
HAL Id: hal-00850824
https://hal.science/hal-00850824v1

Preprint submitted on 8 Aug 2013 (v1), last revised 10 Feb 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

High Multiplicity Scheduling on One Machine with
Forbidden Start and Completion Times

Michaël Gabay, Christophe Rapine, Nadia Brauner

To cite this version:
Michaël Gabay, Christophe Rapine, Nadia Brauner. High Multiplicity Scheduling on One Machine
with Forbidden Start and Completion Times. 2013. �hal-00850824v1�

https://hal.science/hal-00850824v1
https://hal.archives-ouvertes.fr

High Multiplicity Scheduling on One Machine

with Forbidden Start and Completion Times

Michaël Gabay∗, Christophe Rapine†, Nadia Brauner∗

Abstract

We are interested in a single machine scheduling problem where no
task can either start or end on some dates and the input is given using a
compact encoding. The aim is to minimize the makespan. We present a
polynomial time algorithm for large diversity instances (when the number
of different processing times is bigger than the number of forbidden dates).
We also show that this problem is fixed parameter tracktable when the
number of forbidden dates is fixed, regardless of tasks characteristics.

Keywords: Scheduling, High Multiplicity, Availability Constraints, Parametrized
Complexity

1 Introduction

We consider the single machine scheduling problem with forbidden start and end
instants. In this problem, we have several tasks, described by their processing
times and some forbidden instants. On those instants, no task can start, nor
end. We denote by N the set of jobs indices {1, . . . , n} and by Γ = {γ1, . . . , γk}
the set of forbidden instants. The aim is to find a schedule minimizing the
makespan. We suppose that the input is encoded using a compact encoding, as
described in the next section. Using Graham notations, the problem is denoted
by 1|Fse|Cmax. In the following, we will use the same notations and definition
as in [16].

We disregard trivial infeasible instances, that is, when 0 or
∑

i pi is forbidden.

2 High Multiplicity

The term High Multiplicity (HM for short) was introduced by Hochbaum and
Shamir [9] to refer to a compact encoding of instances where identical jobs
appear many times. Compared to a traditional encoding where each job is
described, in a HM encoding each type is described only once, along with its
multiplicity (the number of jobs of this type). Thus the size of a HM encoding
depends linearly on the number of types but only logarithmically on the num-
ber of jobs. As a consequence, a polynomial time algorithm under the standard
encoding may become exponential under a HM encoding of the instances, which

∗Grenoble-INP / UJF-Grenoble 1 / CNRS, G-SCOP UMR5272 Grenoble, F-38031, France
†Université de Lorraine, Laboratoire LGIPM, Ile du Saulcy, Metz, F-57045, France

1

is the case of our algorithms. HM scheduling and more generally HM combina-
torial optimization has become an active domain in recent years [3, 6, 7].

3 A polynomial time algorithm for large diver-

sity instances

Let x = (N,F) be a large diversity instance. We denote for short by q = |〈N〉|
the number of types. Indexing types by decreasing order of their processing
times, setN is represented in HM encoding by its multiplicity vector (n1, . . . , nq)
together with the processing vector (p〈1〉, . . . , p〈q〉), where ni and p〈i〉 are the
number of jobs of the ith type and its processing time, respectively. The size |x|
of the instance under a HM encoding is thus in Ω(q(log n+ log p〈1〉) + k log γk).
Hence |x| can be in O(q log n) while algorithm L-partition runs in O(k3n),
which can be exponential with respect to |x|. Note that an idle-free schedule π
is simply a permutation of the jobs. In HM scheduling, it may be not obvious
to determine if there exists (optimal) schedules with a compact encoding, i.e.
polynomial in |x|. For 1|Fse|Cmax it is readily that the schedule of the jobs
between two forbidden instants is meaningless, and thus the jobs of the same
type can be scheduled consecutively. As a consequence any idle-free schedule
has a polynomial encoding as a sequence of couples (il, αl), where il designates
a type and αl the number of jobs of this type scheduled consecutively. We use
this representation inside this section.

To achieve a polynomial time algorithm, we need two ingredients. Firstly, we
can not afford to allocate only one job at a time. Secondly, we have to design a
more efficient approach than L-partition. To cope with the latter point, consider
a partial schedule π, completing at time t. We say that π is an optimal prefix if
there exists an optimal schedule of the form πσ. In this situation, the problem
reduces to finding an optimal schedule starting at time t on the remaining set
N ′ of jobs. Notice that algorithm L-partition finds an optimal suffix, with the
drawback of computing a potentially long sequence of valid partitions to obtain
it. Now how can we assert that a partial schedule π is an optimal prefix? The
response is quite simple: due to Theorem 2 from [16], a sufficient condition is
that π is idle-free, and that the remaining instance (N ′,F ′ = F ∩ [t,+∞]) is a
large diversity instance. Based on these ideas, we derive Algorithm 1.

We give here a comprehensive description of this algorithm. The basic idea
is to reduce the instance to have only one job of each type and only |F| + 1
types, such that L-partition algorithm can be used efficiently. Initially one job
of each of the |F|+ 1 largest types is put aside in order to control the number
of types. Let F be this set, and let us call additional jobs the set N\F . We
schedule then iteratively all the additional jobs of type 1, then all the additional
jobs of type 2, . . . , as long as they all fit before the first forbidden instant γ1.
When this process terminates, either only set F remains to schedule, or there
is not enough room left before γ1 to schedule all the additional jobs of the ith
type. In the latter case the algorithm schedules as much as possible of jobs of
type i before γ1, and tries to cross forbidden instant γ1. Our second idea is
here to ensure that the schedule of each job of F permits to cross at least one
forbidden instant in order to keep a large diversity instance. We claim that
Algorithm 1 is correct, i.e. delivers an optimal prefix π. In addition if (N ′,F ′)

2

Algorithm 1 Optimal Prefix Algorithm

Require: a large diversity instance (N ,F) with types indexed in decreasing
order.

Ensure: an optimal prefix π
set mi = ni − 1 if i ≤ |F|+ 1, mi = ni otherwise
set i = 1 ; t = 0 ; π = ∅
while i ≤ |〈N〉| and t+mip〈i〉 < γ1 do
// Append to π all the mi jobs of type i
π = π(i,mi) ; t = t+mip〈i〉 ; i = i+ 1

end while
if i > |〈N〉| then
return π // Only |F|+ 1 jobs remains to schedule

end if
// Append as many as possible jobs of type i before γ1
α = ⌈(γ1 − t)/p〈i〉⌉ − 1 ; π = π(i, α) ; t = t+ αp〈i〉 ;
// Extend π to complete after time γ1
for all l ∈ 1, . . . , |F|+ 1 such that t+ p〈l〉 ≥ γ1 do
if t+ p〈l〉 /∈ F then
return π(l, 1)

end if
end for
for all l ∈ 2, . . . , |F|+ 1 such that t+ p〈l〉 < γ1 do

if t+ p〈l〉 + p〈1〉 /∈ F then
return π(l, 1)(1, 1)

end if
end for

3

is the remaining instance to schedule, then (N ′,F ′) is a large diversity instance
and:

1. either |F ′| < |F|, i.e. we have strictly less forbidden instants,

2. or |N ′| = |〈N ′〉| = |F| + 1, i.e. all the remaining jobs have distinct
processing times.

In the first case, we recursively call the prefix algorithm on instance (N ′,F ′).
The second case corresponds to the basis of the recursion: we simply solve
instance (N ′,F ′) using the L-partition algorithm. Since N ′ contains at most
(k + 1) jobs, the running time of L-partition algorithm on this instance is in
O(k4). We prove our claim in the following theorem:

Theorem 1 Problem 1|Fse|Cmax is polynomial under HM encoding for large
diversity instances, and can be solved in time O(k|〈N〉|+ k4)

Proof. Correctness of Algorithm 1. Let (N ′,F ′) be the instance remaining
to schedule at the end of Algorithm 1. Recall that F denotes a set with exactly
one job of the |F| + 1 largest types of N . Let A = N\Z be the additional
jobs. If only set F remains to schedule at the end of the algorithm, we are
clearly in the second case of our claim. Otherwise the algorithm has stopped
the first loop on a type i such that all its additional jobs cannot be scheduled
before γ1. At this point, there remains at least one unscheduled job of type
i in A, and possibly another in F , if i ≤ k + 1. Let t < γ1 be the current
completion time of the schedule, and consider the partition F = S ∪ L defined
by L = {j ∈ F | t + pj ≥ γ1}. Notice that L is not empty as t + p〈i〉 ≥ γ1 ; in
particular a job of type 1 belongs to L. By construction Algorithm 1 tries to
extend π to complete after the first forbidden instant γ1, which corresponds to
the first case of our claim. We have to prove that it will always succeed, and
that (N ′,F ′) is a large diversity instance. Basically we show in the following
that if π completes after the lth forbidden instant, at most l jobs of F have been
scheduled in π. Indeed we then have |〈N ′〉| ≥ |F |− l > |F|− l and |F ′| ≤ |F|− l,
which ensures that (N ′,F ′) is a large diversity instance. Consider the last two
loops of the algorithm. If one job of L can be scheduled, the property clearly
holds as π completes after time γ1. If this is not possible, instant t + pj is
forbidden for all jobs j of L. By construction any job of S can be scheduled
before time γ1. Therefore a simple counting argument ensures that there exists
a job s ∈ S that can be scheduled at time t immediately followed by a job of type
1. If t+ ps + p〈1〉 ≥ γ2, i.e. π completes after time γ2, we are done. Otherwise,
we have t + p〈1〉 < γ2. In this case |F ′| = |F| − 1, while we apparently use 2
jobs of F . However since instant t+p〈1〉 is forbidden by construction, in fact we
have t+ p〈1〉 = γ1 and as a consequence i = 1. As we noticed, there is at least
one unscheduled job of type i in A, i.e. we can use an additional job of type
i = 1 to schedule after s. Hence we have |〈N ′〉| ≥ |〈N〉|−1 which completes the
proof of correctness of the algorithm.

Time complexity. We use the classic convention that basic operations on
integers (addition, division,. . .) are performed in constant time. Then the time
complexity of Algorithm 1 is in O(k + q), which is in O(q) for large diversity
instances. To solve Problem 1|Fse|Cmax, we call Algorithm 1 on the set of un-
scheduled jobs as long as there is still some forbidden instants in the future or

4

that this set is not reduced to F . Thus we have at most k calls to Algorithm 1
as at least one forbidden instant is crossed each time, possibly followed by a call
to L-partition algorithm on an instance containing at most k+1 jobs. Therefore
the overall complexity is in O(k|〈N〉|+ k4). �

Notice that Theorem 1 provides a better time complexity that the one based
exclusively on L-partition algorithm, running in time O(k3n), even for a tradi-
tional encoding of the instances.

4 A polynomial algorithm with a fixed number

of Fse

Theorem 2 1|Fse|Cmax is Fixed Parameter Tracktable for parameter k, even
under HM encoding.

The main idea is to use Algorithm 1 on large diversity instances (it performs
in O(|〈N〉|) time for fixed k) and to solve an integer program otherwise.

In order to prove that the integer program can be solved in polynomial time,
we will use the following result from Eisenbrand [17]:

Theorem 3 (Eisenbrand, 2003) An integer program of binary encoding length
s in fixed dimension, which is defined by a fixed number of constraints, can be
solved with O(s) arithmetic operations on rational numbers of binary encoding
length O(s).

Remark that for small diversity instances, we have k ≥ |〈N〉|. Hence, if we have
a valid integer program whose dimension and number of constraints are bounded
by a polynomial in k, then, using theorem 3, we have shown that 1|Fse|Cmax

is FPT with parameter k. Moreover, remark that having one decision variable
or one constraint for each task would make it impossible to bound the integer
program dimension and/or number of constraints by a function of k. Hence,
we have to use an HM encoding in the IP and therefore the result will be valid
under HM encoding.

In the following, we will present the integer program. The main idea in this
program is to use the fact that any large diversity instance admits an idle-free
schedule. So, we model the problem as a large diversity instance by modeling
idle times as a large enough number of optionnal jobs (we don’t have to schedule
them). Then, we minimize the makespan which is the first date where all real
jobs have been processed.

Tasks

We consider 3 kinds of tasks

• Real jobs : processing time pi, multiplicity mi for i = 1, . . . , k.

• k + 1 idle time jobs, ensures that there exists an idle free schedule: pro-
cessing time pi = i− k for i = k + 1, . . . , 2k + 1.

5

• A task that allows to skip all remainind Fse if the schedule finishes before
the last one: processing time p2k+2 = γk+1, multiplicity unbounded (but
at most 1 will be used in an optimal solution).

Remark that the number of real jobs do not depend on |〈N〉|. Actually,
for i = 1, . . . , |〈N〉|, we set pi and mi using real jobs details and then, for
i = |〈N〉|+ 1, . . . , k we set pi = mi = 0.

We will also need a big M value (denoted Q). An obvious choice would be

γk +
∑|〈N〉|

i=1 mipi but since it is shown in [16] that any list scheduling algorithm

produces a schedule with makespan at most 2k +
∑|〈N〉|

i=1 mipi, it is an upper

bound on the optimal schedule makespan and we can set Q = 2k+
∑|〈N〉|

i=1 mipi.

4.1 Decision variables

We now describe the decision variables:

mij : number of tasks of type i completed by time γj (1)

Sjf = 1 iff a task covers exactly the instants γj till γf−1 (included). (2)

xij = 1 iff a task of type i covers the instant γj

and this task does not cover the previous Fse instant. (3)

yj = 1 iff all real tasks have been completed by time γj (4)

C : makespan of the schedule (5)

We will also denote by Wj the total work completed by time γj . This is a

short-hand for
∑(2k+2)

i=1 pimij .
The total number of decision variable is given by f(k) a function of k only

– f(k) = O(k2).

4.2 Objective

minC

4.3 Constraints

• All Fse are covered (Sjf defines a 1− (k + 1) path)

k+1∑

f=2

S1f = 1 (6)

k∑

f=1

Sf,k+1 = 1 (7)

f−1∑

j=1

Sjf =

k+1∑

l=f+1

Sfl ∀f = 2, . . . , k (8)

• All the work Wj must be completed by time γj :

Wj ≤ γj − 1 ∀j = 1, . . . , k + 1 (9)

6

• The amount of work completed can not increase between time γj and γf−1

if Sjf = 1

Wl ≤ Wj +Q(1−
k+1∑

f=l+1

Sjf) ∀j < l (10)

• If Sjf = 1 and a task i covers γj , then Wj+pi should be in [γf−1+1, γf−1]

Wj +
2k+2∑

i=1

pixij ≥
k+1∑

f=j+1

(γf−1 + 1)Sjf ∀j = 1, . . . , k (11)

Wj +

2k+2∑

i=1

pixij ≤
k+1∑

f=j+1

(γf − γj)Sjf + γj − 1 ∀j = 1, . . . , k (12)

• A task covers γj as a first Fse instant if and only if Sjf = 1 for some
index f > j:

2k+2∑

i=1

xij =
k+1∑

f=j+1

Sjf ∀j = 1, . . . , k (13)

• If a task i covers γj , then the number of tasks i processed should be
updated by the end of i.

mi,f+1 ≥ mif ∀i = 1, . . . , 2k + 2, f = 1, . . . , k (14)

mif ≥ mij + xij + Sjf − 1 ∀i, 1 ≤ j < f ≤ k + 1 (15)

• Assign all real tasks

mi,k+1 = mi ∀i = 1, . . . , k (16)

• Set yj = 0 if all the (real) tasks are not completed before time γj

k∑

i=1

mij ≥
k∑

i=1

miyj ∀j = 1, . . . , k (17)

• The makespan should equal the first Wj such that yj = 1

C ≥ W1 (18)

C ≥ Wj − yj−1Q ∀j = 2, . . . , k + 1 (19)

The total number of constraints is given by g(k) a function of k only –
g(k) = O(k3).

7

4.4 Correctness

Proof. The IP is always feasible since we can schedule task 2k + 2 followed
by all real tasks. Moreover, there is always an optimal idle-free schedule since
the problem has been transformed into a large diversity instance of the original
problem. One can easily see that any feasible solution to the integer program
gives a feasible schedule for the problem by simply replacing tasks k+1 to 2k+2
by idle times (or by nothing if all real tasks have been scheduled). Moreover,
any feasible scheduled for 1|Fse|Cmax gives a feasible solution to the integer
program because any idle time in the schedule can easily be decomposed as the
sum of 1 or several idle times with durations 1 to k + 1 since there are at most
k Fse. However, the objective values of the two problems might differ. Hence,
we need to show that any optimal solution to the IP gives an optimal schedule
and vice-versa.

Remark that for any solution to the IP gives a schedule with makespan C∗

and that any optimal schedule gives a solution to the IP with C = Cmax. Hence,
C∗ ≥ Cmax and C∗ ≤ Cmax. Therefore, C

∗ = Cmax.

Let π∗ an optimal schedule. Convert it into a solution to the IP by setting
mij values for real tasks according to π∗, decomposing idle times as a sum of
feasible tasks with processing times in 1, . . . , k + 1 and then set mij values for
idle tasks. Set xi and Sjf according to π∗ and if C(π∗) < γk, finish with an
additionnal task of kind 2k + 2. One can easily verify that this schedule is
feasible.

If C(π∗) > γk, we have C(π∗) = Wk+1 = maxWj and constraint (17)
forces yj = 0 ∀j. Hence we can simplify constraints (18) and (19) as the single
constraint: C ≥ Wk+1. Since C is not constrained in any other way, C =
Wk+1 = C(π∗) is feasible.

Otherwise, let j∗ = min{j : C(π∗) < γj} and set yj = 0 for j < j∗ and yj = 1
for j ≥ j∗. This is feasible and Wj∗ = C(π∗). Moreover, since C(π∗) ≤ Q the
right side of constraint (19) is ≤ 0 for j > j∗. Since Wj are non-decreasing, we
can simplify constraints (18) and (19) as the single constraint: C ≥ Wj∗ . Since
C is not constrained in any other way, C = Wj∗ = C(π∗) is feasible.

Therefore, C∗ ≤ C(π∗).

Consider an optimal solution to the integer program. Because of the previous
result and since Cmax ≤ Q, C∗ ≤ Q. Remark that if yj = 0 when yj = 1 is
feasible, setting yj = 1 can only help improving the solution. Moreover, denote
j∗ = min{j : yj = 1 is feasible}. Moreover, because of constraint (14), yj = 1
is feasible for all j ≥ j∗ and Wj are non-decreasing. Set yj = 1 for j ≥ j∗, this
is feasible without modifying any other decision variable. Now, we can simplify
constraints (18) and (19) as the single constraint: C ≥ Wj∗ and since we the
solution is minimized and C is not constrained in any other way, C∗ = Wj∗ .
Now, let π be the schedule corresponding to current solution. π is feasible and
C(π) ≤ Wj∗ = C∗, hence C(π∗) ≤ C∗.

We have proved that solving this integer program gives an optimal sched-
ule. Moreover, for fixed k, this program has a fixed number of variables and a
fixed number of constraints. Therefore, we can apply Theorem 3, which proves
Theorem 2. �

8

4.5 Complexity

Using Eisenbrand’s algorithm to solve the integer program gives a linear time
algorithm for fixed k.

References

[1] A.H. Abdekhodaee, A. Wirth, and H.S. Gan. Scheduling two parallel ma-
chines with a single server: the general case. Computers & Operation
Research, 33:994–1009, 2006.

[2] J.-C. Billaut and F. Sourd. Single machine scheduling with forbidden start
times. 4OR - A Quarterly Journal of Operations Research, 7:37–50, 2009.

[3] N. Brauner, Y. Crama, A. Grigoriev, and J. Van De Klundert. A framework
for the complexity of high-multiplicity scheduling problems. Journal of
Combinatorial Optimization, 9:313–323, 2005.

[4] N. Brauner, G. Finke, V. Lehoux-Lebacque, C. Rapine, H. Kellerer,
C. Potts, and V. Strusevich. Operator non-availability periods. 4OR -
A Quarterly Journal of Operations Research, 7(3):239–253, 2008.

[5] T.C.E. Cheng, G. Wang, and C. Sriskandarajah. One-operator-two-
machine flowshop scheduling with setup and dismounting times. Computers
& Operation Research, 26:715–730, 1999.

[6] J.J. Clifford and M. E. Posner. Parallel machine scheduling with high
multiplicity. Mathematical Programming, 89(3):359–383, 2001.

[7] C. Filippi and A. Agnetis. An asymptotically exact algorithm for the high-
multiplicity bin packing problem. Mathematical Programming, 104:21–37,
2005.

[8] N.G. Hall, C. Potts, and C. Sriskandarajah. Parallel machine scheduling
with a common server. Discrete Applied Mathematics, 102:223–243, 2000.

[9] D.S. Hochbaum and R. Shamir. Strongly polynomial algorithms for the
high multiplicity scheduling problem. Operations Research, 39(4):648–653,
1991.

[10] C.P. Koulamas. Scheduling two parallel semiautomatic machines to mini-
mize machine interference. Computers & Operation Research, 23(10):945–
956, 1996.

[11] S.A. Kravchenko and F. Werner. Parallel machine scheduling problems
with a single server. Mathematical & Computer Modelling, 26(12):1–11,
1997.

[12] V. Lebacque, N. Brauner, B. Celse, G. Finke, and C. Rapine. Planifica-
tion d’expériences dans l’industrie chimique. In J.-F. Boujut, D. Llerena,
and D. Brissaud, editors, Les systèmes de production : applications in-
terdisciplinaires et mutations, pages 21–32. Hermès-Lavoisier, 2007. ISBN
978-2-7462-1819-2.

9

[13] C.-Y. Lee. Machine scheduling with availability constraints. In J.Y.-T. Le-
ung, editor, Handbook of Scheduling: Algorithms, Models and Performance
Analysis, pages 22–1 – 22–13. Chapman & Hall/CRC, London, 2004.

[14] J. Ou, X. Qi, and C.-Y. Lee. Parallel machine scheduling with multiple
unloading servers. Journal of Scheduling, 13(3):213–226, 2009.

[15] C. Rapine, N. Brauner, G. Finke, V. Lebacque. Single Machine Schedul-
ing with Small Operator-Non-Availability Periods, Journal of Scheduling,
15:127–139, 2012.

[16] C. Rapine, N. Brauner. Polynomial time algorithms for makespan mini-
mization on one machine with forbidden start and completion times, Les
Cahiers Leibniz, vol. 181, 2010.

[17] F. Eisenbrand. Fast integer programming in fixed dimension. Lecture Notes
in Computer Science, Algorithms - ESA, pp196–207, 2003.

10

	Introduction
	High Multiplicity
	A polynomial time algorithm for large diversity instances
	A polynomial algorithm with a fixed number of Fse
	Decision variables
	Objective
	Constraints
	Correctness
	Complexity

