
HAL Id: hal-00850824
https://hal.science/hal-00850824v2

Preprint submitted on 10 Feb 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High-Multiplicity Scheduling on One Machine with
Forbidden Start and Completion Times

Michaël Gabay, Christophe Rapine, Nadia Brauner

To cite this version:
Michaël Gabay, Christophe Rapine, Nadia Brauner. High-Multiplicity Scheduling on One Machine
with Forbidden Start and Completion Times. 2013. �hal-00850824v2�

https://hal.science/hal-00850824v2
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

High-Multiplicity Scheduling on One Machine with Forbidden

Start and Completion Times
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Abstract We are interested in a single machine schedul-
ing problem where jobs can neither start nor end on

some specified instants, and the aim is to minimize
the makespan. This problem may model the situation
where an additional resource, subject to unavailabil-

ity constraints, is required to start and to finish a job.

We consider in this paper the High-Multiplicity version

of the problem, when the input is given using a com-

pact encoding. We present a polynomial time algorithm

for large diversity instances (when the number of dif-
ferent processing times is greater than the number of
forbidden instants). We also show that this problem is

Fixed-Parameter Tractable when the number of forbid-

den instants is fixed, regardless of jobs characteristics.

Keywords Scheduling · High-Multiplicity · Availabil-
ity Constraints · Parametrized Complexity

1 Introduction

We consider a scheduling problem on one machine where

a set of instants is given, such that no job is allowed

to start or to complete at any of these instants. We

refer to such an instant as a forbidden start & end in-

stant (Fse). Forbidden instants may arise when jobs
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need some additional resources at launch and comple-

tion and these resources are not continuously available.

This may be the case if the additional resources are

shared with other activities. For example, consider the

situation where the jobs are processed by an automated

device during a specified amount of time, but a qualified

operator is required on setup and completion. While the

device is continuously available, the operators have days

off and other planed activities. On these days, jobs can
be performed by the device, but none can start or com-
plete. We encountered this problem in chemical indus-
try through a collaboration with the Institut Français

du Pétrole. In their problem, jobs were chemical exper-

iments whose durations typically last between 3 days
and 3 weeks. A chemist is required on jobs start and

completion to control the process. Each intervention of
the chemist can be performed within an hour, but re-
quires of course a chemist to be available and present
in the laboratory. For more details on this application,

we refer the reader to Brauner et al (2009) and Rapine

et al (2012).

Notice that, contrary to a classical unavailability

constraint, the machine can be processing a job dur-

ing an Fse instant, as long as it started its execution

before the forbidden instant and will complete after it.

We restrict to integer values for the data and to sched-

ules where all the jobs start and complete at integer

instants. The objective is to minimize the makespan

Cmax. Using Graham notations, the problem is denoted

by 1|Fse|Cmax. As an example, consider the instance
where instants 3, 4, 6 and 9 are Fse instants and 5 jobs

have to be scheduled: a and b of duration 1, c and d

of duration 2 and e of duration 4. On Figure 1 and 2,

forbidden instants are represented on the time axis by

dashed rectangles. The sequence of jobs (a, e, c, b, d)

leads to an idle-free schedule represented Figure 1 ; the
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makespan of this schedule is 10. On Figure 2, we have

represented the scheduling of the jobs according to the

LPT sequence (e, d, c, b, a), that is in non-increasing or-

der of the processing times. In order to respect the for-

bidden instants, two idle slots are used in the schedule.

One can check that the SPT sequence (a, b, c, d, e) leads
to a worse schedule, of makepsan 14.

e bc d

0 3 6 94

a

Fig. 1: Sequence (a, e, c, b, d). The schedule is idle-free and
completes at time 10.

e d c b a

43 6 90

Fig. 2: Sequence (e, d, c, b, a). The schedule completes at
time 12.

The problem of scheduling jobs on a single machine

where a set of time slots is forbidden for starting or com-

pleting the jobs has been first investigated by Billaut

and Sourd (2009). They considered the case where some

time slots are forbidden for starting the jobs, namely

the Fs instants (for forbidden start). They proved that

minimizing the makespan is polynomially solvable if the

number of forbidden start times is fixed, and NP-hard

in the strong sense if this number is part of the input.

Their algorithm runs in time O(n2k2
+2k−1), where k

denotes the number of Fs instants and n is the num-

ber of jobs. They also established that if there are at

least 2k(k + 1) distinct processing times of the jobs in

the instance, then an idle-free schedule exists. Rapine

and Brauner (2013) generalized this results: they es-

tablished that having k + 1 distinct processing times

is a sufficient condition to ensure the existence of an
idle-free schedule in presence of k Fse instants. Such

an optimal schedule can be found in O(k3n). As a con-

sequence, the overall complexity to solve the problem
for a fixed number of forbidden instants is reduced to
O(nk). Chen et al (2013) Consider the same problem

with a different objective function, namely the total
completion time.

High-multiplicity encoding

The number of types of jobs, that is the number of dif-
ferent job durations, play a central role in the above

mentioned results. Hence, it is natural to consider a

compact encoding where similar jobs are grouped to-

gether. The problem then falls in the field of High-

Multiplicity Scheduling introduced by Hochbaum and

Shamir (1991). Compared to a traditional encoding,
where each job is described, in a high-multiplicity (HM)
encoding, each type is described only once, along with

its multiplicity (the number of jobs of this type). Thus

the size of a HM encoding depends linearly on the num-

ber of types but only logarithmically on the number of

jobs. As a consequence, a polynomial time algorithm

under the standard encoding may become exponential
under a HM encoding of the input, which is the case
of the previously mentioned algorithms. HM scheduling

and more generally HM combinatorial optimization has

become an active domain in recent years, see (Brauner

et al 2005; Clifford and Posner 2001; Filippi and Agnetis

2005; Filippi and Romanin-Jacur 2009).

The goal of this paper is to explore the complexity of
problem 1|Fse|Cmax under a high-multiplicity encoding

of the input. We show that essentially the main results

established in the literature under a standard encoding

remain valid under a HM encoding. Specifically, we pro-

pose in Section 2 a polynomial time algorithm for large

diversity instances, that is when the number of types is

greater than the number of Fse instants. In Section 3,
we also prove that the general problem remains poly-

nomial when k is fixed. We first introduce the following

notations which will be used in the remaining of the

paper.

Notations

Throughout the paper k denotes the number of Fse

instants in the instance. Let γi be the i-th Fse instant

with γ1 < γ2... < γk. We denote by F = {γ1, . . . , γk}
the set of the Fse instants. Two jobs are of different

types if and only if their processing times are different.

The number of types of jobs in the instance is denoted

by s. Without loss of generality, we index the types by

decreasing order of the processing times of their jobs.

The set of jobs to schedule is represented in a HM en-
coding by a multiplicity vector (m1, . . . ,ms), together

with a processing times vector (p1, . . . , ps), where mi

and pi are respectively the number of jobs of the ith

type and its corresponding processing time. The num-
ber of jobs is n =

∑s

i=1
mi. The instance of Figures 1 is

thus represented by the processing times vector (4, 2, 1)

and the multiplicity vector (1, 2, 2). A job is said to
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cross an Fse instant γi if it starts its processing before

γi and ends after γi. For instance in Figure 1, the job
e crosses the first two Fse instants.

We denote by |x| the size of the input under a HM

encoding. We have |x| = O(s log n+ s log p1 + k log γk).

Hence |x| can be in O(s log n) while the algorithm pro-
posed in Rapine and Brauner (2013) runs in timeO(k3n),

which can be exponential with respect to |x|.

In HM scheduling, it may not be obvious to deter-

mine whether or not schedules can be described with

a compact encoding, i.e. polynomial in |x|. For the
problem we consider, it is readily that the schedule of

the jobs between two forbidden instants is meaningless
(provided unnecessary idle-times are not inserted). As
a consequence any schedule has a polynomial encod-

ing as a sequence of k vectors (m1
i , . . . ,m

s
i ) and k pairs

(ji, si), where m
j
i is the number of jobs of type j sched-

uled between γi−1 and γi ; ji is the job crossing γi and

si its starting time.

An instance is denoted by x = (N,F) whereN is the

set of jobs. We say that an instance is of large diversity if

s > k, that is, if the number of distinct types is greater
than the number of forbidden instants. In the reverse

situation, we say that the instance is of small diversity.

2 A polynomial time algorithm for large

diversity instances

In this section, we design a polynomial algorithm for
large diversity instances. Rapine and Brauner (2013)
proved that, in such cases, there exists and idle-free

schedule:

Theorem 1 (Rapine and Brauner (2013)) If s > k

and 0, p(N) /∈ F , then there exists a feasible schedule

without idle time.

They also presented an algorithm, called L-partition,
finding an idle-free schedule for large diversity instances

in O(k3n) time, where n =
∑s

i=1
mi is the number of

jobs. Although linear in the number of jobs, this algo-

rithm is not polynomial with a high-multiplicity encod-

ing, except if the multiplicity of each type is bounded

by a constant. In particular if only one job is associated

with each type, the L-partition algorithm runs in time
O(k3s). We use this fact in our approach.

To design a polynomial time algorithm under a HM

encoding, we need to schedule more than one job at

a time. We also need an efficient way to decompose

the problem. Consider a large diversity instance x =
(N,F). Notice that Theorem 1 ensures that an optimal

schedule is idle free, assuming that neither instant 0 nor

instant p(N) is forbidden. A schedule is said partial if

only a subset of the jobs is scheduled. We introduce the

following definition:

Definition 1 A partial schedule π is an optimal prefix

if there exists an optimal schedule of the form πσ.

Consider a partial schedule π completing at time t.

Looking at the definition, deciding if π is an optimal
prefix may request to compute an optimal schedule for

the whole instance. However, by Theorem 1, a sufficient

condition for π to be an optimal prefix is that π is idle-

free, and that the remaining instance x′ = (N ′,F ′ =

F ∩ [t,+∞[) is a large diversity instance. Indeed, it

guarantees the existence of an idle-free schedule σ for

the remaining jobs to schedule after time t.
If we are able to find an optimal prefix π, the prob-

lem is reduced to finding an optimal schedule starting

at time t on the remaining set N ′ of jobs. We can then

look again for an optimal prefix π′ on the remaining

large diversity instance x′. However, for this decompo-

sition to be efficient, we need to bound the number of

times an optimal prefix is searched for. We say that a

prefix π is efficient if it is optimal and crosses at least

one forbidden instant. It is then immediate that at most

k efficient prefixes need to be computed to build an op-

timal schedule.

Algorithm 1 Optimal Prefix Algorithm

Require: a large diversity instance (N ,F) with types in-
dexed by decreasing order of processing times pj .

Ensure: an optimal prefix π
set mi = mi − 1 for i = 1 to k + 1
i = 1 ; t = 0 ; π = ∅ ;
while i ≤ s and t+mipi < γ1 do

{Append the mi jobs of type i to π}
π = π(i,mi) ; t = t+mipi ; i = i+ 1 ;

end while

if i > s then

return π {Only k + 1 jobs remain to schedule}
end if

{Append as many jobs of type i as possible, before γ1}
α = ⌈(γ1 − t)/pi⌉ − 1 ; π = π(i, α) ; t = t+ αpi ;
{Extend π to complete after time γ1}
for l = 1 to k + 1 such that t+ pl ≥ γ1 do

if t+ pl /∈ F then

return π(l, 1)
end if

end for

for l = 2 to k + 1 such that t+ pl < γ1 do

if t+ pl + p1 /∈ F then

return π(l, 1)(1, 1)
end if

end for

Algorithm 1 finds an (efficient) optimal prefix. The

main idea of the algorithm is to put aside initially one

job of each of the k + 1 largest types. Let B be this

set of jobs. This reserve B is used to ensure that the
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remaining instance is of large diversity. Notice that we

can afford to use one of these jobs each time a forbid-

den instant is crossed. We call additional jobs the set

A = N\B. The algorithm iteratively schedules all the

additional jobs of type 1, then all the additional jobs of

type 2, and so on. Recall that types are indexed in de-

creasing order of the processing times, thus we simply

follow a LPT sequence for the additional jobs. We keep
scheduling additional jobs as long as they fit before the
first forbidden instant γ1. When this process halts on

some index i, either only the jobs from the set B remain

to schedule, or there is not enough room left before γ1
to schedule all the additional jobs of the ith type. In
the latter case, the algorithm schedules as much jobs of

type i as possible before γ1. Then, it tries to cross the

forbidden instant γ1. In order to keep a large diversity

instance, we ensure that each job of B scheduled allows

to cross at least one forbidden instant. This way the

algorithm outputs an efficient prefix. In the other case,

all additional jobs have been scheduled and the partial

schedule returned is optimal but not efficient, since the

first Fse instant is not crossed. However, we are in the

situation where the remaining large diversity instance

contains only one job per type, and we have exactly

k + 1 types. We can use the L-partition algorithm to

solve it efficiently, in time O(k4). The correctness of the
algorithm is summarized in the following lemma:

Lemma 1 Given a large diversity instance x = (N,F),

Algorithm 1 delivers an optimal prefix π. In addition,

if x′ = (N ′,F ′) is the remaining instance to schedule,

then x′ is a large diversity instance and:

1. either |F ′| < |F|, that is π is an efficient prefix,

2. or |N ′| = |F| + 1 and all the remaining jobs have

distinct processing times.

Proof Let (N ′,F ′) be the instance remaining to sched-

ule at the end of Algorithm 1. Recall that B denotes

a set with exactly one job of the k + 1 largest types

of N and A = N\B is the set of the additional jobs.
If only the set B remains to schedule at the end of

the algorithm, then we are clearly in the second case

of our claim: |N ′| = k + 1. Otherwise the algorithm

has stopped the first loop on a type i such that all the

additional jobs cannot be scheduled before γ1. At this
point, there is at least one unscheduled job of type i

remaining in A, and possibly another in B, if i ≤ k+1.
Let t < γ1 be the current completion time of the sched-

ule, and consider the partition B = S ∪ L defined by

L = {j ∈ B | t + pj ≥ γ1} and S = B\L. Notice that

L is not empty as t + pi ≥ γ1 ; in particular a job of

type 1 belongs to L. By construction the prefix algo-
rithm tries to extend π in order to complete after the

first forbidden instant γ1. We have to prove that it will

always succeed, and that (N ′,F ′) is a large diversity

instance. We denote by s′ the number of distinct types
of jobs in the remaining instance x′ and by k′ = |F ′|
the number of Fse instants appearing after time t.

In the following, we show that if π completes after

the lth forbidden instant, at most l jobs of B have been

scheduled in π. As a consequence, s′ ≥ |B|− l > k− l ≥
k′ and (N ′,F ′) is a large diversity instance. Consider

the last two loops of the algorithm. If one job of L can

be scheduled, the property clearly holds as π completes

after time γ1. If there is no such job, then for all jobs

j of L, t + pj is a forbidden instant while any job of

S can be scheduled before time γ1. Therefore a simple
counting argument, illustrated Figure 3, ensures that

there exists a job s ∈ S which can be scheduled at

time t immediately followed by a job of type 1. If t +

ps+p1 ≥ γ2, i.e. π completes after time γ2, we are done.

Otherwise, we have t+ p1 < γ2. In this case k′ = k− 1,

while we apparently use 2 jobs of B. However, instant

t + p1 is forbidden ; in fact we have t + p1 = γ1 and
as a consequence i = 1. As we noticed, there is at least

one unscheduled job of type i in A. Since i = 1, we can

use an additional job of type 1, instead of using a job

of type 1 from B. We have s′ ≥ s− 1 which completes

the proof. ⊓⊔

π

p1

t γ1 γv0

✲

︸ ︷︷ ︸ ︸ ︷︷ ︸

︸ ︷︷ ︸

jobs

from L
jobs from S

+p1

k + 1 values > k

Fig. 3: Counting argument: the first Fse instants can be
crossed using one or two jobs from B.

In order to deliver an optimal schedule, we itera-

tively call the prefix algorithm on the remaining in-

stance as long as we obtain an efficient prefix. Other-

wise, we are in the second case of Lemma 1, which cor-

responds to the basis of the recursion: we simply solve

instance x′ = (N ′,F ′) using the L-partition algorithm.

Since N ′ contains at most (k + 1) jobs, the running
time of the L-partition algorithm on this instance is in

O(k4). We have the following theorem:

Theorem 2 Problem 1|Fse|Cmax is polynomial under

HM encoding for large diversity instances, and can be

solved in time O(sk + k4)

Proof From the above discussion, we only need to es-

tablish the time complexity of the algorithm, its cor-

rectness being a direct consequence of Lemma 1. We use
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the classic convention that basic operations on integers

(addition, division. . . ) are performed in constant time.
Then the time complexity of Algorithm 1 is in O(k+s),

which is in O(s) for large diversity instances. To solve

Problem 1|Fse|Cmax, we call Algorithm 1 on the set of

unscheduled jobs as long as there is still some forbid-

den instants in the future or that this set is not reduced

to B. Thus we have at most k calls to Algorithm 1, pos-
sibly followed by a call to L-partition algorithm on an

instance containing at most k + 1 jobs. Therefore the

overall complexity is in O(sk + k4). ⊓⊔

If 0 or p(N) are in F , then the same transformation

as in Rapine and Brauner (2013) allows to obtain an

optimal schedule. Note that, even under a traditional

encoding of the instance, the optimal prefix algorithm

has a better time complexity than the L-partition algo-

rithm which runs in time O(k3n).

3 A polynomial time algorithm for a fixed

number of Fse

In this section we establish that the problem 1|Fse|Cmax

can be solved in polynomial time under a HM encoding

of the instances if the number of forbidden instants is

fixed, that is, if k is not part of the input. This result ex-

tends a theorem from Rapine and Brauner (2013) which

establishes that 1|k − Fse|Cmax is polynomial under a

standard encoding, that is, its complexity is polynomi-

ally bounded in n, the number of jobs (but not in s, the

number of types). The rest of the section is devoted to

proving the following theorem:

Theorem 3 The problem 1|Fse|Cmax is Fixed Param-

eter Tractable for parameter k, even under high-multi

plicity encoding of the input.

Notice that if the instance is of large diversity, the

optimal prefix algorithm (Algorithm 1, Section 2) can

deliver an idle-free (and thus optimal) schedule in time

O(s) for any fixed number k of forbidden instants. Hence

we can focus on the case of small diversity instances.

Our idea is to formulate the problem on small diver-

sity instances as an integer linear program (ILP) with

a fixed number of variables and constraints. Such an

ILP can be solved in polynomial time, due to the fol-

lowing result from Eisenbrand (2003):

Theorem 4 (Eisenbrand (2003)) An integer pro-

gram of binary encoding length l in fixed dimension,

which is defined by a fixed number of constraints, can

be solved with O(l) arithmetic operations on rational

numbers of binary encoding length O(l).

For small diversity instances, we have by definition

s ≤ k. Thus, if the number of variables and the number
of constraints in our ILP formulation are bounded by

a polynomial in k, Theorem 4 implies that 1|Fse|Cmax

is FPT with respect to parameter k. Clearly, to obtain

such a formulation, we can not afford to introduce one

decision variable (such as the completion time) or one

constraint (such as avoiding to complete on a forbidden

instant) for each job. Instead, as already discussed in

the HM encoding of a solution, see Section 1, we rep-

resent a solution by the number of jobs of each type

scheduled between two consecutive forbidden instants.

However, this representation of the solution is suitable

only for idle-free schedules, since otherwise one has also

to give the starting time of each block of jobs. To for-

mulate the problem as an ILP, we take advantage of the

fact that any large diversity instance admits an idle-free

schedule, see Theorem 1. More precisely, we transform

a small diversity instance I into a large diversity in-
stance I ′ by adding dummy jobs as follows. Given an

instance I composed of s types, I ′ is constituted of the

following types:

– Real jobs. They are the jobs of I. We denote by pi
and mi the processing time and the multiplicity of

the type i, for i = 1, . . . , s.

– Optional jobs. We add k + 1 types to ensure that

there exists an idle free schedule. For i = s + 1 to

s + k + 1, type i has a processing time pi = i − s
and its multiplicity is unbounded.

The number of jobs of the instance I ′ is unbounded
due to the optional jobs. However, as their name sug-

gests, a schedule π′ for I ′ does not need to schedule

all the optional jobs. More precisely, we do not request

to schedule any optional job once all the real jobs have

been processed and all the forbidden instants have been

crossed. We denote by C̃max(π
′) the completion time of

the last real job of π′. We have the following property:

Property 1 There exists a schedule π for the instance

I with makespan Cmax(π) if and only if there exists
an idle-free schedule π′ for the instance I ′ such that

C̃max(π
′) = Cmax(π).

Proof Given a schedule π′ for I ′, we immediately ob-

tain a valid schedule for the instance I by replacing the

optional jobs by idle times with the same duration. The
jobs of I are processed at the same dates as in π′, and

thus clearly the makespan is equal to C̃max(π
′). Con-

versely, consider a schedule π for instance I. We have

to prove that for each idle period [u, v] occurring in

π, we can sequence optional jobs to obtain an idle-free
schedule. Since π is feasible, u and v cannot be forbid-

den instants. Thus, if the idle period is short, that is



6 M. Gabay, C. Rapine, N. Brauner

v − u ≤ k + 1, we can simply schedule an optional job

of duration v − u. Otherwise, we have v ≥ u+ (k + 2).
Since there are k forbidden instants in the instance, at

least one instant in the time interval [u + 1, u + k + 1]

is not forbidden. Let t be the last forbidden instant be-

fore u+ 1 + k which is not forbidden. In π′, at time u,
we schedule an optional job of duration t − u ≤ k + 1.

By immediate induction we can fill the remaining idle
period [t, v] with optional jobs. ⊓⊔

Based on Property 1, we show that we can use an

ILP with a fixed number of variables and constraints to
find an idle-free schedule π′ minimizing the completion

time of the last real job. We denote by s′ ≥ k + 1 the

number of types (real and optional) in the instance I ′.

By construction I ′ is of large diversity, that is s′ > k,
and thus we know that an idle-free schedule π′ exists.

To bound the completion time of the last real job, we

use the property (see Rapine and Brauner (2013)) that

any list scheduling algorithm produces a schedule with

makespan at most Q = 2k +
∑s

i=1
mipi. Thus Q is an

upper bound on the completion time of the last real

job in an optimal schedule for I ′. As a consequence we
can assume without loss of generality that γk ≤ Q− 2,

since the last Fse instants can be discarded till this in-
equality holds. We also add a very large optional job of

processing time ps+k+2 = γk+1. This job allows to cross

all the remaining Fse instants if the schedule finishes

before the last one. Finally, for the ease of presentation,

we introduce the notation γk+1 = Q+ ps+k+2 + 1.
As already discussed, we can represent an idle-free

schedule by giving the number of jobs of each type

sequenced between any two consecutive forbidden in-

stants (or alternatively by giving the cumulative num-

ber of jobs completed before any forbidden instant) and

the jobs crossing forbidden instants. We have the fol-

lowing decision variables:

mij number of jobs of type i completed by time

γj for i = 1, . . . , s′ and j = 1, . . . , k + 1.

Sjf = 1 if a job crosses exactly the instants γj
till γf−1 (included), for j = 1, . . . , k and

f = j + 1, . . . , k + 1.
= 0 otherwise

xij = 1 if a job of type i crosses the instant γj and

this job does not cross the previous Fse

instant, for i = 1, . . . , s′ and j = 1, . . . , k.

= 0 otherwise

yj = 1 if all real jobs have been completed by
time γj , for j = 1, . . . , k.

= 0 otherwise

C̃max completion time of the last real job.

The variables mij are non-negative integers, Sjf ,

xij , yj are boolean variables and C̃max is a non-negative

real. We also define variable Wj as the total work com-

pleted by time γj for j = 1, . . . , k + 1. Notice that we
do not distinguish real from optional jobs in the def-

inition of Wj , that is Wj is simply a short-hand for∑s′

i=1
pimij . Also notice that Wj does not take into ac-

count the processing time of a job started but not yet

completed, that is a job that would cross the forbidden
instant γj . Hence a job crossing the forbidden instants

γj but not γj−1 must start at time Wj in an idle-free

schedule.

The following linear formulation finds an idle-free

schedule minimizing the completion time of the last real
job for the instance I ′:

Minimize C̃max, subject to the constraints:

– All Fse are crossed, which is equivalent to require

that variables Sjf define a 1− (k + 1) path:

k+1∑

f=2

S1f = 1 (1)

k∑

j=1

Sj,k+1 = 1 (2)

f−1∑

j=1

Sjf =

k+1∑

l=f+1

Sfl ∀f = 2, . . . , k (3)

– A job crosses γj as its first Fse instant if and only

if Sjf = 1 for some index f > j:

s′∑

i=1

xij =

k+1∑

f=j+1

Sjf ∀j = 1, . . . , k (4)

– For each type, the variable mij is increasing with j.
In addition, if a job of type i crosses γj , then the

number of jobs of type i completed should increase

by at least one after the next forbidden instant fol-
lowing the completion of the job.

mi,j+1 ≥ mij ∀i = 1, . . . , s′

∀j = 1, . . . , k

(5)

mif ≥ mij + xij + Sjf − 1 ∀i = 1, . . . , s′

1 ≤ j < f ≤ k + 1

(6)

– Schedule all the real jobs:

mi,k+1 = mi ∀i = 1, . . . , s (7)

– Set yj = 0 if all the real jobs are not completed

before the instant γj :

s∑

i=1

mij ≥ yj

s∑

i=1

mi ∀j = 1, . . . , k (8)
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– Definition of the work Wj :

Wj =
s′∑

i=1

mijpi ∀j = 1, . . . , k + 1 (9)

– All the work Wj must be completed by time γj :

Wj ≤ γj − 1 ∀j = 1, . . . , k + 1 (10)

– The amount of work completed can not increase be-

tween instants γj and γf−1 if a job crosses these

instants, that is Sjf = 1:

Wf−1 ≤ Wj +Q(1− Sjf ) ∀1 ≤ j < f ≤ k + 1

(11)

– If Sjf = 1 and a job of type i crosses γj , then this

job should complete in the time interval [γf−1 +

1, γf − 1]:

Wj +
s′∑

i=1

pixij ≥
k+1∑

f=j+1

(γf−1 + 1)Sjf

∀j = 1, . . . , k (12)

Wj +
s′∑

i=1

pixij ≤ γj − 1 +
k+1∑

f=j+1

(γf − γj)Sjf

∀j = 1, . . . , k (13)

– The makespan should be equal to the first Wj such

that yj = 1:

C̃max ≥ W1 (14)

C̃max ≥ Wj − yj−1Q ∀j = 2, . . . , k + 1 (15)

Constraints (1)-(2)-(3) are classical flow conserva-
tion equations. They impose all the forbidden instants

to be crossed in an idle-free schedule. If a job crosses the

forbidden instants γj up to γf−1, Constraint (4) ensures

that exactly one variable xij is set to 1 to represent

the type of this job ; Reciprocally if one job crosses γj
and not the preceding forbidden instant, Constraint (4)

ensures that exactly one variable Sjf is set to 1, to
represent the set of Fse instants crossed by the job.

Constraint (6) forces the number of completed jobs of

type i to increase by at least one between forbidden in-

stants γj and γf if a job of type i crosses exactly all

the Fse instants from γj to γf−1. Notice that in this

case we have xij = 1 and Sjf = 1, which imposes that

mif > mij . As we know that an optimal schedule se-
quences the last real job before instant γk+1, we can

impose through Constraint (7) that all the real jobs are

completed by this time.

Constraint (10) ensures that the completion time

of the last job completing before the instant γj does

not coincide with this instant. Constraint (11) prevents

from scheduling some jobs between forbidden instants
crossed by a same job: if variable Sjf is equal to 1,

then the constraint boils down to Wf−1 ≤ Wj . Due to

Constraint (5), Wl is increasing with the index l. Hence

we have Wj = Wj+1 = · · · = Wf−1: The work achieved

by time γf−1 is still Wj . On the contrary if Sjf is equal
to zero, the constraint becomes redundant.

Constraints (12) and (13) prevent a job crossing the

forbidden instant γj from completing on another for-
bidden instant. If Sjf = 1 for some index f ≤ k and

the crossing job is of type i (xij = 1), the constraints

force γf−1 + 1 ≤ Wj + pi ≤ γf − 1. Notice that if

f = k + 1, Constraint (13) becomes redundant. Finally

if Sjf = 0 for all indices f > j, both constraints are

redundant since all the variables xij are zero due to
Constraint (4) already discussed, and the right hand
sides are then equal respectively to 0 and γj − 1. Thus

(12) states that Wj is non negative and (13) gives Con-

straint (10).

Finally, consider Constraint (15), and let l be the

first index such that yl = 1. We claim that this con-

straint imposes at the optimum that C̃max = Wl. In-
deed, if yj−1 = 1 the constraint yields C̃max positivity

and if yj−1 = 0, it boils down to C̃max ≥ Wj . Setting

yj = 1 for all j ≥ l is feasible and dominant. Since

we are minimizing C̃max, the inequality C̃max ≥ Wl is

tight. We claim that Wj is precisely equal to the com-

pletion time of the last real jobs in an optimal solution.
Indeed, once this last job has been scheduled, if there
are some forbidden instants remaining, they can all be

crossed by using the optional job s+k+2. This optional

job clearly crosses all the remaining forbidden instants,

and in particular the instant γl. This shows that the

value of Wl, and thus of C̃max at the optimum, is equal

to the completion time of the last real job.

This integer program delivers an optimal solution to
the instance I ′ and, using Property 1, we can convert

it into an optimal solution to the original instance I.

Moreover, the number of decision variables of the ILP

is in O(k2) and the number of constraints is in O(k3).

Thus, we can apply Theorem 4, which proves Theo-

rem 3.

4 Conclusion

In this paper, we have generalized to high-multiplicity

the results from Rapine and Brauner (2013): we have

shown that large diversity instances can be solved in

polynomial time also with a high-multiplicity encoding

of the input. We proposed an algorithm solving this

problem in O(sk + k4) time, improving the complex-
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ity of the previous algorithm from Rapine and Brauner

(2013) even if the input is not provided using a compact

encoding.

We modeled 1|Fse|Cmax as an integer program and

used the existence of an idle-free schedule for large

diversity instances to avoid modeling the completion

time for each job. The resulting integer program has a

fixed number of constraints and variables. Therefore, by

Eisenbrand’s theorem, 1|Fse|Cmax is fixed-parameter

tractable, even under high-multiplicity encoding of the
input. Such an approach could be used on other high-

multiplicity scheduling problems to classify them.

Further research can investigate small diversity in-

stances. Especially, it would be interesting to determine
whether or not this problem remains polynomial when

s is close to k, in particular if s = k.

Other optimization criteria such as minimizing the
mean flow time can be investigated as well. Chen et al

(2013) have already studied a similar problem, with one

operator non-availability period. Further investigations

of these problems would be interesting and likely to

have important industrial applications.
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