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Numerical and experimental investigation of 
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Building F212, Jiading Campus, Tongji University, 4800# Caoan Road, Shanghai, 201804 

Abstract: A dynamic nonlinear model of rubber absorber in railway fastening is 

proposed in this paper based on a superposition principal demonstrating that the 

restoring force of rubber components consists of an elastic force and a damping force. 

In order to determine model parameters and verify the accuracy of this model, a 

dynamic experiment is designed. The obtained simulated results show good 

agreement with the measured counterparts, which means that the proposed dynamic 

nonlinear model should therefore be an effective mechanical tool in simulation and 

characterization of dynamic nonlinear behavior of rubber absorber in rail fastening 

with certain modes of vibrations. Excitation frequency dependency and amplitude 

dependency of the dynamic nonlinear stiffness were also studied. The result indicates 

that characteristics of the dynamic stiffness is closely associated with both 

displacement amplitude and frequency, the latter however is not as great as the 

former. 

Keywords: Rubber absorber, Rail fastening, Dynamic stiffness, Parameter 

identification  

1. Introduction 

Rubber material has found an indisputable role in many mechanical applications due to its 

high elongation, incompressibility, reversibility, high mechanical strength, long-term stability of 

their hardness and service life. Specifically, it could withstand deformation up to several hundred 

percents while resuming its original shape after a certain time since stress release. This perfect 

elastic property facilitates its wide use as a flexible coupling between stiff components in various 

constructions, e.g. vibration isolators, suspensions and flexible joints.  

Although engineering knowledge of rubber material is still rather poor probably due to its 

complex nonlinear mechanical properties, the common use of rubber material has made it a 

subject drawing prior attention all over the world. It has been generally believed that dynamic 

stiffness and damping are dependent not only on additives in the material but also on temperature, 

geometry, frequency and amplitude of motion [1-5]. Additionally，thorough studies on the two 
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well-known stress-softening effects ---Mullins effect and Payne effect---have been given long time 

ago [4-7]. Subjects focusing on the influence of fillers on dynamic properties have been discussed 

as well [8-11]. There are many other works investigating relatively complex measurement 

conditions of rubber components [12-15]. Besides these theoretical knowledge mentioned above, 

studies about applications of rubber material such as isolators of electronic equipments, machines, 

building constructions and engine mounts reducing transmission of engine vibrations to the 

chassis of vehicles driven over rough road surfaces have been proposed [16-18]. However, 

specialized researches focusing on the dynamic properties of rubber absorber in rail fastening is 

rarely found up to now, even though it has been widely used in fastening systems. 

Rail fastening plays an important role in the whole track structure as a vibration reduction 

system, whose elasticity determined mainly by its rubber components is directly related to train 

operation property and comfort. The key requirement for high quality of elastic rail fastening is to 

optimize the dynamic parameters during designing process and consequently to facilitate its 

effective use as a vibrating reduction device in the whole wheel-rail system [19-20]. Thus, 

understanding the nonlinear characteristics of rubber absorber in rail fastening as well as 

optimizing dynamic stiffness and damping is increasingly important, especially since the 

high-speed railway claims much higher demands on elasticity of rail fastening because of its 

relatively large-scale motion. 

It is worth noting that rubber absorber in rail fastening, not like most rubber damping devices 

in other applications, is subjected to a static pressure force all the time due to the superstructure 

force such as train, rail and clamping force of fasteners apart from various dynamic forces. 

Therefore, numerical and experimental investigations of dynamic nonlinear properties of rubber 

absorber in rail fastening have been done in this paper. An initial displacement resulted from a 

pre-pressure and additional displacement excitations are both included in the measurement 

condition to simulate the real working condition of rubber absorber in rail fastening during the 

dynamic experiment. In order to clearly show the differences between common rubber devices 

used in most applications for alleviating the severity of vibration problems and rubber absorber in 

rail fastening, Fig.1 shows the well-known hysteresis loops of rubber component without 

pre-pressure [21] and in rail fastening with certain pre-pressure F0 respectively, where x0 is 

correspondingly the initial displacement. 
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Fig. 1-1 Force-displacement loop                Fig. 1-2 Force-displacement 

of rubber absorber without pre-pressure        loop of rubber absorber in rail fastening 

Fig.1 Comparison diagrams of force-displacement loop between rubber absorber without 

pre-pressure and that in rail fastening with pre-pressure 

A nonlinear dynamic model consisting of two parts—the nonlinear elastic force and the 

nonlinear damping force—based on the viscoelastic mechanical theory is proposed to simulate the 

dynamic nonlinear behavior of rubber absorber in rail fastening when it is exposed to harmonic 

excitations. 

The model mentioned above is not only used to reveal the strong nonlinear properties as 

rubber absorber in rail fastening works in its special working environment mentioned above, but is 

also concerned with the amplitude and frequency dependency of dynamic stiffness. After a 

procedure to indentify all the model parameters, the accuracy of this model is verified by 

comparing the measured and simulated results. 

2. Modeling 

Although several attempts to describe the vibration behavior of rubber material have been 

achieved, most proposed models are only applicable to certain applications primarily due to their 

given working conditions. It has been generally believed that the restoring force of rubber 

components subjected to harmonic excitations consists of two parts: the damping force and the 

elastic force. That is to say the total restoring force can be obtained from the direct summation of 

the two parts as 

kcRestoring FFF 
,                              (1) 

where the former term describes damping force with energy loss, and the latter is incorporated to 

describe elastic force without any energy loss. Throughout this work the study is based on this 

superposition principle. The force-displacement hysteresis loop of rubber absorber in rail fastening 



shown in Fig.1-2 could be decomposed into two parts accordingly, and the result is displayed in 

Fig.2, where A is displacement amplitude.  

 

 

 

 

 

 

 

 

 

 

Fig. 2-1 Nonlinear                         Fig. 2-2 Nonlinear   

damping force-displacement curve            elastic force-displacement curve 

Fig.2 Decomposition diagram of force-displacement loop of rubber absorber in rail fastening 

In order to simulate the nonlinear behavior of rubber absorber in rail fastening, it can be seen 

from Fig.2 that both damping force-displacement loop and the elastic force-displacement curve 

are supposed to be nonlinear curves. It should be noted that there is an initial displacement x0 in 

Fig.2-1, i.e. the equilibrium position of x-coordinate is not zero, and that the area of this closed 

curve is equal to that of the hysteresis loop in Fig.1-2, both of whom represent the energy loss of 

rubber absorber during working hours. Aiming at capturing the frequency-dependent and 

amplitude-dependent characteristics, the nonlinear elastic force and damping force are regarded as 

not constant but vary as functions of displacement frequency and amplitude. The influences of 

changed temperature and preload are supposed to be associated to a lesser degree with the 

dynamic nonlinear characteristics of rubber absorber in rail fastening, which are ignored in this 

paper. 

2.1. Nonlinear damping force 

According to the knowledge of nonlinear theory and the shape of force-displacement loop of 

rubber absorber in rail fastening, an ellipse is proposed to simulate the nonlinear damping force as 

the function of displacement, frequency and amplitude with an initial displacement x0 , and (x0, 0) 

is just the center point of the ellipse. The elliptic expression could be described as                                                                                                          
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where, x, x0, A, b are displacement, initial displacement, amplitude and an undetermined 
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coefficient respectively, whose units are all mm, and Fc is the nonlinear damping force, KN. Since 

the area of the ellipse representing energy loss E of rubber absorber during loading cycles is 

closely related to frequency and displacement amplitude [22], the undetermined coefficient b 

could be obtained as followed according to elliptical area formula 
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Merging equation (3) into (2), the nonlinear damping force of rubber absorber in rail fastening 

finally is 
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2.2. Nonlinear elastic force 

As for the nonlinear elastic force-displacement curve, it is assumed to be a polynomial of 

power functions in the model, whose terms shall be determined according to the requirement of 

accuracy. This nonlinear elastic force is not only a function of displacement x, but also frequency 

ω and amplitude A as the nonlinear damping force, so it could be thus described as 
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where the polynomial coefficients of each order are defined as dynamic stiffness Ki (i=1, 2…). 

2.3. Nonlinear restoring force 

The restoring force of rubber absorber in rail fastening exposed to harmonic excitations is the 

direct summation of nonlinear damping force and nonlinear elastic force based on the 

superposition principle mentioned above as  
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3. Experimental 

In order to obtain model parameters, a dynamic experiment is designed. The measurements 

are also used to verify the accuracy of proposed model through comparing it to the simulated 

results. 

javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')


3.1. Test object 

The test object is a real rail fastening system commonly used in China, see Fig.3. The 

dimension of the rubber component in it is 320×180×20 mm. It is made up of mainly natural 

rubber and the rubber hardness is 65 Hs.  

 

 

 

 

 

 

 

 

 

Fig.3 Shap of the test rail fastening 

3.2. Excitation signals 

Although rubber components in various vibration constructions are rarely exposed to 

dynamic single-tone force, it is the major measurement condition in most references, and 

additional softening effects are likely to occur when rubber components are subjected to more 

complex excitation signals [13]. Therefore, different single-tone sinusoidal displacement 

excitations are adopted during the measurements of this investigation, i.e. there is no 

superimposition of excitation signals. The sinusoidal excitation ranges in frequency from 2 to 10 

Hz and in amplitude from 0.3 to 0.7 mm, because rubber absorber in rail fastening bears a dynamic 

load with main frequency below 10Hz and has a small displacement response. The excitation 

signals could be expressed as x(t)=Asin(ωt)+ x0, where ω is excitation frequency, A is 

displacement amplitude and x0 is the real initial displacement controlled by the minimum 

displacement, being recorded as mean position during the course of expeciment. The detailed 

excitation cases are shown in Table 1. 

3.3. Test description 

Measurement of force-displacement relationship of rubber absorber in rail fastening was 

performed by an Instron servohydraulic testing machine. The displacement excitation waves were 

applied through a hydraulic actuator, which was monitored by a variable differential transformer. 



Table 1  

Excitation cases 

Number x0 Case 

1-5 -0.900 

-0.900 

-0.899 

-0.903 

-0.900 

Amplitude 0.3mm Frequency 

2Hz 

4Hz 

6Hz 

8Hz 

10Hz 

6-10 -1.101 

-1.099 

-1.099 

-1.104 

-1.104 

Amplitude 0.5mm Frequency 

2Hz 

4Hz 

6Hz 

8Hz 

10Hz 

11-15 -1.300 

-1.291 

-1.298 

-1.300 

-1.305 

Amplitude 0.7mm Frequency 

2Hz 

4Hz 

6Hz 

8Hz 

10Hz 

 

The restoring force is measured using a force transducer connecting with the top the test object, 

whereas the displacement is measured and controlled using two displacement transducers 

connecting with the bottom of the test object. In addition, the test system mainly consists of 

electrodynamic vibration shaker table, vibration control system, data acquisition system, data 

processing system, computer, and charge amplifier as well as power amplifier, see Fig.4 

 

 

 

 

 

 

 

 

 

 

Fig.4 Diagram of test process 

javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')
javascript:showjdsw('jd_t','j_')


4. Determination of model parameters 

4.1. Evaluation of dynamic stiffness 

By using the measured results, model parameters are evaluated through the least square 

method in this section. Coefficients of the polynomial of power function, being the dynamic 

stiffness of each order, are identified according to equation (6), while the coefficient E of all 

excitation cases representing energy loss could be obtained based on MATLAB platform. The 

identified results of polynomial coefficients, as the number of polynomial terms n values 3 and 5, 

are shown respectively in Fig.5-1 and Fig.5-2, where the excitation case as displacement 

amplitude is 0.3mm and frequency is 2Hz is taken as example. It is clear that the value of the fifth 

order dynamic stiffness, i.e. the value of parameter P3 in Fig.5-2, is much fewer compared with 

the first and the third order dynamic stiffness, i.e. correspondingly the value of parameters P1 and 

P2. It is also evident that the identified results shown in Fig.5-1 where there are only the first and  

 

 

 

 

 

 

 

 

 

Fig.5-1 Identified results as the number of polynomial terms in equation (6) values 3 

 

 

 

 

 

 

 

 

 

Fig.5-2 Identified results as the number of polynomial terms in equation (6) values 5  

Fig.5 Identify results of the excitation case as displacement amplitude is 0.3mm and 

frequency is 2Hz 
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the third order dynamic stiffness could already meet the accuracy demand by contrast with Fig.5-2 

with a fifth order dynamic stiffness. Therefore, a dynamic model with only the first and the third 

order dynamic stiffness is studied in the following sections of this paper.Through the same method 

based on ORIGIN platform, a set of model parameters of all excitation case is obtained as shown 

in Table 2. 

Table 2 

Identified dynamic stiffness of each order for every excitation case 

Frequency Amplitude The first order dynamic stiffness The third order dynamic stiffness 

ω/Hz A/mm K1 /KN.mm
-1

 K3 /KN.mm
-3

 

2 0.3 2.74 4.62 

6 0.3 2.45 4.80 

8 0.3 2.37 4.87 

10 0.3 2.33 4.95 

2 0.5 1.74 5.06 

6 0.5 1.44 5.22 

8 0.5 1.41 5.26 

10 0.5 1.35 5.32 

2 0.7 0.92 4.46 

6 0.7 0.80 4.56 

8 0.7 0.78 4.59 

10 0.7 0.73 4.60 

4.2. Frequency and amplitude dependence 

It could be seen from Table2 that the first order dynamic stiffness decreases slightly along 

with the rising frequency across the range of all investigated displacement amplitudes, whereas the 

third order stiffness increases. Besides, the first order dynamic stiffness decreases along with the 

increasing displacement amplitude, while the third order dynamic stiffness becomes larger before 

displacement amplitude increasing to 0.5 mm and after that decreases until amplitude increasing to 

0.7 mm. In order to capture this frequency-dependent and amplitude-dependent characteristics of 

the first and the third order dynamic stiffness, the identified results in Table 2 are further studied 

through mathematical interpolation and simulation.  
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By relying on numerical analysis software, the first order dynamic stiffness is simulated as a 

function of displacement amplitude in the form of   

2
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All identified parameters of the first order dynamic stiffness at each excitation frequency ai(i=0,1,2)  

are summarized in Table 3. 

Table 3  

Identified parameters of the first order dynamic stiffness  

Frequency  

ω/Hz 
a0 a1 a2 

2 4.594 -6.854 2.292 

6 4.677 -8.815 4.687 

8 4.471 -8.270 4.289 

10 4.457 -8.438 4.448 

It is worth noting that the parameters of the first order dynamic stiffness ai(i=0,1,2) are closely 

associated with frequency ω as Table 3 shown, which means that it is reasonable to express 

ai(i=0,1,2) as the function of frequency in equation (7).  

Before presenting the expression of ai(i=0,1,2) varying  as a function of frequency, the 

identified data as well as comparison results between interpolated and simulated coefficients 

ai(i=0,1,2) are demonstrated in Fig.6. From Fig.6, equation y=A+B*x+C*x^2+D*x^3 with identified 

parameters A, B, C and D in Fig.6-1, Fig.6-2 and Fig.6-3 can simulate the relationship between 

parameters ai(i=0,1,2) and frequency with good accuracy. The relation between all the coefficients 

ai(i=0,1,2,3) and frequency could be written as a matrix equation in the form of 
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Inserting equation (8) into (7), the first order dynamic stiffness is obtained as 

  



 

 

  

 

 

 

 

 

 

 

Fig.6-1 Identified results of coefficient a0      Fig.6-2 Identified results of coefficient a1 

 

 

 

    

 

 

Fig.6-3 Identified results of coefficient a2 

Fig.6 Identified data and comparison results between interpolated and simulated coefficients 

ai(i=0,1,2) in equation (7) 
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Similarly, the third order dynamic stiffness could therefore be given by the same method as 
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In terms of equation (6), the model of restoring force of rubber absorber in rail fastening 

exposed to harmonic excitations finally is  
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where Ω=(1  ω  ω
2  

ω
3
), Λ=(1  A  A

2
), ω is frequency ,Hz, A is amplitude, mm. 

5. Results and discussion 

The hysteresis loop of rubber absorber in rail fastening at a single sinusoidal displacement 

excitation, whose frequency is 6 Hz and displacement amplitude is 0.3 mm (i.e. one of the 

excitation case above), is shown in Fig.7. The simulated results depicted as red rhombus are 

compared with those from measurement shown as black squares as is shown in this figure. The 

presented good agreement between simulated and measured results inevitably leads to a 

conclusion that the proposed nonlinear model in this investigation is capable of simulating the 

hysteresis loop of rubber absorber in rail fastening at its own special working conditions with 

good accuracy. This result confirms that rubber absorber in rail fastening exhibits strong nonlinear 

properties, which are mainly expressed by the nonlinear damping and the dynamic nonlinear 

stiffness. It is important to note that the single excitation case in Fig.7 is just taken as an example, 

and the simulated results of all the other cases in fact show good agreements as well with the 

meaured counterparts. 

 

 

 

 

 

 

 

Fig.7 Comparison between force-displacement loops from measurement and simulation 

using the model shown in equation (13) at a single excitation case as  

Frequency is 6Hz and amplitude is 0.3mm 

In order to make out the amplitude dependency and frequency dependency, Fig.8 presents the 

relationship between dynamic nonlinear stiffness, excitation frequency and displacement 

amplitude in the form of three-dimensional surface using the verified expressions (10) and (11) 

based on MATLAB platform, which enables us to observe visually and conveniently. 

As is shown in the Fig.8, frequency dependences of the first order dynamic stiffness as well 

as the third order dynamic stiffness are not as great as amplitude dependency. An                          



increase in amplitude would decrease the first order dynamic stiffness largely as shown in Fig.8-1, 

whereas from the right graph an increase in frequency diminishes the dynamic stiffness very 

slightly as the displacement amplitude is 0.3 mm, and this downward trend is becoming very hard 

to recognize as the amplitude increasing to 0.7 mm. Varying the frequency from 2 to 10 Hz results 

in a slight increment of the third order dynamic stiffness from Fig.8-2. However, an increase in 

amplitude from 0.3 to approximate 0.5 mm leads to an increment of the third order dynamic 

stiffness across the range of all investigated frequencies, and, after that, the third order dynamic 

stiffness decreases rapidly along with the varying amplitude. This complex trend of the third order 

dynamic stiffness with displacement amplitude probably follows the Payne effect [23], which can 

to some degree explain the upward trend at the very beginning. Further, the discussion about  

 

 

 

 

 

 

 

 

Fig.8-1 The first order dynamic stiffness 

  

 

 

 

 

 

 

 

Fig.8-2 The third order dynamic stiffness 

Fig.8 Frequency and amplitude dependency of dynamic nonlinear stiffness 



 

amplitude and frequency dependency here is based on the verified dynamic nonlinear model 

shown in equations (10) and (11), which is generally in accordance with Table 2. As for the reason 

why there are so many differences between the first and the third order dynamic stiffness at their 

amplitude as well as frequency dependency, it needs further investigation.  

6. Conclusion 

Rubber absorber in rail fastening exposed to single harmonic excitation with an initial 

displacement is found to exhibit a strong nonlinear behavior through a dynamic nonlinear model 

proposed in this paper. The key strategy of this method is to simulate the hysteresis loop of rubber 

components based on the superposition principle, which means that the restoring force of rubber 

absorber consisting of a nonlinear damping force and a nonlinear elastic force. In this model, the 

dynamic nonlinear stiffness was also defined. In order to determine model parameters and verify 

the accuracy of proposed model, a dynamic experiment is designed. The obtained simulated 

results show good agreement with the measured counterparts. This conclusion indicates that the 

proposed dynamic nonlinear model is therefore verified to be an effective mechanical tool in 

simulation and characterization of dynamic nonlinear behavior of rubber absorber in rail fastening 

with certain modes of vibrations. Besides, excitation frequency dependency as well as 

displacement amplitude dependency of the dynamic nonlinear stiffness were further studied and 

discussed. The result shows that the characteristic of dynamic stiffness is closely associated with 

both displacement amplitude and frequency. An increase in frequency diminishes the first order 

dynamic stiffness very slightly but leads to a small increment on the third order dynamic stiffness. 

Varying the amplitude upwards decreases the first order dynamic stiffness but results in a much 

more complex influence on the third order dynamic stiffness --- increasing it at first and then 

decreasing it rapidly. Generally, the frequency dependency of dynamic stiffness is not as great as 

the amplitude dependency. 
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