) weakly-?; we also note that τn(t)→ 0
as n→ +∞ uniformly on t ∈ R+. Then, applying Lemma A.1 proved in the Appendix A,
we obtain that x

(
tn;τn,x

(n)
0 ,αn,K

)
converges to x(t?;0,x?0,α?,K) as n→+∞. We also note

that, by [10, Lemma 2.5], α?(t) ≥ µ/T almost everywhere in R+, and so, by our previous
study of (3.7), since t? ≥ 2σ , by homogeneity, we have

V (x(t?;0,x?0,α?,K))≤ 1
2
.

This contradicts (3.8), establishing the desired result. �

4 Main Result
We now turn to the proof of our main result, Theorem 2.5. For a given stabilizable pair of
matrices (A,B) ∈Md(R)×Md,m(R) and for given T ≥ µ > 0 and τ0 ≥ 0, we wish to find an
interval T ⊂ R+ of admissible perturbations around τ0 and a (T,µ,T)-stabilizer for (2.2).

Proof of Theorem 2.5.

Step 1. Reduction to a canonical form

Notice that we may reduce the theorem to the case where (A,B) is controllable, m = 1,
and all the eigenvalues of A lie on the imaginary axis; this is detailed in Lemmas B.1, B.2,
and B.3 in the Appendix B. We thus suppose from now on that (A,B) is controllable, m = 1,
and ℜ(λ ) = 0 for every eigenvalue λ of A. We also reduce (A,B) to a normal form with
which it shall be easier to work.

Lemma 4.1. Suppose (A,B) ∈Md(R)×Rd is a controllable pair and ℜ(λ ) = 0 for every
eigenvalue λ of A. Then, up to a linear transformation of coordinates, (2.1) can be written
as {

ẋ0(t) = Jr0x0(t)+α(t)b0u(t), x0(t) ∈ Rr0 ,

ẋ j(t) = (ω jA( j)+ JC
r j
)x j(t)+α(t)b ju(t), x j(t) ∈ R2r j , j = 1, . . . ,h,

(4.1)
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where the spectrum of A is σ(A) = {±iω j, j = j0, j0+1, . . . ,h} with all the ω j ≥ 0 distinct,
j0 = 1 if 0 /∈ σ(A), j0 = 0 and ω0 = 0 otherwise; r j is the algebraic multiplicity of the
eigenvalue iω j (with r0 = 0 if 0 /∈ σ(A)); Jr0 is the real Jordan block defined in (3.1);
JC

n ∈M2n(R) is the Jordan block for complex eigenvalues,

JC
n =



02×2 Id2 02×2 02×2 · · · 02×2 02×2
02×2 02×2 Id2 02×2 · · · 02×2 02×2
02×2 02×2 02×2 Id2 · · · 02×2 02×2
02×2 02×2 02×2 02×2 · · · 02×2 02×2

...
...

...
... . . . ...

...
02×2 02×2 02×2 02×2 · · · 02×2 Id2
02×2 02×2 02×2 02×2 · · · 02×2 02×2


,

that is, JC
n = Jn⊗ Id2 in terms of the Kronecker product; A( j) = diag(A0, . . . ,A0) ∈M2r j(R)

with

A0 =

(
0 1
−1 0

)
;

and b0 and b j are respectively the vectors of Rr0 and R2r j with all the coordinates equal to
zero except the last one that is equal to one.

This lemma was proved in [10] during the proof of Theorem 3.2 therein; for the sake of
completeness, we present briefly its proof in the Appendix B.

Step 2. Time contraction

We work from now on with system (4.1). Given K ∈M1,d(Rd), we decompose K in
blocks as K =

(
K0 K1 · · · Kh

)
with K0 ∈M1,r0(R), K j ∈M1,2r j(R), j = 1, . . . ,h, so that

the feedback law u(t) =−Kx(t−τ(t)) is written as u(t) =−K0x0(t−τ(t))−∑
h
j=1 K jx j(t−

τ(t)). As in the proof of Theorem 3.1, we perform a change of time-space variables in the
closed-loop system corresponding to a time contraction. Define

y0(t) = D−1
r0,ν

x0(νt),

y j(t) = (DC
r j,ν)

−1e−νtω jA( j)
x j(νt), j = 1, . . . ,h,

with Dn,ν as in (3.3), satisfying (3.4), and

DC
n,ν = Dn,ν ⊗ Id2 = diag(νn−1,νn−1, . . . ,ν ,ν ,1,1) ∈M2n(R),

which satisfies

ν(DC
r j,ν)

−1JC
r j

DC
r j,ν = JC

r j
, DC

r j,νb j = b j, j = 1, . . . ,h.

Then y0,y1, . . . ,yh satisfy

ẏ0(t) = Jr0y0(t)−αν(t)b0

[
K0,νy0

(
t− τ(νt)

ν

)
+

h

∑
`=1

K`,νe(νt−τ(νt))ω`A(`)
y`
(

t− τ(νt)
ν

)]
,

ẏ j(t) = JC
r j

y j(t)−αν(t)e−νtω jA( j)
b j
[
K0,νy0

(
t− τ(νt)

ν

)
+

+
h

∑
`=1

K`,νe(νt−τ(νt))ω`A(`)
y`
(

t− τ(νt)
ν

)]
, j = 1, . . . ,h,

(4.2)
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with αν(t) = α(νt), K0,ν = νK0Dr0,ν , K`,ν = νK`DC
r`,ν for ` = 1, . . . ,h, and where we

use that A( j)DC
r j,ν = DC

r j,νA( j) and A( j)JC
r j
= JC

r j
A( j) for j = 1, . . . ,h. This shows that the

gain K =
(
K0 K1 · · · Kh

)
is a (T,µ,T)-stabilizer for (4.1) if and only if the gain Kν =(

K0,ν K1,ν · · · Kh,ν
)

is a (T/ν ,µ/ν ,T/ν)-stabilizer for (4.2), where T/ν = {t/ν | t ∈
T}.

Step 3. Choice of the feedback family

We turn to the problem of finding a neighborhood T of τ0 in R+ and a (T/ν ,µ/ν ,T/ν)-
stabilizer for (4.2) for a certain ν > 0, which will imply the theorem. We shall look for
such a stabilizer Kν under a particular form. We write b0 =

(
0 1

)T and we take Kν =(
K0,ν K1,ν · · · Kh,ν

)
with

K0,ν =K0, K0 =
(
k0

1 · · · k0
r0

)
∈M1,r0(R)

K j,ν =K j⊗bT
0 eτ0ω jA0, K j =

(
k j

1 · · · k j
r j

)
∈M1,r j(R), j = 1, . . . ,h.

(4.3)

Now, since A(`) = Idr`⊗A0, we have, for `= 1, . . . ,h, that

K`,νe(νt−τ(νt))ω`A(`)
=K`⊗bT

0 e(νt−τ(νt)+τ0)ω`A0 =

=K`⊗bT
0 eνtω`A0 +K`⊗

[
bT

0 eνtω`A0
(

e−(τ(νt)−τ0)ω`A0− Id2

)]
.

Noting b̃ j ∈Rr j the vector with all coordinates equal to zero except the last one that is equal
to one, we have b j = b̃ j⊗b0, and thus e−νtω jA( j)

b j = b̃ j⊗ e−νtω jA0b0. We finally write, for
j, ` ∈ {1, . . . ,h},

C(ν)
00 (t) = αν(t),

C(ν)
0 j (t) = αν(t)bT

0 eνtω jA0,

C(ν)
j0 (t) = αν(t)e−νtω jA0b0,

C(ν)
j` (t) = αν(t)e−νtω jA0b0bT

0 eνtω jA0,

P(ν)
00 (t) = P(ν)

j0 (t) = 0,

P(ν)
0 j (t) = αν(t)bT

0 eνtω jA0
[
e−(τ(νt)−τ0)ω jA0− Id2

]
,

P(ν)
j` (t) = αν(t)e−νtω jA0b0bT

0 eνtω`A0
[
e−(τ(νt)−τ0)ω`A0− Id2

]
,

(4.4)

and thus system (4.2) can be written under the form
ẏ0(t) = Jr0y0(t)−

h

∑
`=0

[b0K`⊗ (C(ν)
0` (t)+P(ν)

0` (t))]y`
(

t− τ(νt)
ν

)
,

ẏ j(t) = JC
r j

y j(t)−
h

∑
`=0

[b̃ jK`⊗ (C(ν)
j` (t)+P(ν)

j` (t))]y`
(

t− τ(νt)
ν

)
, j = 1, . . . ,h.

(4.5)

We can arrange all the matrices C(ν)
j` in a (2h+1− j0)×(2h+1− j0) symmetric matrix and

all the matrices P(ν)
j` in a (2h+1− j0)× (2h+1− j0) matrix respectively as

C(ν)(t) =
(

C(ν)
j` (t)

)
j0≤ j,`≤h

, P(ν)(t) =
(

P(ν)
j` (t)

)
j0≤ j,`≤h

. (4.6)
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We take from now on T under the form T = [τ0− r,τ0 + r]∩R+ for a certain r > 0 to be
chosen, and so∥∥∥P(ν)

j` (t)
∥∥∥≤ ∥∥∥e−(τ(νt)−τ0)ω jA0− Id2

∥∥∥=
=
√

2
[
1− cos((τ(νt)− τ0)ω j)

]
≤
∣∣(τ(νt)− τ0)ω j

∣∣≤ rΩ

with Ω = max{ω j | j = j0, . . . ,h}.

Step 4. Limit system

We wish to study (4.5) through a limit system, as we did with (3.6) in Theorem 3.1.
The stability result for the limit system is given in the following lemma, proved later on in
Appendix B.

Lemma 4.2. Consider the system
ẏ0(t) = Jr0y0(t)−

h

∑
`=0

[b0K`⊗ (C0`(t)+P0`(t))]y`(t),

ẏ j(t) = JC
r j

y j(t)−
h

∑
`=0

[b̃ jK`⊗ (C j`(t)+Pj`(t))]y`(t), j = 1, . . . ,h,

(4.7)

where y0 ∈ Rr0 , y j ∈ R2r j , Jn and JC
n are the Jordan blocks defined above, b0 and b̃ j are

the vectors defined above, K j ∈ M1,r j(R) are constant matrices, j = j0, . . . ,h, C?,P? ∈
L∞(R+,M2h+1− j0(R)) and the 2×2 time-dependent matrices C j`,Pj`, 1≤ j, `≤ h, the (1−
j0)× 2 time-dependent matrices C0`,P0`, the 2× (1− j0) time-dependent matrices C j0,Pj0
and the signals C00,P00 are defined by the relations

C?(t) =
(
C j`(t)

)
j0≤ j,`≤h , P?(t) =

(
Pj`(t)

)
j0≤ j,`≤h , (4.8)

and we also assume that∥∥Pj`(t)
∥∥≤ rΩ, for almost every t ∈ R+, ∀ j, ` ∈ { j0, . . . ,h}. (4.9)

We write y =
(
yT

0 yT
1 · · · yT

h

)T.
Let ξ > 0. Then there exist C ≥ 1, γ > 0, r > 0, and K j ∈M1,r j(R), j = j0, . . . ,h, such

that, for every symmetric matrix C? ∈ L∞(R+,M2h+1− j0(R)) satisfying C?(t)≥ ξ Id2h+1− j0
almost everywhere, every P? ∈ L∞(R+,M2h+1− j0(R)) satisfying (4.9) and every solution y
of (4.7), we have

‖y(t)‖ ≤Ce−γt ‖y(0)‖ , ∀t ≥ 0.

Step 5. Study of (4.5) through the limit system

To conclude the proof, we deduce the stability of (4.5) from that of (4.7) in the same
way as we did in the proof of Theorem 3.1. Take T ≥ µ > 0 and τ0 ≥ 0. By [10, Lemma
2.5], there exists ξ > 0 depending only on T,µ and ω j, j = j0, . . . ,h, such that, for any
α ∈ G(T,µ) and any ν > 0, the time-dependent matrix C(ν) constructed from α as in (4.4)
and (4.6) is in L∞(R+,M2h+1− j0(R)) and satisfies

w t+ T
ν

t
C(ν)(s)ds≥ ξ

T
ν

Id2h+1− j0 .
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For this ξ > 0, take C ≥ 1, γ > 0, r > 0, and K j ∈M1,r j(R) as in Lemma 4.2. Set T =

[τ0− r,τ0 + r]∩R+ and construct K =
(
K0 · · · Kh

)
from the K j, j = j0, . . . ,h as in (4.3).

We want to show that, for ν > 0 large enough, K is a (T/ν ,µ/ν ,T/ν)-stabilizer for (4.2),
and this will conclude the proof by the conclusion of Step 2.

Note that, by Lemma 4.2, there exists a time σ > 0 depending only on C and γ such
that, for every trajectory y of (4.7) starting in B2 = {x ∈ Rd | ‖x‖ ≤ 2} at time 0 lies in
B1 = {x ∈ Rd | ‖x‖ ≤ 1} for every time larger than σ . We claim that, for some ν > 0 large
enough, for every α ∈ G(T/ν ,µ/ν), every τ ∈ L∞(R+,T/ν) and every initial condition
y0 ∈ C0([−R/ν ,0],B2), with R = supT, the solution y of (4.5), with C(ν) and P(ν) given by
(4.4) and (4.6), stays in B1 for every time larger than 2σ . This will show, by homogeneity,
that K is a (T/ν ,µ/ν ,T/ν)-stabilizer for (4.2).

Assume, by contradiction, that for every n ∈ N∗ there exist τn ∈ L∞(R+,T/n), y0
n ∈

C0([−R/n,0],B2), αn ∈ G(T/n,µ/n), and tn ∈ [2σ ,4σ ] such that, for every n ∈ N∗, the
solution yn of (4.5), with C(n) and P(n) given by (4.4) and (4.6), satisfies

yn(tn) /∈ B1. (4.10)

Up to the extraction of a subsequence, we can suppose that

lim
n→∞

tn = t? ∈ [2σ ,4σ ],

lim
n→∞

y0
n(0) = y0

? ∈ B2,

lim
n→∞

C(n) =C? ∈ L∞(R+,M2h+1− j0(R)) weakly-?,

lim
n→∞

P(n) = P? ∈ L∞(R+,M2h+1− j0(R)) weakly-?,

and we also note that τn(t)→ 0 uniformly on t ∈ R+ as n→ +∞. Then, by Lemma A.1,
yn converges to the solution y? of (4.7) associated to C?, P? and with initial condition y0

?,
uniformly on compact time intervals, and in particular yn(tn)→ y?(t?). By [10, Lemma
2.5], we have C?(t) ≥ ξ Id2h+1− j0 for almost every t and, since

∥∥∥P(n)
j` (t)

∥∥∥ ≤ rΩ for every
j, `∈ { j0, . . . ,h} and almost every t ∈R+, we have, by the lower semicontinuity of the norm
of L∞(R+,M2h+1− j0(R)), that

∥∥Pj`(t)
∥∥ ≤ rΩ for every j, ` ∈ { j0, . . . ,h} and almost every

t ∈R+, where Pj` is obtained from P? by (4.8). Thus we are under the hypotheses of Lemma
4.2, and so our previous discussion shows us that y? remains in B1 for every time larger than
σ ; by homogeneity, ‖y?(t?)‖ ≤ 1/2 since t? ≥ 2σ . This contradicts (4.10), establishing the
desired result. �

5 Further Discussion
We proved that persistently excited linear systems can be stabilized by a delayed feedback law
when the uncontrolled dynamics of the system is given by a matrix A whose eigenvalues have
all non-positive real part and when the delay varies in an interval around a constant value τ0,
with the feedback matrix K depending on the matrices A, B, on the constants T and µ of the
condition of persistence of excitation and on the reference delay τ0. This is a generalization
of [10, Theorem 3.2], originally proved for the non-delayed case.

The technique of the proof consists on adapting the time-contraction argument of [10, The-
orem 3.2] to the delayed case. Indeed, the time contraction also contracts the delay, reducing its
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effect, and the limit system obtained in the time-contraction procedure is the same as in [10],
except for the new terms Pj`, which are treated as perturbations of the limit system of [10].

It is actually by treating these terms Pj` as perturbations that we arrive to the construction of
the delay neighborhood T around τ0 where we can guarantee stabilizability. Note that the terms
Pj` do not appear in the limit system obtained when A = Jd in Theorem 3.1, since they depend
on the eigenvalues iω j, and this is the reason why we can obtain a (T,µ,T)-stabilizer for any
bounded T ⊂ R+ when A = Jd in Theorem 3.1.

This is a fundamental difference between Theorems 3.1 and 2.5 which we would like to
highlight: in Theorem 3.1, stabilization can be achieved for any bounded set T ⊂ R+ where
the delay takes its values, whereas in Theorem 2.5 T is chosen as T = [τ0− r,τ0 + r]∩R+, a
perturbation around the constant value τ0.

A natural question is then to study if Theorem 2.5 might not be generalized for any bounded
set T instead of considering only perturbations around τ0. This is actually not possible, as
shown in the following example, where we take α identically equal to one, i.e., the control is
completely active the whole time.

Example 5.1. Consider the control system

ẋ = Ax+Bu (5.1)

with

A =

(
0 1
−1 0

)
, B =

(
0
1

)
and submitted to the feedback law

u(t) =−Kx(t− τ(t)) (5.2)

This control system does not depend on a persistently exciting signal α , but, in order to
keep the notations we used previously, we shall consider it as a persistently excited system
with constants T = µ , so that G(T,µ) = G(T,T ) reduces to the class containing only the
constant signal identically equal to one. We want to prove that the conclusion of Theorem
3.1 does not hold for (5.1), that is, we want to show that there exists a bounded interval
T for which (5.1) with the feedback (5.2) does not admit a (T,T,T)-stabilizer. Obviously,
this also implies the non-existence of a (T,µ,T)-stabilizer for every µ ∈ (0,T ] since such a
stabilizer would be in particular a (T,T,T)-stabilizer.

We claim that (5.1) with the feedback (5.2) does not admit a (T,T, [0,2π])-stabilizer. In
order to simplify our analysis, we shall consider only constant-in-time delays in the interval
[0,2π], which allow us to apply the techniques of stability analysis for delayed systems
presented in [21].

The closed-loop system obtained from (5.1) with the feedback (5.2) and a constant delay
τ ∈ [0,2π] is

ẋ(t) = Ax(t)−BKx(t− τ). (5.3)

According to [21, Proposition 1.6], the stability of (5.3) can be studied through the complex
roots λ of the characteristic equation

det
(

λ Id2−A+BKe−λτ

)
= 0; (5.4)

the origin of (5.3) is exponentially stable if and only if all the roots λ of (5.4) satisfy ℜ(λ )<
0, and exponential stability and asymptotic stability are also equivalent in this case.
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Writing K =
(
k1 k2

)
, the characteristic equation (5.4) is

λ
2 + k2λe−λτ +1+ k1e−λτ = 0. (5.5)

We now want to show that, for every K ∈M1,2(R), there exists τ ∈ [0,2π] such that (5.5)
admits a root λ with ℜ(λ ) ≥ 0. As remarked in [21, Theorem 1.15], by the continuity of
the real part of the largest eigenvalue with respect to the delay, this study is reduced to the
problem of finding a delay τ ∈ [0,2π] such that (5.5) admits a root λ with ℜ(λ ) = 0.

The feedback K = 0 obviously does not stabilize the system to the origin, and so we
suppose from now on that k1 and k2 are not simultaneously zero. We look for a certain
τ ∈ [0,2π] and a root λ = iω of (5.5) with ω ∈ R. We thus want ω to satisfy{

1−ω
2 + k1 cos(τω)+ k2ω sin(τω) = 0,
−k1 sin(τω)+ k2ω cos(τω) = 0.

This is equivalent to 

sinθ =
k2ω(ω2−1)

k2
2ω2 + k2

1
,

cosθ =
k1(ω

2−1)
k2

2ω2 + k2
1
,

θ = τω

(5.6)

and such a system can only have a solution if sin2
θ + cos2 θ = 1, which is the case if and

only if (ω2−1)2 = k2
2ω2 + k2

1. This last equation is a polynomial in ω2 of degree 2, whose
solutions can be computed explicitly as

ω
2 =

1
2

[
2+ k2

2±
√

(2+ k2
2)

2−4(1− k2
1)

]
.

We consider from now on the solution

ω =

√√√√2+ k2
2 +
√

(2+ k2
2)

2−4(1− k2
1)

2
.

Note that ω is well-defined in R since (2+ k2
2)

2 > 4(1− k2
1) for any K ∈M1,2(R) \ {0},

and that ω ≥ 1. With this ω , we can thus find θ ∈ [0,2π] such that (5.6) is satisfied, and so
τ = θ/ω ∈ [0,2π] since ω ≥ 1. Since the constructed (θ ,τ,ω) satisfies (5.6), (5.5) is hence
satisfied for τ and λ = iω , and thus (5.3) is not asymptotically stable. Hence (5.1) admits
no (T,T, [0,2π])-stabilizer. �

Note that we could replace [0,2π] in Example 5.1 for any other interval T ⊂R+ with length
greater than or equal 2π , and so we conclude that (5.1) does not admit a (T,µ,T)-stabilizer if T
contains an interval with length greater than or equal 2π .

The value 2π obtained in these computations comes from the fact that the dynamics given by
the matrix A we chose correspond to rotations around the origin with unitary angular velocity,
and 2π is the total time that a solution of ẋ = Ax takes to make a complete turn around the
origin. If we choose A as

A =

(
0 ω0
−ω0 0

)
13



for ω0 6= 0, then the same computations as in Example 5.1 show that no (T,µ,T)-stabilizer
can exist for (5.1) if T contains an interval of length at least 2π

ω0
. In particular, this gives a

link between an upper bound on the maximal length of an interval contained in T for which a
(T,µ,T)-stabilizer exists and the eigenvalues of A on the imaginary axis.

This example shows that the fundamental difference in the statement of Theorems 3.1 and
2.5 concerning the choice of the set T actually comes from the dynamics of the system itself,
and that no improvement of Theorem 2.5 as good as Theorem 3.1 can be obtained.

A Appendix: A Continuity Result for Delayed Systems
We show here a continuity result of the solution of a delayed system with respect to its parame-
ters, in the spirit of [7, Proposition 21], which is used in the proof of Theorems 3.1 and 2.5. We
place ourselves in a more general setting than (2.2), considering the system

ẋ(t) = Ax(t)+B(t)x(t− τ(t)), (A.1)

where τ ∈ L∞(R+, [0,r]), and B ∈ L∞(R+,Md(R)) is a time-dependent matrix. We remark that
(A.1) satisfies the Carathéodory conditions for delayed equations, and so, for fixed τ and B and
for any given initial condition x0 ∈ C0([−r,0],Rd), (A.1) admits a unique continuous solution
x defined on [−r,+∞), which we denote by x(t) = x(t;τ,x0,B); this solution is absolutely con-
tinuous on R+, coincides with x0 on [−r,0], and satisfies (A.1) for almost every t ∈ R+. Our
continuity result can then be stated as follows.

Lemma A.1. Let (τn)n∈N∗ be a sequence on L∞(R+, [0,r]) such that τn(t)→ 0 as n→ +∞

uniformly on R+. Suppose (x(n)0 )n∈N∗ is a sequence of functions in C0([−r,0],Rd) and (Bn)n∈N∗
a bounded sequence on L∞(R+,Md(R)) satisfying

1. lim
n→+∞

x(n)0 (0) = x?0 for a certain x?0 ∈ Rd;

2. there exists Λ > 0 such that
∥∥∥x(n)0 (t)

∥∥∥≤ Λ for all n ∈ N∗ and all t ∈ [−r,0];

3. Bn −−−−⇀
n→+∞

B? weakly-? for a certain B? ∈ L∞(R+,Md(R)).

Then x(t;τn,x
(n)
0 ,Bn)−−−−→

n→+∞
x(t;0,x?0,B?), uniformly on compact time intervals in R+.

Proof. We can extend B? outside R+ to the whole real line in such a way that this extension
is an element of L∞(R,Md(R)). We fix such an extension, so that x(·;0,x?0,B?) is abso-
lutely continuous in R and satisfies (A.1) for almost every t ∈ R; note that this is possible
since x(·;0,x?0,B?) is the solution of a non-delayed system. For simplicity, we shall note
xn(t) = x(t;τn,x

(n)
0 ,Bn) and x?(t) = x(t;0,x?0,B?). We also note by M an upper bound on

‖Bn‖L∞(R+,Md(R)) and rn = supt∈R+
τn(t), and, by the uniform convergence of τn to 0, we

have that rn→ 0 as n→+∞.
Define en(t) = xn(t)− x?(t) for t ≥−r. Then, for t ≥ 0, en satisfies

ėn(t) = Aen(t)+Bn(t)en(t− τn(t))+ fn(t) (A.2)

with fn given by fn(t) = Bn(t)(x?(t− τn(t))− x?(t))+(Bn(t)−B?(t))x?(t).
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Since x? is continuous, it follows from Lebesgue’s Dominated Convergence Theorem
that

lim
n→+∞

w t

0
Bn(s)(x?(s− τn(s))− x?(s))ds = 0

for every t ≥ 0. By the weak-? convergence of (Bn), we have that

lim
n→+∞

w t

0
(Bn(s)−B?(s))x?(s)ds = 0,

and so fn satisfies
lim

n→+∞

w t

0
fn(s)ds = 0

for every t ≥ 0. Letting Fn(t) =
r t

0 fn(s)ds, this shows that Fn(t) −−−−→
n→+∞

0 for every t ≥
0. This limit is uniform on compact time intervals in R+. Indeed, let T > 0 and X? =
supt∈[−r,T ] ‖x?(t)‖; we thus see that ‖ fn(t)‖ ≤ 2MX? and so ‖Fn(t)‖ ≤ 2MX?T for every
t ∈ [0,T ]. Furthermore, for 0≤ t1 < t2 ≤ T , we have

‖Fn(t2)−Fn(t1)‖ ≤
w t2

t1
‖ fn(s)‖ds≤ 2MX? (t2− t1) ,

and hence (Fn) is equicontinuous. Thus, by Arzelà-Ascoli Theorem, the closure of {Fn |n ∈
N∗} is a compact subset of C0([0,T ],Rd) with the topology of the uniform convergence,
and so this set has at least one limit point; it has exactly one, for, if it had two distinct
limit points, this would contradict the fact that (Fn(t))n∈N∗ tends pointwise to 0, and so the
sequence (Fn)n∈N∗ converges uniformly to 0 in [0,T ].

Integrating (A.2) from 0 to t ≥ 0, we obtain

en(t) = en(0)+Fn(t)+
w t

0
Aen(s)ds+

w t

0
Bn(s)en(s− τn(s))ds,

which gives us the estimate

‖en(t)‖ ≤ ‖en(0)‖+‖Fn(t)‖+
w t

0
‖A‖‖en(s)‖ds+M

w t

0
‖en(s− τn(s))‖ds. (A.3)

Define
Xn,t = {s ∈ [0, t] | s− τn(s)< 0}.

This set is measurable and, since 0≤ τn(t)≤ rn for all t ∈R+, we have that Xn,t ⊂ [0,rn], so
that λ (Xn,t)≤ rn for all t ∈ R+, where λ denotes the Lebesgue measure. Define also

En(t) = sup
s∈[t−rn,t]∩[0,t]

‖en(s)‖

and M′ = ‖A‖+M. From (A.3), we obtain

‖en(t)‖ ≤ ‖en(0)‖+‖Fn(t)‖+M
w

Xn,t
‖en(s− τn(s))‖ds+M′

w t

0
En(s)ds,

so that, for t ≥ 0,
En(t)≤ ϕn(t)+M′

w t

0
En(s)ds,
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with ϕn given by ϕn(t)= ‖en(0)‖+supσ∈[t−rn,t]∩[0,t]

[
‖Fn(σ)‖+M

r
Xn,σ
‖en(s− τn(s))‖ds

]
.

Applying Gronwall’s Lemma, we get

En(t)≤ ϕn(t)+M′
w t

0
ϕn(s)eM′(t−s)ds (A.4)

for t ≥ 0.
Fix T > 0. Since limn→+∞ Fn(t) = 0 uniformly on [0,T ], we have that

lim
n→+∞

[
sup

σ∈[t−rn,t]∩[0,t]
‖Fn(σ)‖

]
= 0 uniformly on t ∈ [0,T ].

Moreover, for s ∈ Xn,σ , we have that

‖en(s− τn(s))‖= ‖xn(s− τn(s))− x?(s− τn(s))‖ ≤C,

where C = Λ+ supt∈[−r,0] ‖x?(t)‖, and so

sup
σ∈[t−rn,t]∩[0,t]

w

Xn,σ
‖en(s− τn(s))‖ds≤Crn −−−−→

n→+∞
0

uniformly on t ∈ [0,T ]. Hence ϕn(t) −−−−→
n→+∞

0 uniformly on [0,T ], from where we get,

together with (A.4), that En(t)−−−−→
n→+∞

0 uniformly on [0,T ]. So en(t)−−−−→
n→+∞

0 uniformly on

[0,T ], and, since T > 0 is arbitrary, this gives the desired result. �

B Appendix: On the Proof of Theorem 2.5
We prove here some of the results that were used in the proof of Theorem 2.5. The first three
results, Lemmas B.1, B.2 and B.3, deal with the reduction of Theorem 2.5 to the case where
(A,B) is controllable, m = 1 and all the eigenvalues of A lie on the imaginary axis. We begin by
reducing the theorem to the case where (A,B) is controllable.

Lemma B.1. It suffices to prove Theorem 2.5 in the case where (A,B) is controllable.

Proof. Up to a linear change of variables, A and B can be decomposed on the controllable
and uncontrollable parts according to Kalman decomposition as

A =

(
A1 A3
0 A2

)
, B =

(
B1
0

)
with A1 ∈Md′(R), A2 ∈Md−d′(R), B1 ∈Md′,m(R), the other matrices having appropriate
dimensions, and where (A1,B1) is controllable (see, for instance, [24, Theorem 13.1]); since
(A,B) is stabilizable, A2 is Hurwitz. The open-loop system (2.1) can thus be written after
the change of variables as{

ẋ1(t) = A1x1(t)+A3x2(t)+α(t)B1u(t),
ẋ2(t) = A2x2(t),

(B.1)
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with x1(t) ∈Rd′ , x2(t) ∈Rd−d′ , and x(t) =
(
x1(t)T x2(t)T)T. Now, suppose the theorem is

proved for the controllable case and K′ ∈Mm,d′(R) is a (T,µ,T)-stabilizer for (A1,B1) for
a certain neighborhood T of τ0 in R+, associated with certain constants C1 ≥ 1, γ1 > 0 as
in Definition 2.2. Take K =

(
K′ 0

)
∈Mm,d(R), so that, with the feedback u(t) =−Kx(t−

τ(t)), (B.1) becomes{
ẋ1(t) = A1x1(t)−α(t)B1K′x1(t− τ(t))+A3x2(t),
ẋ2(t) = A2x2(t).

(B.2)

Let us note r = supT. Take α ∈ G(T,µ), τ ∈ L∞(R+,T), and an initial condition x0 ∈
C0([−r,0],Rd), written as x0(t) =

(
x0,1(t)T x0,2(t)T)T. Note by y(t) ∈ Rd the solution of{

ẏ(t) = A1y(t)−α(t)B1K′y(t− τ(t)), t > 0,
y(t) = x0,1(t), t ∈ [−r,0].

Then, by the hypothesis on K′, we have that

‖y(t)‖ ≤C1e−γ1t sup
s∈[−r,0]

∥∥x0,1(s)
∥∥ . (B.3)

The result on [12, Section 6.2] allows us to write the solution x(t) =
(
x1(t)T x2(t)T)T of

(B.2) associated with α and τ and with initial condition x0 asx1(t) = y(t)+
w t

0
X(t,s)A3x2(s)ds,

x2(t) = eA2tx0,2(0),
(B.4)

where X(t,s) ∈Md′(R) is the fundamental matrix solution associated with the delayed sys-
tem ż(t) = A1z(t)−α(t)B1K′z(t−τ(t)) (see [12, Section 6.1]). Our choice of K′ guarantees
that this last system is exponentially stable, uniformly with respect to α ∈ G(T,µ) and
τ ∈ L∞(R+,T), and so, by [12, Lemma 6.5.3], there exist constants C0 ≥ 1, γ0 > 0 indepen-
dent of α and τ such that

‖X(t,s)‖ ≤C0e−γ0(t−s) for all t ≥ s≥ 0; (B.5)

note that [12, Lemma 6.5.3] is proved only for the case of uniformity with respect to the
initial time, but the same proof also applies for the case of uniformity with respect to other
parameters. Note also that we do not need to consider uniformity with respect to the initial
time since the classes G(T,µ) and L∞(R+,T) are invariant with respect to positive time
translations and a non-zero initial time may be translated into terms of a different choice of
α and τ .

Since A2 is Hurwitz, there exist C2 ≥ 1, γ2 > 0 such that∥∥∥eA2t
∥∥∥≤C2e−γ2t . (B.6)

Using the estimates (B.3), (B.5) and (B.6) in (B.4), we can find C≥ 1 and γ > 0, depending
only on C0, C1, C2, γ0, γ1, γ2, and thus independent of α and τ , such that

‖x(t)‖ ≤Ce−γt sup
s∈[−r,0]

‖x0(s)‖ ,

which proves that K is a (T,µ,T)-stabilizer for (A,B), as desired. �
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The following lemma shows that we may further reduce Theorem 2.5 to the single-input
case. Its proof follows the same idea of [9, Chapter 4, Theorem 4], where the original stabiliza-
tion result for single-input systems of [10, Theorem 3.2] is generalized to the multi-input case
by a recurrence on the number of inputs.

Lemma B.2. It suffices to prove Theorem 2.5 in the case where (A,B) is controllable and m= 1.

Proof. We may suppose (A,B) controllable by Lemma B.1. We suppose the theorem to
be proved in the case m = 1 and we prove the general case by induction on m. Suppose
the theorem has been proved for m− 1, that is, for every d ∈ N∗, for every A ∈Md(R)
and B ∈Md,m−1(R) such that (A,B) is a controllable pair and the eigenvalues of A have
non-positive real part, for every T,µ with T ≥ µ > 0, and for every τ0 ≥ 0, there exists a
neighborhood T of τ0 in R+ and a (T,µ,T)-stabilizer for (2.2).

Take A ∈Md(R) and B ∈Md,m(R) such that (A,B) is a controllable pair and the eigen-
values of A have non-positive real part and fix T ≥ µ > 0 and τ0≥ 0. Note by b∈Rd the first
column of B; we may suppose, without loss of generality, that b 6= 0, for otherwise the first
input does not influence the system and it may thus be excluded, reducing the system to the
case with m−1 inputs. We consider the pair (A,b), which may not be controllable, but can
be decomposed according to Kalman decomposition: there exists an invertible P ∈Md(R)
such that

PAP−1 =

(
A1 A3
0 A2

)
, Pb =

(
b1
0

)
,

with A1 ∈Md′(R), b1 ∈Rd′ , all the other matrices have appropriate dimensions, and (A1,b1)
is controllable. Now, performing the change of variables z = Px in (2.1), the open-loop
system becomes

ż =
(

A1 A3
0 A2

)
z+α(t)

(
b1 B3
0 B2

)
u (B.7)

with B2 ∈Md−d′,m−1(R) and B3 ∈Md′,m−1(R).
By the controllability of (A,B) and (A1,b1), it follows that (A2,B2) is also controllable.

Now B2 ∈Md−d′,m−1(R), and so, by the induction hypothesis, (A2,B2) admits a (T,µ,T2)-
stabilizer K2 ∈Mm−1,d−d′(R) for a certain neighborhood T2 of τ0 in R+. If Theorem 2.5
is proved in the controllable case with m = 1, then we can take a (T,µ,T1)-stabilizer K1 ∈
M1,d′(R) for (A1,b1) for a certain neighborhood T1 of τ0 in R+. We claim that K ∈Mm,d(R)
given by

K =

(
K1 0
0 K2

)
is a (T,µ,T)-stabilizer for (A,B) for the neighborhood T = T1∩T2. Indeed, with this feed-
back, system (B.7) becomes

ż(t) =
(

A1 A3
0 A2

)
z(t)−α(t)

(
b1K1 B3K2

0 B2K2

)
z(t− τ(t)).

Noting z =
(
zT

1 zT
2
)T with z1 ∈ Rd′ and z2 ∈ Rd−d′ , we can thus write{

ż1(t) = A1z1(t)−α(t)b1K1z1(t− τ(t))+A3z2(t)−α(t)B3K2z2(t− τ(t)),
ż2(t) = A2z2(t)−α(t)B2K2z2(t− τ(t)).

(B.8)
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We denote by X(t,s) the fundamental matrix solution of ẋ(t) = A1x(t)−α(t)b1K1x(t −
τ(t)); by construction of K1 and by [12, Lemma 6.5.3], we can find C0 ≥ 1 and γ0 > 0, both
independent of α ∈ G(T,µ) and τ ∈ L∞(R+,T), such that

‖X(t,s)‖ ≤C0e−γ0(t−s), ∀t ≥ s≥ 0.

Note r = supT. Given an initial condition
(
zT

0,1 zT
0,2
)T ∈ C0([−r,0],Rd), note by y1 and y2

the solutions to

ẏ1(t) = A1y1(t)−α(t)b1K1y1(t− τ(t)), y1(t) = z0,1(t) for t ∈ [−r,0],
ẏ2(t) = A2y2(t)−α(t)B2K2y2(t− τ(t)), y2(t) = z0,2(t) for t ∈ [−r,0].

(B.9)

By construction of K1 and K2, there exist C1,C2 ≥ 1 and γ1,γ2 > 0 such that∥∥y j(t)
∥∥≤C je−γ jt sup

s∈[−r,0]

∥∥z0, j(s)
∥∥ , j = 1,2.

We can now write the solution of (B.8) in terms of the initial condition
(
zT

0,1 zT
0,2
)T ∈

C0([−r,0],Rd) using the variation-of-constants formula in [12, Section 6.2] asz1(t) = y1(t)+
w t

0
X(t,s)(A3z2(s)−α(s)B3K2z2(s− τ(s)))ds,

z2(t) = y2(t).

It is thus easy to see that
‖z1(t)‖ ≤C1e−γ1t sup

s∈[−r,0]

∥∥z0,1(s)
∥∥+C′e−γ ′t sup

s∈[−r,0]

∥∥z0,2(s)
∥∥ ,

‖z2(t)‖ ≤C2e−γ2t sup
s∈[−r,0]

∥∥z0,2(s)
∥∥ ,

for certain constants C′ ≥ 1, γ ′ > 0, and so K is a (T,µ,T)-stabilizer for (B.7), as we wanted
to prove. The result is thus established by induction. �

We further reduce our proof of Theorem 2.5 to the case where all the eigenvalues of A lie
on the imaginary axis.

Lemma B.3. It suffices to prove Theorem 2.5 in the case where (A,B) is controllable, m = 1,
and ℜ(λ ) = 0 for every eigenvalue λ of A.

Proof. We may suppose (A,B) controllable and m= 1 by Lemma B.2. Up to a linear change
of variables, A and B can be written as

A =

(
A1 A3
0 A2

)
, B =

(
B1
B2

)
with A1 ∈Md′(R), A2 ∈Md−d′(R), B1 ∈Rd′ , the other matrices having appropriate dimen-
sions, and where A1 is Hurwitz and all the eigenvalues of A2 have real part 0. Since (A,B)
is controllable, (A2,B2) is also controllable. The open-loop system (2.1) can thus be written
after the change of variables as{

ẋ1(t) = A1x1(t)+A3x2(t)+α(t)B1u(t),
ẋ2(t) = A2x2(t)+α(t)B2u(t),

(B.10)
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with x1(t) ∈Rd′ , x2(t) ∈Rd−d′ , and x(t) =
(
x1(t)T x2(t)T)T. Now, suppose the theorem is

proved for the case stated above and take K′ ∈M1,d−d′(R) a (T,µ,T)-stabilizer for (A2,B2)
for a certain neighborhood T of τ0 in R+, associated with certain constants C2 ≥ 1, γ2 > 0 as
in Definition 2.2. Take K =

(
0 K′

)
∈M1,d(R), so that, with the feedback u(t) =−Kx(t−

τ(t)), (B.10) becomes{
ẋ1(t) = A1x1(t)+A3x2(t)−α(t)B1K′x2(t− τ(t)),
ẋ2(t) = A2x2(t)−α(t)B2K′x2(t− τ(t)).

(B.11)

Let us note r = supT. Take α ∈ G(T,µ), τ ∈ L∞(R+,T), and an initial condition x0 ∈
C0([−r,0],Rd), written as x0(t) =

(
x0,1(t)T x0,2(t)T)T. By the hypothesis on K′, we have

that the solution x(t) =
(
x1(t)T x2(t)T)T of (B.11) associated with α and τ and with initial

condition x0 satisfies
‖x2(t)‖ ≤C2e−γ2t sup

s∈[−r,0]
‖x2(s)‖ .

Applying the variation-of-constants formula to (B.11) and using an exponential estimate on∥∥eA1t
∥∥, it is immediate to verify that K is a (T,µ,T)-stabilizer for (A,B). �

Let us now present a proof of Lemma 4.1, which was originally done in [10] and that we
recall here for the sake of completeness.

Proof of Lemma 4.1. Up to a linear change of variables in (2.1), we may suppose that
A is in its real Jordan normal form. A has a unique Jordan block associated with each
{−iω j, iω j}, j = j0, . . . ,h, for, otherwise, the rank of the matrix

(
A− iω j Idd B

)
would be

strictly smaller than d, contradicting the Hautus test for controllability. Thus, up to a permu-
tation of variables on Rd , we can write A = diag(Jr0,ω1A(1)+JC

r1
, . . . ,ωhA(h)+JC

rh
), and B∈

Rd is such that (A,B) is controllable. Now, take b̃ ∈Rd as b̃ =
(
(b0)T (b1)T · · · (bh)T

)T

with b0 and b j, j = 1, . . . ,h, as defined in the statement of the lemma. It follows from Hautus
test for controllability that (A, b̃) is controllable. But all controllable linear control systems
associated with a pair (A,B) that have in common the eigenvalues of A, counted according
to their multiplicity, are state-equivalent, since they can be transformed by a linear transfor-
mation of coordinates into the same system under controller form (see, e.g., [26]), and so
(A,B) can be transformed into (A, b̃) by a linear transformation of coordinates, leading to
the desired result. �

Finally, to complete the proof of Theorem 2.5, we prove Lemma 4.2, which gives the uni-
form exponential stability of the limit system considered in the proof of Theorem 2.5.

Proof of Lemma 4.2. We consider the matrices Pj` as a perturbations in (4.7), and so we
consider first the non-perturbed system

ẏ0(t) = Jr0y0(t)−
h

∑
`=0

[b0K`⊗C0`(t)]y`(t),

ẏ j(t) = JC
r j

y j(t)−
h

∑
`=0

[b̃ jK`⊗C j`(t)]y`(t), j = 1, . . . ,h.

(B.12)

Let ξ > 0. It has been proved in [10, Theorem 3.2] that, for a given ξ > 0, one can find
a gain K=

(
K0 K1 · · · Kh

)
and a positive definite matrix S ∈Md(R) such that, for ev-

ery symmetric C? ∈ L∞(R+,M2h+1− j0(R)) satisfying C?(t) ≥ ξ Id2h+1− j0 for almost every
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t ≥ 0, (B.12) is globally uniformly exponentially stable and V (y) = yTSy decreases exponen-
tially along all trajectories of (B.12), uniformly with respect to C? ∈ L∞(R+,M2h+1− j0(R))
satisfying C?(t) ≥ ξ Id2h+1− j0 almost everywhere; i.e., there exist C ≥ 1 and γ > 0 such
that, for every symmetric C? ∈ L∞(R+,M2h+1− j0(R)) satisfying C?(t)≥ ξ Id2h+1− j0 almost
everywhere and every solution y of (B.12), we have

‖y(t)‖ ≤Ce−2γt ‖y(0)‖ .

We denote by X(t,s) the fundamental matrix solution of (B.12), i.e., for any y0 ∈Rd , y(t) =
X(t,s)y0 is the unique solution to (B.12) with y(s) = y0. Hence we have the estimate

‖X(t,s)‖ ≤Ce−2γ(t−s). (B.13)

We now turn to the perturbed system (4.7). For a given ξ > 0, we take C ≥ 1, γ > 0 and
K j as before. For every symmetric matrix C? ∈ L∞(R+,M2h+1− j0(R)) satisfying C?(t) ≥
ξ Id2h+1− j0 almost everywhere, and every P? ∈ L∞(R+,M2h+1− j0(R)) satisfying (4.9), we
set A= diag(Jr0,J

C
r1
, . . . ,JC

rh
) ∈Md(R),

B(t) =
(
b̃ jK`⊗C j`(t)

)
j0≤ j,`≤h , P(t) =

(
b̃ jK`⊗Pj`(t)

)
j0≤ j,`≤h

with b̃0 = b0. System (4.7) can thus be written under the form

ẏ(t) =Ay(t)−B(t)y(t)−P(t)y(t)

and, using the fundamental matrix X of (B.12), we can write its solution for a given initial
condition y0 as

y(t) = X(t,0)y0−
w t

0
X(t,s)P(s)y(s)ds.

By (4.9), we can write ‖P(t)‖≤C′rΩ for a certain constant C′> 0, and thus, up to increasing
C, we have, by (B.13),

‖y(t)‖ ≤Ce−2γt ∥∥y0∥∥+CrΩ

w t

0
e−2γ(t−s) ‖y(s)‖ds.

Applying Gronwall’s Lemma to e2γt ‖y(t)‖, we thus obtain

‖y(t)‖ ≤Ce−(2γ−CrΩ)t ∥∥y0∥∥ .
We choose r > 0 small enough so that 2γ−CrΩ≥ γ , and so

‖y(t)‖ ≤Ce−γt ∥∥y0∥∥ ,
which gives us the desired result. �
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