
High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity Single Machine Scheduling
with Forbidden Start and Completion times

Nadia Brauner
Michaël Gabay

Christophe Rapine

3 July 2013

1



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Sommaire

1 Scheduling with operator non-availability
Problem
State of the art

2 High Multiplicity
Problem
Certificate

3 Large diversity: K < N

4 Parametrized complexity

5 What’s next ?...

2



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

-

- - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- -

- -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - -

-

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Chemical experiments planning

A chemist launches and stops experiments.

- - - -

The chemist might be unavailable...

⇒ Resource unavailability

3



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Single machine scheduling problem with an additionnal resource

1|FSE|Cmax

n tasks: (pi)i=1,...,n

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

γi is an FSE: no task can start or end on time γi .

Does an idle-free schedule exist ?

4



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Single machine scheduling problem with an additionnal resource

1|FSE|Cmax

n tasks: (pi)i=1,...,n

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

γi is an FSE: no task can start or end on time γi .

Does an idle-free schedule exist ?

4



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Single machine scheduling problem with an additionnal resource

1|FSE|Cmax

n tasks: (pi)i=1,...,n

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

γi is an FSE: no task can start or end on time γi .

Does an idle-free schedule exist ?

4



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

Problem

Single machine scheduling problem with an additionnal resource

1|FSE|Cmax

n tasks: (pi)i=1,...,n

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

γi is an FSE: no task can start or end on time γi .

Does an idle-free schedule exist ?

4



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

State of the art

Machines unavailability [Schmidt, 2000]

Operator non-availability (ONA) [Brauner et al., 2008,
Rapine et al., 2012]: NP-hard, /∈ APX

Forbidden start times [Billaut and Sourd., 2009], 1|FS|Cmax:

Strongly NP-hard

/∈ APX
If N ≥ 2K (K + 1) then there is an idle-free schedule

5



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Scheduling with operator non-availability

State of the art

1|FSE|Cmax [Rapine et Brauner, 2010]:

Strongly NP-hard

/∈ APX
If N > K (large diversity ) then there is an idle-free schedule

We can compute an idle-free schedule in O(K 3n) time

6



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Problem

1|FSE,HM|Cmax

N kinds of tasks: (pi ,mi)i=1,...,n p1 < · · ·< pN

n =
K

∑
i=1

mi

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

Input: 2N + K integers
Size: |I|=O((N + K )(log(n) + log(pN)))

High Multiplicity encoding

n is exponential in |I|

7



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Problem

1|FSE,HM|Cmax

N kinds of tasks: (pi ,mi)i=1,...,n p1 < · · ·< pN

n =
K

∑
i=1

mi

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

Input:

2N + K integers
Size: |I|=O((N + K )(log(n) + log(pN)))

High Multiplicity encoding

n is exponential in |I|

7



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Problem

1|FSE,HM|Cmax

N kinds of tasks: (pi ,mi)i=1,...,n p1 < · · ·< pN

n =
K

∑
i=1

mi

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

Input: 2N + K integers
Size: |I|=

O((N + K )(log(n) + log(pN)))

High Multiplicity encoding

n is exponential in |I|

7



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Problem

1|FSE,HM|Cmax

N kinds of tasks: (pi ,mi)i=1,...,n p1 < · · ·< pN

n =
K

∑
i=1

mi

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

Input: 2N + K integers
Size: |I|=O((N + K )(log(n) + log(pN)))

High Multiplicity encoding

n is exponential in |I|

7



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Problem

1|FSE,HM|Cmax

N kinds of tasks: (pi ,mi)i=1,...,n p1 < · · ·< pN

n =
K

∑
i=1

mi

K unavailability dates: Γ = {γ1, . . . ,γK} γ1 < · · ·< γK

Input: 2N + K integers
Size: |I|=O((N + K )(log(n) + log(pN)))

High Multiplicity encoding

n is exponential in |I|

7



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Certificate

Does a polynomial certificate exist ?

γ1 γ2 γ30 Cmax
- t

Certificate:
(1,0,0,(yellow,d1)), (1,3,0,(green,d2)), (0,0,0,(green,d2)))

Size: O(KN(log(n) + log(pN))) =O(P(|I|))

8



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Certificate

Does a polynomial certificate exist ?

γ1 γ2 γ30 Cmax
- t

Certificate:
(1,0,0,(yellow,d1)), (1,3,0,(green,d2)), (0,0,0,(green,d2)))

Size: O(KN(log(n) + log(pN))) =O(P(|I|))

8



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Certificate

Does a polynomial certificate exist ?

γ1 γ2 γ30 Cmax
- t

Certificate:
(1,0,0,(yellow,d1)), (1,3,0,(green,d2)), (0,0,0,(green,d2)))

Size: O(KN(log(n) + log(pN))) =O(P(|I|))

8



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

High Multiplicity

Certificate

Does a polynomial certificate exist ?

γ1 γ2 γ30 Cmax
- t

Certificate:
(1,0,0,(yellow,d1)), (1,3,0,(green,d2)), (0,0,0,(green,d2)))

Size: O(KN(log(n) + log(pN))) =O(P(|I|))

8



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time O(K 3n)

Theorem
Under HM encoding, if K < N, we can compute an idle-free
schedule in time O(KN + K 4).

Idea
Schedule additionnal tasks first and spare K + 1 different tasks

9



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time O(K 3n)

Theorem
Under HM encoding, if K < N, we can compute an idle-free
schedule in time O(KN + K 4).

Idea
Schedule additionnal tasks first and spare K + 1 different tasks

9



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Theorem (Rapine, Brauner, 2010)

If K < N, we can compute an idle-free schedule in time O(K 3n)

Theorem
Under HM encoding, if K < N, we can compute an idle-free
schedule in time O(KN + K 4).

Idea
Schedule additionnal tasks first and spare K + 1 different tasks

9



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Algorithm and proof ideas
F contains 1 task from the K + 1 largest types
R contains the remaining tasks

Schedule tasks from R:
By decreasing order of processing times
Until γ1 is reached

i = N
while t + mipi < γ1 (and i > 0) do

t ← t + mipi

i = i−1
end while
t ← t + pi(d γ1−t

pi
e−1)

10



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Algorithm and proof ideas
F contains 1 task from the K + 1 largest types
R contains the remaining tasks

Schedule tasks from R:
By decreasing order of processing times
Until γ1 is reached

i = N
while t + mipi < γ1 (and i > 0) do

t ← t + mipi

i = i−1
end while
t ← t + pi(d γ1−t

pi
e−1)

10



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

By the end of this first step

If R is empty (i = 0), schedule remaining tasks from F :
large diversity, O(K 4).

If R is not empty, use some tasks from F to go beyond γ1.
Keep a large diversity instance on the remaining part.

11



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

S

pN

γ1 γα0
- t︸ ︷︷ ︸ ︸ ︷︷ ︸

︸ ︷︷ ︸Blocked
tasks from F

Small tasks
+pN

K + 1 values > K

12

R 6= /0

A task from F goes beyond γ1 and is not blocked⇒ OK
 t + pj > γ1 and t + pj /∈ Γ ⇒ t ← t + pj

All tasks in F are blocked or finish before γ1



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

S

pN

γ1 γα0
- t︸ ︷︷ ︸ ︸ ︷︷ ︸

︸ ︷︷ ︸Blocked
tasks from F

Small tasks
+pN

K + 1 values > K
12

R 6= /0

A task from F goes beyond γ1 and is not blocked⇒ OK
 t + pj > γ1 and t + pj /∈ Γ ⇒ t ← t + pj

All tasks in F are blocked or finish before γ1



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Let N−K ≤ l < N s.t. t + pN + pl /∈ Γ

If t + pN + pl > γ2⇒ OK (we still have large diversity)

Otherwise, i = N (i 6= N⇒ t + pN ≥ γ2)
 R contains a task pN

Use a small task from F with pN from R to go beyond γ1.

S pl pN

γ1 γ20
- t

13



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Let N−K ≤ l < N s.t. t + pN + pl /∈ Γ

If t + pN + pl > γ2⇒ OK (we still have large diversity)

Otherwise, i = N (i 6= N⇒ t + pN ≥ γ2)
 R contains a task pN

Use a small task from F with pN from R to go beyond γ1.

S pl pN

γ1 γ20
- t

13



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Large diversity: K < N

Large diversity: K < N

Theorem
Under HM encoding, if K < N, we can compute an idle-free
schedule in time O(KN + K 4).

Improves O(K 3n) complexity.

14



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K ≥ N ?

1|FSE,HM|Cmax is NP− complete
⇒ No polynomial algorithm for the general case (unless P =NP)

What is the complexity for fixed K ?

Input size: O((N + K )(log(n) + log(pN)))

For K < N: O(KN + K 4) O(N)

K ≥ N ?

15



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K ≥ N ?

1|FSE,HM|Cmax is NP− complete
⇒ No polynomial algorithm for the general case (unless P =NP)

What is the complexity for fixed K ?

Input size: O(log(n) + log(pN))

For K < N: O(KN + K 4) O(N)

K ≥ N ?

15



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K ≥ N ?

1|FSE,HM|Cmax is NP− complete
⇒ No polynomial algorithm for the general case (unless P =NP)

What is the complexity for fixed K ?

Input size: O(log(n) + log(pN))

For K < N: O(KN + K 4) O(N)

K ≥ N ?

15



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K fixed ?

Theorem (Lenstra, 1983)

Let A ∈ Zm×n, b ∈ Zm, n fixed, we can decide in polynomial time
whether: {x ∈ Zn|Ax ≤ b} is empty.

Theorem (Eisenbrand, 2003)

An integer program of binary encoding length s in fixed
dimension, which is defined by a fixed number of constraints,
can be solved in O(s) arithmetic operations on rational numbers
of binary encoding O(s).

16



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K fixed ?

Theorem (Lenstra, 1983)

Let A ∈ Zm×n, b ∈ Zm, n fixed, we can decide in polynomial time
whether: {x ∈ Zn|Ax ≤ b} is empty.

Theorem (Eisenbrand, 2003)

An integer program of binary encoding length s in fixed
dimension, which is defined by a fixed number of constraints,
can be solved in O(s) arithmetic operations on rational numbers
of binary encoding O(s).

16



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K fixed ?

Idea
If K < N use the prefix algorithm, otherwise, solve an IP with a
fixed number of variables and constraints.

Problems:

Model idle times

Linearize lots of equations

Be careful with big M !

17



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

K fixed ?

Idea
If K < N use the prefix algorithm, otherwise, solve an IP with a
fixed number of variables and constraints.

Problems:

Model idle times

Linearize lots of equations

Be careful with big M !

17



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Theorem (Rapine, Brauner, 2010)
Any list scheduling algorithm delivers a schedule with makespan
at most ∑

N
i=1 mipi + 2K .

Model idle times as additionnal tasks with processing times
1, . . . ,2K .

Ensure we can skip all FSE : add an additionnal task with
processing time γK + 1.

Find an idle-free schedule finishing the last real task asap.

18



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Theorem (Rapine, Brauner, 2010)
Any list scheduling algorithm delivers a schedule with makespan
at most ∑

N
i=1 mipi + 2K .

Model idle times as additionnal tasks with processing times
1, . . . ,2K .

Ensure we can skip all FSE : add an additionnal task with
processing time γK + 1.

Find an idle-free schedule finishing the last real task asap.

18



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Variables

mij : number of tasks of type i completed by time γj

Wj : total work completed by time γj . Short-hand for ∑i pimij

Sjk = 1 if a task covers exactly the instants γj till γk−1

xij = 1 if a task of type i covers the instant γj

and this task does not cover the previous FSE instant.

yj = 1 if all the (real) tasks are completed by time γj

Cmax : makespan of the schedule

Number of variables =O(K 2)

19



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Variables

mij : number of tasks of type i completed by time γj

Wj : total work completed by time γj . Short-hand for ∑i pimij

Sjk = 1 if a task covers exactly the instants γj till γk−1

xij = 1 if a task of type i covers the instant γj

and this task does not cover the previous FSE instant.

yj = 1 if all the (real) tasks are completed by time γj

Cmax : makespan of the schedule

Number of variables =O(K 2)

19



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Constraints

Sjk defines a 1− (K + 1) path

Work Wj must be completed by time γj

If some consecutive FSE are covered by the same task, no
task can be scheduled during their interval (big M)

Covering tasks finishing dates depend on covered FSE

Decides whichs tasks covers FSE dates

If a task covers some FSE , count it.

Assign all real tasks

Set yj = 1 iff all real tasks are completed before γj

Cmax is equal the first Wj such that yj = 1 (big M)

O(K 2) constraints and M bounded by ∑
N
i=1 mipi + 2K

20



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Constraints

Sjk defines a 1− (K + 1) path

Work Wj must be completed by time γj

If some consecutive FSE are covered by the same task, no
task can be scheduled during their interval (big M)

Covering tasks finishing dates depend on covered FSE

Decides whichs tasks covers FSE dates

If a task covers some FSE , count it.

Assign all real tasks

Set yj = 1 iff all real tasks are completed before γj

Cmax is equal the first Wj such that yj = 1 (big M)

O(K 2) constraints and M bounded by ∑
N
i=1 mipi + 2K

20



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Ideas
Use previous results to make the model:

Ensure there is an idle-free schedule (N > K )

Ensure we have enough tasks to build all possible
combinations of idle times (at most 2K )

And number of constraints and variables are bounded by P(K )

Theorem

1|FSE,HM|Cmax can be solved in linear time for fixed K .

21



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

Parametrized complexity

Ideas
Use previous results to make the model:

Ensure there is an idle-free schedule (N > K )

Ensure we have enough tasks to build all possible
combinations of idle times (at most 2K )

And number of constraints and variables are bounded by P(K )

Theorem

1|FSE,HM|Cmax can be solved in linear time for fixed K .

21



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

What’s next ?...

What’s next ?...

Reduce dimension (e.g. only K + 1 different artificial tasks
are needed)

Polynomial algorithm for N = K ?

Non parametrized complexity for some subcases

Arithmetical approach ?

22



High Multiplicity Single Machine Scheduling with Forbidden Start and Completion times

What’s next ?...

Questions ?

23


	Scheduling with operator non-availability
	Problem
	State of the art

	High Multiplicity
	Problem
	Certificate

	Large diversity: K<N
	Parametrized complexity
	What's next ?...

