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Abstract

Aims: Hypoglycemia is a severe side effect of intensive insulin therapy. Recurrent hypoglycemia (RH) impairs the counter-
regulatory response (CRR) which restores euglycemia. During hypoglycemia, ventromedial hypothalamus (VMH) production
of nitric oxide (NO) and activation of its receptor soluble guanylyl cyclase (sGC) are critical for the CRR. Hypoglycemia also
increases brain reactive oxygen species (ROS) production. NO production in the presence of ROS causes protein S-
nitrosylation. S-nitrosylation of sGC impairs its function and induces desensitization to NO. We hypothesized that during
hypoglycemia, the interaction between NO and ROS increases VMH sGC S-nitrosylation levels and impairs the CRR to
subsequent episodes of hypoglycemia. VMH ROS production and S-nitrosylation were quantified following three
consecutive daily episodes of insulin-hypoglycemia (RH model). The CRR was evaluated in rats in response to acute insulin-
induced hypoglycemia or via hypoglycemic-hyperinsulinemic clamps. Pretreatment with the anti-oxidant N-acetyl-cysteine
(NAC) was used to prevent increased VMH S-nitrosylation.

Results: Acute insulin-hypoglycemia increased VMH ROS levels by 4966.3%. RH increased VMH sGC S-nitrosylation.
Increasing VMH S-nitrosylation with intracerebroventricular injection of the nitrosylating agent S-nitroso-L-cysteine (CSNO)
was associated with decreased glucagon secretion during hypoglycemic clamp. Finally, in RH rats pre-treated with NAC
(0.5% in drinking water for 9 days) hypoglycemia-induced VMH ROS production was prevented and glucagon and
epinephrine production was not blunted in response to subsequent insulin-hypoglycemia.

Conclusion: These data suggest that NAC may be clinically useful in preventing impaired CRR in patients undergoing
intensive-insulin therapy.
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Introduction

Intensive insulin therapy is used clinically to obtain satisfactory

glycemic control in patients with both Type 1 (T1DM) and

advanced Type 2 diabetes mellitus (T2DM) in order to avoid long-

term complications of hyperglycemia. However, intensive insulin

therapy is limited by the induction of iatrogenic hypoglycemia.

Hypoglycemia is a profound threat to the brain since glucose is its

preferred fuel. In people without diabetes, a fall in blood glucose

level is detected both centrally and peripherally and triggers

appropriate protective mechanisms including the release of

hormones (e.g. glucagon, epinephrine) which stimulate endoge-

nous glucose production and reduce glucose tissue uptake. These

mechanisms known as the counter-regulatory response (CRR)

prevent and limit hypoglycemia and restore blood glucose level to

its physiological set point [1]. Unfortunately, in most patients with

diabetes treated with intensive insulin therapy, the CRR is

impaired as a consequence of recurrent episodes of hypoglycemia

(RH). This impairment is known as hypoglycemia-associated

autonomic failure (HAAF). During HAAF, the glycemic threshold

for CRR initiation shifts to lower glucose levels. Thus, glucose

levels are allowed to drop, without detection, to dangerously low

or lethal levels [1,2,3]. Although HAAF is the major limiting factor

in intensive insulin therapy, the cellular mechanisms involved in its

development remain unclear.
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In the brain, the ventromedial hypothalamus (VMH) plays a

critical role in the initiation of the CRR [4,5,6]. The VMH

contains specialized neurons which detect changes in extracellular

glucose level known as glucose sensing neurons (GSNs) [7,8,9,10].

Among the GSNs, we and others have suggested that glucose-

inhibited (GI) neurons, which are excited as glucose level falls, play

a major role in the CRR [7]. That is, we showed that the response

of VMH GI neurons to decreased glucose was impaired in

conditions where the CRR is also impaired such as after RH [11].

In addition, our laboratory showed that the gaseous messenger,

nitric oxide (NO) is required for both glucose sensing by GI

neurons and full initiation of the CRR [12,13]. Decreased glucose

activates AMP-activated protein kinase (AMPK) in GI neurons

leading to phosphorylation of neuronal nitric oxide synthase

(nNOS) and NO production. NO then binds to its cytosolic

receptor, soluble guanylyl cyclase (sGC) and increases the levels of

cyclic guanosine monophosphate (cGMP). Increased cGMP levels

are essential for full AMPK activation, chloride channel closure

and increased activity of GI neurons [13]. Disruption of any part

of the nNOS-NO-sGC signaling pathway impairs glucose sensing

by GI neurons and reduces the CRR [12,13,14]. In fact, mice

lacking nNOS have an impaired CRR and a complete absence of

GI neurons [12]. These data are consistent with a key role for NO

signaling in GI neurons in the initiation of the CRR.

While sGC mediates many of NO’s physiological effects

including the regulation of the CRR and glucose sensing in GI

neurons, NO also affects other signaling pathways through S-

nitrosylation. S-nitrosylation is a post-translational modification

consisting of the addition of a NO moiety to a free-thiol cysteine in

proteins [15]. S-nitrosylation alters the activity of proteins/

enzymes involved in glucose sensing. For instance, S-nitrosylation

of the sGC decreases its activity and affinity for NO [16]. S-

nitrosylation can occur in the presence of elevated levels of reactive

oxygen species (ROS) [15]. Insulin-induced hypoglycemia has

been suggested to increase hypothalamic ROS levels and decrease

anti-oxidant defenses in normal and diabetic rats [17]. Thus,

concomitant VMH NO and ROS production during insulin-

induced hypoglycemia may increase S-nitrosylation levels. In this

study, we hypothesize that VMH S-nitrosylation of proteins

involved in glucose sensing such as sGC contributes to the

mechanism(s) underlying the development of HAAF.

Materials and Methods

Animals
All procedures were approved by the Institutional Animal Care and

Use Committee at the University of Medicine and Dentistry of New

Jersey (Newark, NJ, USA) and the University of Burgundy (Dijon,

France; ROS measurement only). Adult male Sprague-Dawley rats

(100–150 g for in vivo experiments; 4–5 weeks old for in vitro imaging

experiment) were purchased from Charles Rivers. Animals were

housed individually and maintained on a 12–12 hour light–dark

schedule at 22–23uC with ad libitum access to standard chow and water.

RH protocol
Rats were assigned to four treatment groups as represented in

Table 1. Rats were either injected daily subcutaneously with saline

or insulin (4 U/kg; regular human; Lilly) for three consecutive

days. Using this established RH protocol we have already shown

that impaired CRR is associated with impaired sensitivity of VMH

Table 1. Representation of different treatment groups used.

Treatment Days

Day
1

Day
2

Day
3

Day
4

Groups S3 S Saline Saline Saline Saline

S3 I Saline Saline Saline Insulin

I3 S Insulin Insulin Insulin Saline

I3 I Insulin Insulin Insulin Insulin

Rats were injected daily with either saline or insulin (4 U/kg; subcutaneously)
for four consecutive days.
doi:10.1371/journal.pone.0068709.t001

Figure 1. Hypoglycemia increases VMH ROS production.
Quantification of fluorescence intensity of the ROS sensitive probe
H2DCFDA in VMH of rats treated daily subcutaneously with saline or
insulin (4 U/kg) for four consecutive days as presented in Table 1 (S3S:
n = 16; S3I: n = 12; I3S: n = 4; I3I: n = 5). *: p,0.05 S3S vs S3I (One-way
ANOVA followed by Bonferoni post-hoc test).
doi:10.1371/journal.pone.0068709.g001

Figure 2. RH increases VMH S-nitrosylation. (A) Representative
Western blot against VMH S-nitrosylated sGC (Upper panel), total sGC
(Middle panel) and b actin (Bottom panel) from S3S and I3S rats. The
lower band of the Upper panel represents the b-sGC subunit revealed
using an anti-biotin switch-assay following pull down with anti-b-sGC.
Since both a and b sGC subunits are known to be S-nitrosylated [16],
the top band is probably the a subunit which would have been pulled
down with the b subunit as an heterodimer with anti-b. (B) Relative S-
nitrosylated sGC quantification normalized to total protein content. *:
p,0.05 (n = 3; unpaired t-test).
doi:10.1371/journal.pone.0068709.g002
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GSNs to decreased glucose [11]. The fourth day, VMH ROS

production, S-nitrosylation or the CRR were analyzed in response

to an acute subcutaneous injection of saline (groups S3S and I3S)

or insulin (4 U/kg; groups S3I and I3I). Every day of the RH

protocol, food was removed for three hours from one hour before

the subcutaneous injection to two hours after.

N-acetyl-cysteine (NAC) treatment
NAC (Sigma) was prepared fresh daily and given in drinking

water (5 g/l) for 9 days prior and during the RH protocol. When

normalized to the amount of NAC at 5 g/l consumed per day, this

dose of NAC is equivalent to 536617 mg/day/kg of body weight.

This dose of NAC was chosen because it is equivalent to what it is

given in human medicine for treatment against paracetamol

intoxication per day [18]. It is noteworthy that NAC given at 5 g/l

in drinking water decreased fluid intake (water: 13662.7 vs NAC:

10763.4 ml/day/kg of body weight; n = 4; p,0.05). However,

even though NAC decreased water intake, NAC treatment did not

alter body weight gain during the treatment (body weight gain:

water treated rats: + 24.860.9 vs NAC treated rats: + 23.561.2 g).

This is consistent with other studies showing that given at a higher

dose does not affect body weight gain [19].

VMH ROS level measurement
VMH ROS levels were measured as previously described [20].

Briefly, the fourth day of the RH protocol, rats were injected with

saline (S3S or I3S) or insulin (S3I or I3I; 4 U/kg, subcutaneously)

and sacrificed 45 minutes later by decapitation. Brains were

quickly removed and the VMH harvested, snap frozen and stored

at 280uC. Tissue treatment for ROS determination was

performed according to Szabados et al. [21]. VMH chunks were

incubated with the fluorescent probe 2,7 dichlorodihydro-fluores-

cein diacetate (H2DCFDA; 4 mmol/l in 1 ml; Molecular Probes)

for 30 min at 37uC. After centrifugation (3000 g; 15 min; 4uC),

protein content was quantified on the pellet. ROS were measured

in 200 ml of supernatant using a Fluorescent Plate Reader (Perkin

Elmer) at 535 nm under excitation at 490 nm. Fluorescence

intensity was expressed as arbitrary units per milligram of protein.

VMH S-nitrosylation measurement
The fourth day of the RH protocol, rats were injected with

saline (S3S or I3S) and sacrificed 45 minutes later by decapitation.

VMH were harvested, snap frozen and stored at 280uC. S-

nitrosylation of soluble guanylyl cyclase (sGC) was determined

using an S-nitrosylated protein detection kit (Cayman Chemical

Company, Ann Arbor, MI) based on the method of Jaffrey et al.

[22]. Briefly, the VMH were lysed in the dark and proteins were

acetone precipitated. Free cysteine thiol groups were blocked

according to the instructions in the kit. Existing nitrosylated thiol

groups were then reduced to free thiols and labeled with biotin.

sGC was immunoprecipitated using an antibody agaisnt the beta

subunit of sGC (1:10, Cayman Chemical Company) and a

Western blot was performed against biotin (1:75, S-nitrosylation

detection kit, Cayman Chemical Company). Biotinylated thiols

were visualized using horse radish peroxidase and quantified using

Image J software against total protein content, which was quantified

by Coomassie Blue staining. Only lanes which contained equal

amounts of protein were used to determine the level of S-nitrosylation.

CRR monitoring in response to acute insulin injection
Five to seven days before the beginning of the RH protocol, rats

were anesthetized with sodium pentobarbital (50 mg/kg, IP,

Ovation) and surgically implanted with vascular catheters in the

right jugular vein. Catheters were filled with heparin (10 U/ml)

and flushed every other day. Animals were allowed 5–7 days to

recover from surgery before starting the RH protocol and were

handled every day. Animals that did not recover to their pre-

surgery body weights were excluded from the study. At the end of

the RH protocol, following the fourth injection of saline or insulin,

blood glucose was monitored every 15 minutes from 230 to

120 minutes post-insulin infusion via tail prick. Blood samples

(500 ml) taken from the jugular catheter at 0, 60 and 120 minutes

for subsequent measurement of plasma glucagon and epinephrine.

For glucagon, 250 ml of blood was collected in chilled tubes

containing EGTA (1.6 mg/ml, Sigma) and aprotinin (250 KIU,

Sigma). For catecholamines, blood was collected in chilled tubes

containing reduced glutathione (1.2 mg/ml, Sigma) and EDTA

(1.8 mg/ml, Sigma).

Hyperinsulinemic/hypoglycemic clamp
Rats were anesthetized with sodium pentobarbital (50 mg/kg,

IP, Ovation) and surgically implanted with vascular catheters in

the right jugular vein. Catheters were filled with heparin (10 U/

ml) and flushed every other day. Additionally, rats were

stereotaxically implanted with microinjection cannula guide in

the 3rd ventricle according to stereotaxic coordinates (from

bregma: 22.0 mm anterior-posterior, 0 mm medial-lateral, and

28.0 mm dorsal-ventral). Animals were allowed 5–7 days to

recover from surgery and were handled every day before

performing the hypoglycemic clamp. Animals that did not recover

to their pre-surgery body weights were excluded from the study.

The day of the experiment, food was removed for six hours before

the beginning of the clamp. Starting 60 minutes after ICV infusion

(CSNO or artificial cerebrospinal fluid (aCSF) containing (in mM):

126 NaCl, 1.9 KCl, 1.2 KH2PO4, 26 NaHCO3, 2.4 CaCl2, 1.3

MgCl2, 300 mOsM, pH 7.4), rats were injected through the

jugular catheter with an insulin bolus (rats: 0.4 U/kg) in order to

decrease glycemia to ,50 mg/dl within 30–40 minutes. This time

course was used based on the results of Saberi et al. suggesting that

brain vs peripheral glucose sensors predominate in CRR initiation

when blood glucose decreases rapidly [23]. After this bolus,

animals were perfused with insulin at 1.2 U/kg/h for 90 minutes.

Glucose (20%) was co-perfused with insulin in order to maintain

their plasma glucose level around 45–50 mg/dl. The concentra-

tion of blood glucose was measured every 10 minutes via tail prick.

Blood samples (500 ml) taken from the jugular catheter were

collected as described above at 0 and 90 minutes for subsequent

measurement of plasma glucagon, epinephrine and norepineph-

rine. At the end of each experiment, cannula placement was

verified by methyl-blue injection (Sigma).

Plasma glucagon and catecholamines determination
Plasma glucagon concentrations were determined using com-

mercially available radio-immunoassay kits (Linco Research).

Plasma epinephrine and norepinephrine concentrations were

analyzed by high-performance liquid chromatography using

electrochemical detection (ESA, Acton).

Measurement of membrane potential using fluorescence
imaging plate reader membrane potential dye (FLIPR-
MPD)

VMH dissociated neurons were prepared as previously

described [13]. Neurons were visualized on an Olympus BX61

WI microscope with a 610 objective equipped with a red filter for

fluorometric imaging plate reader membrane potential dye

(FLIPR-MPD) visualization (excitation, 548 nm; emission, 610–

VMH S-Nitrosylation and CRR Impairment
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675 nm). Incubation of VMH neurons in extracellular solution

(composition in mM: 25 HEPES, 121 NaCl, 4.7 KCl, 1.2 MgSO4,

5 NaHCO3, 2 CaCl2, 0.23 KH2PO4, 0.97 K2HPO4, and

2.5 glucose, pH 7.4) containing FLIPR-MPD (1 vial/667 mL

extracellular solution) at 34uC began 30 min before and continued

throughout the duration of all experiments. Images were acquired

and analyzed with MetaMorph software (Universal Imaging) at

30-second intervals over the course of each experiment using a

charge-coupled device camera (Cool Snap HQ; Photometrics) as

extracellular glucose level was changed from 2.5 to 0.7 mM. The

fluorescence intensity of each image (expressed as gray scale units

per pixel) was normalized to that of the co-incubated fluorescent

beads. Neurons which have a reversible increase in fluorescence of

12% or greater compared to that observed in 2.5 mM glucose are

considered to be GI. An average percent change of .12% in

FLIPR-MPD fluorescence intensity between 25 and 30 min

[%DFLIPR-MPD (25–30)] defined a depolarized neuron. This

threshold was defined as exceeding twice standard deviation of

fluorescence variation observed with no glucose change (i.e. noise).

Cell viability was confirmed at the end of each experiment by a 5-

min exposure to 25 mM KCl. The percentage of depolarized

neurons [%DFLIPR-MPD (25–30) .12%] in response to 2.5–

0.7 mM glucose decrease per culture dish was recorded for each

rat treatment groups.

Data analysis
All data are presented as mean 6 SEM. Statistical analysis was

performed using Graphpad Prism 5.0 by two-way ANOVA or

one-way ANOVA followed by Dunnett or Bonferoni post-hoc test

or by paired or unpaired t-test as described in the figure legends.

p,0.05 indicates statistical significance.

Results

Insulin-hypoglycemia increases the level of VMH ROS
production

Singh et al. previously showed that insulin-induced hypoglyce-

mia decreases the level of diencephalic antioxidant proteins

catalase and glutathione (GSH) and increases the level of lipid

peroxidation [17]. These data suggest that hypoglycemia increases

hypothalamic ROS levels. In order to confirm these findings, we

quantified the fluorescence intensity level of the ROS sensitive

probe H2DCFDA (29,79-dichlorodihydrofluorescein diacetate) in

the VMH of rats exposed to single or recurrent episodes of insulin-

hypoglycemia. Rat treatment groups are represented in Table 1.

As shown in Figure 1, the level of H2DCFDA fluorescence

intensity was significantly increased by a factor of 1.560.6 in

response to a single episode of insulin-hypoglycemia (Figure 1).

Surprisingly, the basal VMH ROS level was not altered after

recurrent episodes of insulin-hypoglycemia. Furthermore, a fourth

episode of insulin-hypoglycemia failed to increase VMH ROS

production (Figure 1). Together, these data are consistent with

increased VMH ROS production after a single episode of

hypoglycemia.

RH increases the level of VMH S-nitrosylation
We previously showed that insulin-hypoglycemia increases

VMH NO production [12]. In the presence of elevated ROS

levels, NO may interact with the reactive free-thiol cysteine in

proteins to create a covalent modification, S-nitrosylation (SNO)

[15]. The NO receptor sGC, which we have shown to be involved

in CRR regulation, is a known target of S-nitrosylation [12,16,24].

Figure 3. ICV CSNO injection increases VMH sGC S-nitrosylation and impairs the CRR. (A) Representative Western blot against VMH S-
nitrosylated sGC from control and CSNO treated rats. (B–C) Blood glucose level (B left panel; n = 9; Inset: average blood glucose during the last
30 minutes of the clamp); glucose infusion rate (GIR; B right panel; n = 9; Inset: AUC of the GIR during the last 30 minutes of the clamp); plasma
glucagon (C upper left panel; n = 5), epinephrine (C lower left; n = 5) and norepinephrine levels (C lower right panel; n = 5) during hyperinsulinemic/
hypoglycemic clamp (1.2 U/kg/h) of animals injected ICV with aCSF (Control) or CSNO (0.5 mM). *: p,0.05 vs controls (Two-way ANOVA followed by
Bonferoni post-hoc test); $: p,0.05 vs control (unpaired t-test); ¤: p,0.05 time 0 vs time 90 (paired t-test); NS: p.0.05 time 0 vs time 90 (paired t-test).
doi:10.1371/journal.pone.0068709.g003

Figure 4. NAC treatment prevents hypoglycemia-induced
increased VMH ROS production. Quantification of VMH fluores-
cence intensity of the ROS sensitive probe H2DCFDA of rats injected SC
with saline or insulin (4 U/kg) and treated or not with NAC (5 g/l) in
their drinking water. Data are expressed as % of control rats not treated
with NAC and injected with saline (S3S). n number: S3S: n = 16; S3S +
NAC: n = 8; S3I + NAC: n = 8. NS: p.0.05 (One-way ANOVA).
doi:10.1371/journal.pone.0068709.g004

Figure 5. NAC prevents increased VMH S-nitrosylation after
RH. Representative western blot against VMH S-nitrosylated sGC (Top)
or total sGC (Bottom) from control (S3S) and RH rats (I3S) pre-treated or
not with NAC. The lower band of the Upper panel represents the b-sGC
subunit revealed using an anti-biotin switch-assay following pull down
with anti- b-sGC. The top band is probably the a subunit which would
have been pulled down with the b subunit as an heterodimer with anti-
b.
doi:10.1371/journal.pone.0068709.g005

VMH S-Nitrosylation and CRR Impairment
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To test our main hypothesis that the level of S-nitrosylation is

increased after RH, we quantified the level of S-nitrosylated sGC

in the VMH. Our data show that RH increased the basal level of

S-nitrosylated sGC by a factor of 4.360.34 (n = 3; Figure 2A, B)

where total VMH sGC level was not affected by RH (S3S:

1.0460.04 vs I3S: 1.04660.06 AU total sGC/b actin; n = 3; p

.0.05, unpaired t-test; Figure 2A).

Figure 6. NAC prevents the impaired CRR following RH. Blood glucose levels (first top panel), plasma glucagon (second panel), epinephrine
(third panel) and norepinephrine levels (lower panel) in response to insulin-hypoglycemia in control (A) and NAC pre-treated (B) rats following 3
consecutive daily injections of either insulin (S3I) or saline (I3I). *: p,0.05 S3I vs I3I (Repeated measures Two-way ANOVA followed by Bonferoni post-
hoc test within control and NAC pre-treated rats).
doi:10.1371/journal.pone.0068709.g006

VMH S-Nitrosylation and CRR Impairment

PLOS ONE | www.plosone.org 6 July 2013 | Volume 8 | Issue 7 | e68709



Increased VMH S-nitrosylation impairs the CRR
We hypothesized that increased VMH S-nitrosylation is

involved in CRR impairment after RH. To determine whether

increased VMH S-nitrosylation is associated with an impaired

CRR, we injected rats with the NO donor and nitrosylating agent

S-nitroso-L-cysteine (CSNO; 0.5 mM) intracerebroventricularly

(ICV) in the third ventricle and analyzed the CRR using a

hyperinsulinemic/hypoglycemic clamp. First, as expected, ICV

CSNO injection increased the level of VMH S-nitrosylated sGC

(Figure 3A). Following ICV CSNO injection, the glucose infusion

rate (GIR) necessary to maintain the blood glucose level around

45 mg/dl was significantly increased during the last 30 minutes of

the clamp (Figure 3B). This increase in the GIR was associated

with reduced glucagon secretion. In control animals, 90 min after

the beginning of the clamp, plasma glucagon, epinephrine and

norepinephrine levels were significantly increased (Figure 3C).

CSNO injection did not alter plasma epinephrine and norepi-

nephrine release. However, in CSNO treated rats, plasma

glucagon level was not significantly increased during the hyper-

insulinemic/hypoglycemic clamp, unlike control (Figure 3C).

These data suggest that increased VMH S-nitrosylation is

associated with CRR impairment.

NAC pre-treatment prevents VMH S-nitrosylation and
impaired CRR after RH

We hypothesized that RH-induced VMH sGC S-nitrosylation

and CRR impairment is the consequence of concomitant ROS

and NO production. Thus, prevention of ROS production during

hypoglycemia should attenuate or prevent S-nitrosylation and the

impaired CRR. To test this hypothesis, we treated rats with N-

acetyl-cysteine (NAC) in their drinking water (0.5%) for 9 days

prior to and during RH and analyzed the level of VMH S-

nitrosylation and the CRR. NAC treatment did not affect basal

VMH ROS level (Figure 4). However, while insulin-hypoglycemia

increased VMH ROS production by 50% in control rats (Figure 1),

insulin-hypoglycemia did not significantly increase VMH ROS

levels in NAC treated rats (Figure 4). Furthermore, NAC pre-

treatment significantly decreased the level of VMH sGC S-

nitrosylation following RH (I3S: 1.8660.15 vs I3S + NAC:

0.6960.15 AU/total protein content; n = 3; unpaired t-test;

p,0.05; Figure 5) without affecting total sGC level. Finally, as

shown in Figure 6, NAC pre-treatment prevented CRR impair-

ment following RH. In control animals, blood glucose levels of rats

exposed to RH fell further and glucagon and epinephrine

production were blunted in response to a fourth episode of

insulin-hypoglycemia (I3I) as compared to saline-injected rats

exposed to one episode of hypoglycemia (S3I). A trend toward

decreased plasma norepinephrine levels was also observed after

RH in I3I animals (Figure 6A). However, following NAC pre-

treatment there were no significant differences between the blood

glucose decline or glucagon and epinephrine production in rats

exposed to a single (S3I) or recurrent (I3I) episodes of insulin-

hypoglycemia. In addition, plasma norepineprhine levels were

increased after RH in I3I animals treated with NAC (Figure 6B).

Thus, NAC prevents RH-induced VMH S-nitrosylation and CRR

impairment.

NAC pre-treatment prevents impaired VMH GI neuronal
response to decreased glucose after RH

We previously showed that the glucose response of VMH GI

neurons to decreased glucose is impaired after RH [11]. We

confirm these data using membrane potential sensitive imaging in

cultured VMH neurons which quantifies the number of VMH GI

neurons observed in response to a 2.5–0.7 mM glucose decrease

(Figure 7). The number of VMH GI neurons was significantly

decreased by 37.567.78% after RH. Interestingly, while NAC

pre-treatment did not alter the number of VMH GI neurons in

naı̈ve rats, NAC prevented the decreased number of VMH GI

neurons after RH (Figure 7B).

Discussion

We hypothesized in the present study that increased VMH S-

nitrosylation of key glucose sensing proteins such as sGC after RH

may impair the CRR to subsequent hypoglycemia. Our data show

that VMH sGC S-nitrosylation is indeed increased after RH

where the CRR is impaired. Interestingly, we found that ICV

CSNO increases VMH sGC S-nitrosylation and also impairs the

CRR. Finally, pre-treating rats with the antioxidant NAC prevents

increased VMH sGC S-nitrosylation, impaired glucose sensing by

GI neurons and the blunted CRR following RH. Thus, our study

supports the hypothesis that preventing increased VMH sGC S-

nitrosylation may prevent glucose sensing and CRR impairment

following RH.

We previously showed that hypoglycemia-induced VMH NO

production plays a critical role in the CRR through a sGC

dependent mechanism [12]. In addition to its sGC-dependent

Figure 7. NAC prevents VMH GI neuron activation by
decreased glucose. (A) Representative fluorescence intensity mea-
surement from FLIPR-MD recording of a VMH GI (black full line) and a
non-glucose sensitive neuron (gray dotted line). The black dotted line
represents the fluorescence intensity baseline. Glucose concentration
changes and KCl application are schematically displayed above each
recording. (B) Percentage of VMH GI neurons from S3S or I3S rats pre-
treated or not with NAC which depolarized in response to a 2.5–0.7 mM
glucose decrease quantified using changes in FLIPR-MPD fluorescence
intensity. *: p,0.05 (Two-way ANOVA; group differences were
determined by One-Way ANOVA followed by Bonferoni post-hoc test).
doi:10.1371/journal.pone.0068709.g007
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signaling pathway, NO affects other signaling pathways through S-

nitrosylation. S-nitrosylation is a non-enzymatic reaction consist-

ing of the covalent attachment of a NO moiety to the thiol side

chain of cysteine to form SNO adducts, altering the properties of

proteins/enzymes [15,25]. It is noteworthy that the NO bond is

labile which makes S-nitrosylation difficult to detect and quantify.

Nevertheless, over the past decade, the number of reported

substrates for S-nitrosylation has grown significantly [22]. This is

consistent with the ubiquity of reactive-site thiols across protein

classes. sGC is one of the many target proteins of S-nitrosylation

[16]. We found herein that VMH sGC S-nitrosylation is increased

after RH, a condition where the CRR is impaired. The fact that

the NO donor and nitrosylating agent CSNO increases VMH

sGC S-nitrosylation and impairs the CRR further support the idea

that increased VMH S-nitrosylation plays a critical role in CRR

impairment. However, CSNO may also interact with side chain of

tyrosine to create tyrosine nitration [26]. Thus, we cannot exclude

that tyrosine nitration might also be involved in CSNO-induced

CRR impairment and more generally in the development of

HAAF.

The current findings support our hypothesis that VMH GI

neurons control the CRR through a NO-sGC dependent pathway

[11,12,13]. We have found that the response of VMH GI neurons

to decreased glucose is impaired in a number of conditions where

the CRR is impaired [11,12,27,28]. For example, electrophysio-

logical evaluation of VMH GI neurons in brain slices from rats

after RH showed that the threshold to activate VMH GI neurons

shifts to lower glucose levels. We now extend these results by

evaluating the glucose sensitivity of isolated VMH GI neurons

from rats after RH with and without NAC treatment using the

FLIPR-MPD imaging technique. The FLIPR-MPD technique is

not sensitive enough to quantify the absolute degree of depolar-

ization in response to a specific glucose decrease. Rather, we are

only able to detect the percentage of VMH neurons which

depolarize over a noise threshold. In the present study, fewer

VMH neurons from RH treated rats depolarized in response to

decreased glucose. Thus, we interpret the present results to mean

that fewer VMH GI neurons depolarized over the FLIPR-MPD

depolarization threshold as glucose decreased rather than an

actual decrease in the number of VMH GI neurons. Importantly,

NAC prevents RH-induced impairment of both the CRR and

glucose sensing by VMH GI neurons. These data provide further

support for a role of VMH GI neurons in regulating the CRR.

The mechanism underlying RH-induced increased VMH S-

nitrosylation remains a question of interest. Increased NO

production via the inducible NOS (iNOS) has been shown to

increase S-nitrosylation levels [29]. However, we previously

showed that iNOS activity is not altered in response to either

acute or recurrent hypoglycemia [12,30]. S-nitrosylation may also

occur when NO is produced under oxidative conditions where

NO and ROS can interact [31]. In support of this hypothesis, we

found that hypoglycemia increases both VMH ROS and NO

levels [30]. Increased VMH ROS level during hypoglycemia is

consistent with a previous study showing that hypoglycemia

decreased expression of antioxidant factors and increased lipid

peroxidation [17]. To further support the hypothesis that VMH

ROS production is involved in hypoglycemia-induced increased S-

nitrosylation levels, we found that treating rats with the

antioxidant NAC prevents both increased VMH ROS and S-

nitrosylation levels. NAC, as a precursor for glutathione biosyn-

thesis is a very powerful antioxidant that also reacts directly with

electrophiles [19]. NAC is used in vitro and in vivo to decrease ROS

and S-nitrosylation levels [16,24,32]. In human or animal models

NAC is used to prevent and reverse negative clinical outcomes

such as nitrate tolerance and paracetamol overdose [33,34].

Surprisingly, NAC treatment did not decrease basal VMH ROS

level as one might have expected. It is possible that while NAC

treatment at the dose of 5 g/l (,0.55 g/kg/day) was not sufficient

to alter basal cell redox status, this dose was able to prevent any

small increase in ROS production. This idea is consistent with the

study from Kamboj et al. showing that NAC given at 1.5 g/kg/day

in the drinking water did not alter basal glutathione or lipid

peroxidation levels in control rats [19]. In addition, our data

suggest that VMH ROS production does not play a role in CRR

initiation under basal conditions. That is, while NAC pre-

treatment inhibited hypoglycemia-induced VMH ROS produc-

tion, it did not affect CRR hormones secretion in response to a

single episode of hypoglycemia. In contrast, blood glucose level did

fall further in response to insulin-hypoglycemia in NAC-treated

rats. This is consistent with Song et al.’s study showing that NAC

increases insulin sensitivity in an animal model of T2DM [35].

Thus, the lower glucose nadir observed in non-RH NAC treated

rats is likely due to an increased sensitivity to insulin injection.

The next point which needs to be addressed is the mechanism

involved in hypoglycemia-induced VMH ROS production. VMH

ROS formation may be consequent to increased NO production.

In support of this, NO inhibits mitochondrial cytochrome c and

blocks mitochondrial respiration which consequently increases

superoxide anion O2
N2 production [36]. Increased NO production

during hypoglycemia also activates the neuronal NAPDH oxidase

which could, in turn, increase ROS through a mitochondria-

independent pathway [37]. On the other hand, the amount of NO

produced by nNOS is relatively low when compared to that

produced by iNOS. This suggests that these NO-dependent

mechanisms may not be the only cause of increased ROS levels. In

support of this, lipid peroxidation, an indirect marker of ROS

production, is increased in response to insulin-hypoglycemia in the

cortex [17]. However, we did not observe increased cortical NO

release following insulin-hypoglycemia [12]. Decreased antioxi-

dant defenses may also explain increased ROS levels. Hypogly-

cemia is associated with decreased activity of the antioxidant

enzymes catalase and super oxide dismutase [17]. In addition,

insulin is also known to increase VMH ROS production [38].

Thus, insulin injection used in our clinically relevant model of

hypoglycemia may also contribute to the increased VMH ROS

production. Further studies are clearly needed to determine which

mechanism(s) underlie insulin-hypoglycemia-induced ROS pro-

duction.

Furthermore, we do not yet understand why increased VMH S-

nitrosylation persists after RH when neither VMH NO nor ROS

levels remain elevated. Recently, it was suggested that protein S-

nitrosylation is more stable than initially thought, and is mainly

dependent upon a dynamic denitrosylation process such as that

regulated by the thioredoxin system [39,40]. As such, we can infer

that, once induced, protein S-nitrosylation lasts for a certain

period of time in the absence of nitrosylating agents (NO, ROS)

and/or if thioredoxin reducing ability is impaired. Thus, following

a transitory burst of ROS and NO production in response to a

single episode of insulin-hypoglycemia, VMH S-nitrosylation level

remains increased for some time. It is well established that the

CRR remains impaired for approximately 2 weeks following RH,

after which a normal CRR is restored if there have been no further

hypoglycemic episodes during that time [3]. We speculate that the

persistent increase in VMH S-nitrosylation could play a role in the

development of the sustained CRR impairment after RH at least

in the initial phase. It is possible that elevated protein nitrosylation

and/or reduced NO signaling leads to downstream changes in

other intracellular signaling pathways which explain the duration

VMH S-Nitrosylation and CRR Impairment
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of HAAF. However, further studies of the correlation between the

duration of HAAF, VMH S-nitrosylation and the signaling

pathways involved are needed to support or refute this hypothesis.

In addition, the question whether RH-induced increased S-

nitrosylation is specific to the VMH remains. Increased S-

nitrosylation may happen in brain areas not known to be involved

in the regulation of the CRR such as the cortex. However, even

though ROS production is increased in the cortex in response to

hypoglycemia, we previously showed that NO production is not

[12,17]. Further studies are still needed to determine whether S-

nitrosylation is increased in extra-hypothalamic regions after RH.

The most important finding of our study is that NAC pre-

treatment prevents both increased VMH S-nitrosylation, de-

creased number of VMH GI neurons and blunted glucagon and

epinephrine secretion in response to RH. While the present study

does not establish a direct causal link between increased VMH S-

nitrosylation and CRR impairment, when considered in the

context of our previous work, our data strengthen our hypothesis

that VMH S-nitrosylation plays an important role in the impaired

CRR following RH. That is, we have shown that inhibiting the

NO-sGC pathway specifically in the VMH impairs the CRR [12].

Since S-nitrosylation of sGC causes NO resistance, VMH S-

nitrosylation would certainly impair NO-sGC signaling and as a

result impair the CRR. However, since NAC was administered

orally, we cannot exclude VMH S-nitrosylation independent

effects in the prevention of CRR impairment. Nevertheless, our

study suggests that NAC might be an important clinical therapy

for the treatment of HAAF. The dose of NAC used in drinking

water (0.5%) corresponds approximately to 0.55 g/kg/day based

on the rats’ water intake. This dose of NAC is equivalent to that

used clinically in humans to reverse the liver damage following

paracetamol intoxication [18]. This is particularly relevant since

NAC is approved for use in humans in the US as well as in

Europe. As mentioned above, the insulin dose for patients with T1

or T2DM using insulin therapy would have to be carefully

monitored when initiating NAC therapy since NAC increases

insulin sensitivity [35]. This is especially true since our study only

evaluated NAC as a prophylactic therapy given before hypogly-

cemia occurred. Additional studies need to be performed to

determine whether NAC can be used as a treatment to reverse

HAAF following RH. However, since improving insulin sensitivity

would allow patients to reduce their insulin doses, prophylactic

NAC therapy may be very efficacious for patients with T1 or

T2DM both in terms of preventing HAAF and improving overall

health.

In conclusion, our study shows that increased VMH ROS

production may contribute to the development of HAAF following

RH. Moreover, the mechanism by which ROS exerts its

deleterious effects on the CRR may involve S-nitrosylation of

key proteins involved in hypothalamic glucose sensing (e.g., sGC).

This study also shows that preventing S-nitrosylation with NAC

may be useful for patients with T1 or advanced T2DM treated

with insulin therapy. Since NAC is already FDA approved for use

in humans, our study highlights an exciting new therapy which

could be rapidly adapted to treat HAAF in patients with T1 or

advanced T2DM.
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