Nadia Brauner Michaël Gabay Christophe Rapine

3 July 2013

Sommaire

Scheduling with operator non-availability

- Problem
- State of the art

Certificate

Parametrized complexity

What's next ?...

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

The chemist might be unavailable...

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

The chemist might be unavailable...

 \Rightarrow Resource unavailability

Problem

Single machine scheduling problem with an additionnal resource

 $1|FSE|C_{max}$

Problem

Single machine scheduling problem with an additionnal resource

1|FSE|C_{max}

n tasks:

 $(p_i)_{i=1,\ldots,n}$

Problem

Single machine scheduling problem with an additionnal resource

 $1|FSE|C_{max}$

n tasks:

$$(p_i)_{i=1,\ldots,n}$$

Problem

Single machine scheduling problem with an additionnal resource

 $1|FSE|C_{max}$

n tasks: $(p_i)_{i=1,\dots,n}$

K unavailability dates: $\Gamma = \{\gamma_1, \dots, \gamma_K\}$ $\gamma_1 < \dots < \gamma_K$ γ_i is an FSE: no task can start or end on time γ_i .

Does an idle-free schedule exist ?

State of the art

Machines unavailability [Schmidt, 2000]

Operator non-availability (ONA) [Brauner et al., 2008, Rapine et al., 2012]: \mathcal{NP} -hard, $\notin \mathcal{APX}$

Forbidden start times [Billaut and Sourd., 2009], 1|FS|C_{max}:

- Strongly \mathcal{NP} -hard
- $\notin \mathcal{APX}$
- If $N \ge 2K(K+1)$ then there is an idle-free schedule

Scheduling with operator non-availability

State of the art

- 1|FSE|C_{max} [Rapine et Brauner, 2010]:
 - Strongly \mathcal{NP} -hard
 - $\bullet \notin \mathcal{APX}$
 - If *N* > *K* (*large diversity*) then there is an idle-free schedule
 - We can compute an idle-free schedule in $\mathcal{O}(K^3n)$ time

N kinds of

Problem

$$1|\mathsf{FSE}, HM|C_{\max}$$
N kinds of tasks: $(p_i, m_i)_{i=1,...,n}$ $p_1 < \cdots < p_N$ $n = \sum_{i=1}^{K} m_i$ K unavailability dates: $\Gamma = \{\gamma_1, \dots, \gamma_K\}$ $\gamma_1 < \cdots < \gamma_K$

Problem

$$1|\mathsf{FSE}, HM|C_{\max}$$

$$N \text{ kinds of tasks:} \qquad (p_i, m_i)_{i=1,...,n} \qquad p_1 < \cdots < p_N$$

$$n = \sum_{i=1}^K m_i$$

$$K \text{ unavailability dates:} \quad \Gamma = \{\gamma_1, \dots, \gamma_K\} \qquad \gamma_1 < \cdots < \gamma_K$$

Input:

Problem

$$1|FSE, HM|C_{max}$$
N kinds of tasks: $(p_i, m_i)_{i=1,...,n}$ $p_1 < \cdots < p_N$
 $n = \sum_{i=1}^{K} m_i$

K unavailability dates: $\Gamma = \{\gamma_1, \dots, \gamma_K\}$ $\gamma_1 < \dots < \gamma_K$

Input: 2N + K integers Size: $|\mathcal{I}| =$

Problem

.

N kinds of tasks:

$$p_1 < \cdots < p_N$$

$$n=\sum_{i=1}^{K}m_i$$

K unavailability dates: $\Gamma = \{\gamma_1, \dots, \gamma_K\}$ $\gamma_1 < \dots < \gamma_K$

Input: 2N + K integers Size: $|\mathcal{I}| = \mathcal{O}((N + K)(\log(n) + \log(p_N)))$

High Multiplicity encoding

Problem

N kinds of tasks:

$$(p_i, m_i)_{i=1,...,n}$$

$$p_1 < \cdots < p_N$$

$$n=\sum_{i=1}^{K}m_i$$

 $\textit{K} \text{ unavailability dates:} \quad \textit{\Gamma} = \{\gamma_1, \ldots, \gamma_{\textit{K}}\} \qquad \gamma_1 < \cdots < \gamma_{\textit{K}}$

Input: 2N + K integers Size: $|\mathcal{I}| = \mathcal{O}((N + K)(\log(n) + \log(p_N)))$

High Multiplicity encoding

n is exponential in $|\mathcal{I}|$

High Multiplicity

Certificate

Does a polynomial certificate exist ?

High Multiplicity

Certificate

Does a polynomial certificate exist ?

High Multiplicity

Certificate

Does a polynomial certificate exist ?

Certificate: (1,0,0,(yellow,d₁)), (1,3,0,(green,d₂)), (0,0,0,(green,d₂)))

High Multiplicity

Certificate

Does a polynomial certificate exist ?

Certificate: (1,0,0,(yellow, d_1)), (1,3,0,(green, d_2)), (0,0,0,(green, d_2))) Size: $\mathcal{O}(KN(\log(n) + \log(p_N))) = \mathcal{O}(P(|\mathcal{I}|))$

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time $\mathcal{O}(K^3 n)$

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time $\mathcal{O}(K^3 n)$

Theorem

Under HM encoding, if K < N, we can compute an idle-free schedule in time $\mathcal{O}(KN + K^4)$.

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time $\mathcal{O}(K^3 n)$

Theorem

Under HM encoding, if K < N, we can compute an idle-free schedule in time $\mathcal{O}(KN + K^4)$.

Idea

Schedule additionnal tasks first and spare K + 1 different tasks

Large diversity: K < N

Large diversity: K < N

Algorithm and proof ideas

- F contains 1 task from the K + 1 largest types
- R contains the remaining tasks

Large diversity: K < N

Large diversity: K < N

Algorithm and proof ideas

- F contains 1 task from the K + 1 largest types
- R contains the remaining tasks

Schedule tasks from R:

- By decreasing order of processing times
- Until γ₁ is reached

```
i = N
while t + m_i p_i < \gamma_1 \pmod{i > 0} do
t \leftarrow t + m_i p_i
i = i - 1
end while
t \leftarrow t + p_i (\lceil \frac{\gamma_1 - t}{p_i} \rceil - 1)
```

Large diversity: K < N

Large diversity: K < N

By the end of this first step

- If *R* is empty (*i* = 0), schedule remaining tasks from *F*: large diversity, *O*(*K*⁴).
- If *R* is not empty, use some tasks from *F* to go beyond γ₁.
 Keep a large diversity instance on the remaining part.

Large diversity: K < N

Large diversity: K < N

 $R \neq 0$

A task from *F* goes beyond γ₁ and is not blocked ⇒ OK
 → t + p_j > γ₁ and t + p_j ∉ Γ ⇒ t ← t + p_j

Large diversity: K < N

Large diversity: K < N

 $R \neq \emptyset$

- A task from *F* goes beyond γ_1 and is not blocked \Rightarrow OK $\rightsquigarrow t + p_j > \gamma_1$ and $t + p_j \notin \Gamma \implies t \leftarrow t + p_j$
- All tasks in F are blocked or finish before γ₁

Large diversity: K < N

Large diversity: K < N

Let $N - K \leq l < N$ s.t. $t + p_N + p_l \notin \Gamma$

• If $t + p_N + p_I > \gamma_2 \Rightarrow OK$ (we still have large diversity)

Large diversity: K < N

Large diversity: K < N

Let
$$N - K \leq I < N$$
 s.t. $t + p_N + p_I \notin \Gamma$

- If $t + p_N + p_I > \gamma_2 \Rightarrow OK$ (we still have large diversity)
- Otherwise, i = N $(i \neq N \Rightarrow t + p_N \ge \gamma_2)$ $\rightsquigarrow R$ contains a task p_N

Use a small task from F with p_N from R to go beyond γ_1 .

Large diversity: K < N

Large diversity: K < N

Theorem

Under HM encoding, if K < N, we can compute an idle-free schedule in time $\mathcal{O}(KN + K^4)$.

Improves $\mathcal{O}(K^3 n)$ complexity.

Parametrized complexity

$K \ge N$?

- $1|FSE, HM|C_{max}$ is \mathcal{NP} complete
- \Rightarrow No polynomial algorithm for the general case (unless $\mathcal{P}=\mathcal{NP})$

What is the complexity for fixed K?

Input size: $\mathcal{O}((N + K)(\log(n) + \log(p_N)))$

Parametrized complexity

$K \ge N$?

- $1|FSE, HM|C_{max}$ is \mathcal{NP} complete
- \Rightarrow No polynomial algorithm for the general case (unless $\mathcal{P}=\mathcal{NP})$

What is the complexity for fixed K?

Input size: $\mathcal{O}(\log(n) + \log(p_N))$

Parametrized complexity

$K \ge N$?

$$\begin{split} 1|\mathsf{FSE}, \textit{HM}|\textit{C}_{max} \text{ is } \mathcal{NP}-\textit{complete} \\ \Rightarrow \text{No polynomial algorithm for the general case (unless } \mathcal{P}=\mathcal{NP}) \end{split}$$

What is the complexity for fixed K?

```
Input size: \mathcal{O}(\log(n) + \log(p_N))
```

For K < N: $\mathcal{O}(KN + K^4) \rightsquigarrow \mathcal{O}(N)$

 $K \ge N$?

Parametrized complexity

K fixed ?

Theorem (Lenstra, 1983)

Let $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, *n* fixed, we can decide in polynomial time whether: $\{x \in \mathbb{Z}^n | Ax \le b\}$ is empty.

Parametrized complexity

Theorem (Lenstra, 1983)

Let $A \in \mathbb{Z}^{m \times n}$, $b \in \mathbb{Z}^m$, *n* fixed, we can decide in polynomial time whether: $\{x \in \mathbb{Z}^n | Ax \le b\}$ is empty.

Theorem (Eisenbrand, 2003)

An integer program of binary encoding length *s* in fixed dimension, which is defined by a fixed number of constraints, can be solved in $\mathcal{O}(s)$ arithmetic operations on rational numbers of binary encoding $\mathcal{O}(s)$.

Parametrized complexity

K fixed ?

Idea

If K < N use the prefix algorithm, otherwise, solve an IP with a fixed number of variables and constraints.

Parametrized complexity

K fixed ?

Idea

If K < N use the prefix algorithm, otherwise, solve an IP with a fixed number of variables and constraints.

Problems:

- Model idle times
- Linearize lots of equations
- Be careful with big M !

Theorem (Rapine, Brauner, 2010)

Any list scheduling algorithm delivers a schedule with makespan at most $\sum_{i=1}^{N} m_i p_i + 2K$.

Theorem (Rapine, Brauner, 2010)

Any list scheduling algorithm delivers a schedule with makespan at most $\sum_{i=1}^{N} m_i p_i + 2K$.

Model idle times as additionnal tasks with processing times $1, \ldots, 2K$.

Ensure we can skip all FSE : add an additionnal task with processing time $\gamma_{\mathcal{K}}+1.$

Find an idle-free schedule finishing the last *real* task asap.

Variables

- m_{ij} : number of tasks of type *i* completed by time γ_i
- W_j : total work completed by time γ_j . Short-hand for $\sum_i p_i m_{ij}$
- $S_{jk} = 1$ if a task covers exactly the instants γ_j till γ_{k-1}
 - $x_{ij} = 1$ if a task of type *i* covers the instant γ_j
 - and this task does not cover the previous FSE instant.
 - $y_i = 1$ if all the (real) tasks are completed by time γ_i
- C_{max} : makespan of the schedule

Variables

- m_{ij} : number of tasks of type *i* completed by time γ_j
- W_j : total work completed by time γ_j . Short-hand for $\sum_i p_i m_{ij}$
- $S_{jk} = 1$ if a task covers exactly the instants γ_j till γ_{k-1}
 - $x_{ij} = 1$ if a task of type *i* covers the instant γ_j
 - and this task does not cover the previous FSE instant.
 - $y_i = 1$ if all the (real) tasks are completed by time γ_i
- C_{max} : makespan of the schedule

Number of variables = $\mathcal{O}(K^2)$

Constraints

- S_{jk} defines a 1 (K + 1) path
- Work W_j must be completed by time γ_j
- If some consecutive FSE are covered by the same task, no task can be scheduled during their interval (big *M*)
- Covering tasks finishing dates depend on covered FSE
- Decides whichs tasks covers FSE dates
- If a task covers some FSE , count it.
- Assign all real tasks
- Set $y_j = 1$ iff all real tasks are completed before γ_j
- C_{\max} is equal the first W_j such that $y_j = 1$ (big M)

Constraints

- S_{jk} defines a 1 (K + 1) path
- Work W_j must be completed by time γ_j
- If some consecutive FSE are covered by the same task, no task can be scheduled during their interval (big *M*)
- Covering tasks finishing dates depend on covered FSE
- Decides whichs tasks covers FSE dates
- If a task covers some FSE , count it.
- Assign all real tasks
- Set $y_j = 1$ iff all real tasks are completed before γ_j
- C_{\max} is equal the first W_j such that $y_j = 1$ (big M)

 $\mathcal{O}(K^2)$ constraints and *M* bounded by $\sum_{i=1}^N m_i p_i + 2K$

Ideas

Use previous results to make the model:

- Ensure there is an idle-free schedule (N > K)
- Ensure we have enough tasks to build all possible combinations of idle times (at most 2*K*)

And number of constraints and variables are bounded by P(K)

Ideas

Use previous results to make the model:

- Ensure there is an idle-free schedule (N > K)
- Ensure we have enough tasks to build all possible combinations of idle times (at most 2K)

And number of constraints and variables are bounded by P(K)

Theorem

 $1|FSE, HM|C_{max}$ can be solved in linear time for fixed K.

What's next ?...

What's next ?...

- Reduce dimension (e.g. only K + 1 different artificial tasks are needed)
- Polynomial algorithm for N = K ?
- Non parametrized complexity for some subcases
- Arithmetical approach ?

What's next ?...

Questions ?