
HAL Id: hal-00850759
https://hal.science/hal-00850759

Submitted on 8 Aug 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Autonomous Reuse of Motor Exploration Trajectories
Fabien Benureau, Pierre-Yves Oudeyer

To cite this version:
Fabien Benureau, Pierre-Yves Oudeyer. Autonomous Reuse of Motor Exploration Trajectories. In-
ternational Conference on Development and Learning and on Epigenetic Robotics, Aug 2013, Osaka,
Japan. �hal-00850759�

https://hal.science/hal-00850759
https://hal.archives-ouvertes.fr

Autonomous Reuse of Motor Exploration Trajectories

Fabien Benureau
Flowers Team, Inria/ENSTA-Paritech

Bordeaux University
fabien.benureau@inria.fr

Pierre-Yves Oudeyer
Flowers Team, Inria/ENSTA-Paritech

pierre-yves.oudeyer@inria.fr

Abstract— We present an algorithm for transferring explo-
ration strategies between tasks that share a common mo-
tor space in the context of lifelong autonomous learning in
robotics. The algorithm does not transfer observations, or make
assumptions about how the learning is conducted. Instead,
only selected motor commands are transferred between tasks,
chosen autonomously according to an empirical measure of
learning progress. We show that on a wide variety of variations
from a source task, such as changing the object the robot is
interacting with or altering the morphology of the robot, this
simple and flexible transfer method increases early performance
significantly in the new task. We also provide examples of
situations where the transfer is not helpful.

I. MOTIVATION

Lifelong learning is a desirable skill of developmental
robotics [10], [20]. Over the life of a robot learner, many dif-
ferent situations are encountered; those situations share com-
mon properties, the most prevalent of them being the robot
to which they happen, whose morphology and dynamics,
while not necessarily constant, remains significantly similar
from one situation to the other. Moreover, after training on
a particular task, the learning data contains information not
only on how to achieve the task, but also on how to learn it.
And because learning for robots implies interaction with the
world, it is usually particularly costly in time and resources;
in a practical setting, a robot learner might not be able to
afford the time to near the asymptotic performance at a
particular task. Thus, any way to efficiently improve the early
performance from past experience is hugely beneficial. Under
those assumptions — that a robot’s learning experiences
share underlying common characteristics, that knowledge on
how to learn is present in the learning data, and that learning
resources are inherently limited — learning how to learn,
autonomously, and transferring this knowledge between tasks
is a fundamental part of any lifelong robot learner.

In this article, we present a method for reusing motor
exploration trajectories. When learning a task, a learner pro-
gressively refines its actions to produce more accurate results,
as observations accumulate. The exploration trajectory is the
chronology of those observations, each observation being
composed of an action and its observed effect. A motor
exploration trajectory, then, is the chronology of the actions
alone, stripped of their corresponding effect. An exploration
strategy is the algorithm the learner employs to create its
motor exploration trajectory.

Work on intrinsic motivation [7], [9], [11] and on goal
babbling [8] in the context of active learning showed that effi-
cient exploration strategies can dramatically increase learning

performance. We make the hypothesis that the exploration
trajectories of those strategies possess structure that can be
transferred and reused across similar tasks.

Specifically, in this paper, we are interested in improving
the performance of motor babbling. Random motor bab-
bling is notoriously inefficient in highly-redundant, high-
dimension spaces typical of sensorimotor spaces. Goal bab-
bling [7], [8] has been demonstrated to be superior in many
scenarios. However, motor babbling is often the only way
to start learning an unknown task, and keep discovering
unknown areas of the learning space. Providing ways to
improve the efficiency of motor babbling could dramatically
increase early task performance, decreasing the time before
a piece of knowledge can be useful, and provide better
observations for later stage exploration, impacting middle
and long term performance.

In this paper, we consider environments where a robot
is equipped with a motor primitive [21] controlled by con-
tinuous parameters, and a sensory primitive, providing a
high-level representation of the environment as a vector
of continuous variables. We define a task over a specific
environment as the mapping between the space of the motor
parameter and the space of sensory variables. We restrict
ourselves to episodic tasks over one time-step. Examples of
such tasks include inverse kinematics, interaction with fixed
objects, repeated situations such as learning to throw or hit a
ball, etc. It is important to note that the environment here
includes the morphology of the robot, which can change
from one task to the other, which is an important point in a
developmental perspective.

A. Previous Work

Transferring knowledge from one task to another has been
formalized in the context of transfer learning [14], [15]. A
source task is learned, and knowledge extracted from this
task is transferred to a target task, where it is leveraged
to improve learning performance. Figure 1 introduces the
different effect transfer can have on performance. Many
different approaches exist to transfer learning.

One can transfer the training data from the source task to
the target task, eventually applying relevant transformations
to it [13]. In the context of reinforcement learning, starting
point methods [18] set the final Q-table of a source task
as the initial one of the target task, and usually provide a
jumpstart for the performance. However, when those tasks
don’t match perfectly, an expert is needed to map the first
task to the second task.

Fig. 1. Different ways transfer can impact learning performance. The
blue and the pink curves are the average error without and with transfer,
respectively. In the context of this paper, we are mainly interested in the
performance difference at a specific time.

Another approach modifies the representation of the target
task by leveraging source task knowledge, either reducing
the dimensionality of the state or action space by discovering
latent space parametrizations [16], or expanding it by adding
new state variables in the target space [17].

One can also leverage its model of the world, if the
environment is shared between task, to bias the learning of
a control function, as in [19].

Our work share some resemblance to the imitation learning
approach of [12], where source task policies are reused to
direct exploration in the target task. In [12], transferred poli-
cies must, in the MDP formalism, share the same transition
functions. Our algorithm does not have such a constraint,
and tasks are defined as different precisely in the sense that
the same actions will lead to different effects in each task;
in fact, the space of sensory features itself can differ.

B. Contribution

We contribute a transfer learning algorithm based on
exploration trajectories and intrinsic motivation over continu-
ous, high-dimension sensorimotor spaces. Its main distinctive
properties are :

• No training data is shared between tasks. This dimin-
ishes the risk of negative transfer. However, no jumpstart
can be expected.

• Contrary to many transfer learning algorithms, we do
not make specific assumptions about the machine learn-
ing algorithm employed to learn the source or the target
task, or even if they are the same.

• The knowledge transferred depends only on the source
task. As such, once computed, it does not need to be
adaptated to the target task it is applied to.

• The only constraint for the transfer is that the motor
space should be the same between tasks. The sensory
space, its features and the environment can be arbitrarily
different.

• In this paper, we are not concerned with multitask
learning, where multiple tasks are learned, and transfer
can happen from any task to any other. We only consider
one source and one target task, happenning sequentially.

• Our method is autonomous, requiring no expert or
human intervention.

Moreover, to allow easy reproduction of the results and ex-
amination of any and all experimental methodology, we also
contribute the entire source code (algorithm and simulation
environment) used to obtain every results in this article1.

II. PROBLEM

In this section, we formally define the problem.
Henceforth, a task is defined as a set (M,S, f, n).
• M is the motor space, that is, the set of legal commands

the robot can execute. It is a bounded hyperrectangle
of RdM , with dM the dimension of the motor space.
Here we typically consider that motor primitives are
dynamical systems parametrized by a continuous vector
of real values.

• S is the sensory space, an arbitrary, bounded, subset
of RdS , with dS the dimension of the sensory space.
Effects and goals (desired effects) are elements of S.

• f is a function from M into S, returning the response
of the environment of a given motor command.

• n is the maximum number of samples of f allowed. In
this paper, it represents the number of trials the robot is
allowed to execute to construct an inverse model of the
environment, that is, computing a function gt : S 7→M
with

∫
S
‖f(gt(y))− y‖dy as small as possible.

In the remaining of the article, x will be used for motor
commands, that is, elements of M , and y for effects, that is,
elements of S. An observation is a pair (x,y) with f(x) = y.

In order to test the learning performance on a task A =
(M,S, f, n), we need to approximate

∫
S
‖f(gt(y))− y‖dy.

For that, we define test cases as a set E of points uniformly
distributed in S. The uniform distributed in S, rather than in
M , is not trivial; we are interested in testing the skill of the
robots to act in its environment, rather than predict it. Each
test case is a vector of the sensory space that the robot has to
produce or approximate by executing an appropriate motor
command. A test case is the same as a goal or an effect,
although we restrict the use of the latter to sensory vectors
actually produced by the environment. The performance is
the negative of the average error, and we define the average
error over E at time t as :

eA(t) =

∑
yi∈E ‖f(gt(yi))− yi‖

|E|

with |E| the cardinal of E. Note that we consider here
multiple test cases uniformly distributed over the sensory
space, which is not typically completely reachable; some
test cases may be impossible to reproduce exactly. As a
consequence, eA(t) is not expected to reach zero. Obviously,
the learner does not have access to the test cases it will be
evaluated on.

In this paper, we are interested at the improvement in
learning performance that can be achieved if information is
transferred from a source task (M1, S1, f1, n1) to a target
task (M2, S2, f2, n2), with the only condition that M1 =

1The code is available at fabien.benureau.com

M2 : the motor space is the same, but sensory features S1, S2

and the environment f1, f2 can differ.
The exploration trajectory ξA of a task A = (M,S, f, n)

is defined as the chronological sequence of n observations
{(xi,yi)}0≤i<n with f(xi) = yi acquired during explo-
ration. While we do not transfer observations pairs between
tasks, the effects produced by the motor commands are used
to modulate how the motor commands are transfered from
the source task to the target task.

To test the performance of our algorithm, we define
eB(t, A, ξA), the average error at time t, on a task B, given
that a transfer occurred from a source task A involving the
training data ξA. Then, we can compute :

eB(t)− eB(t, A, ξA)
eB(t)

which represents the percentage of the reduction of error at
time t due to the transfer.

Over the course of a training, we can similarly define :

τtf =

∑
0≤t<tf

eB(t)dt− eB(t, A, ξA)∑
0≤t<tf

eB(t)dt
(1)

τnB , in particular, characterizes the improvement in terms of
performance that the learner will experience during the whole
learning phase, expressed as a percentage. This is particularly
interesting in a practical developmental setting, where a robot
would typically need to apply its knowledge in between and
during learning phases.

III. METHOD

Our method is organized around three algorithms. The first
describes the learning and exploration of the source task. The
second is applied at the end of the learning of the source
task, and produces the data to be transferred to the target
task. The third controls how the transferred data impacts the
exploration algorithm in the target task. They are respectively
designated as Algorithm 1, 2 and 3.

A. Exploration and Learning for Source Tasks

Given a task (S,M, f, n), we train a predictor to compute
a model of the environment, and use a constrained optimiza-
tion routine on the predictor to compute the inverse model.
At each step, we choose the motor command to execute using
a combination of motor and goal babbling.

1) Forward Model:
To approximate the function f from training data, we

employ Locally Weighted Linear Regression (LWLR) [1][2],
a lazy machine learning algorithm.

Given a set of observations D = {(xk,yk)} where for
each k, f(xk) = yk, and a query vector xq , for which we
which to predict the effect, we compute, for each point xk,
the euclidean distance to xq and derive a guaussian weight
wk :

wk = e
−‖xk−xq‖2

σ2

We consider the matrices X with Xk,i = (xk)i, Y with
Yk,i = (yk)i, and W = diag(w0, w1, ..., wn), and compute :

β = ((WX)TWX)+((WX)TWY)

where (WX)TWX is a positive definite symmetric matrix,
and ((WX)TWX)+ its Moore-Penrose inverse [3].

Then:

ye = βTxq

ye is the LWLR estimate of xq , given the observed data D.
We define the function PREDICTLWLR(xq, D) that compute
ye for any xq ∈M given D.

In our implementation, σ, which control the locality of
the regression, is dynamically computed. With dM as the
dimension of the motor space, we define a constant N =
2dM + 1, and compute σ as the average distance of the N
closest points of the query vector xq . Additionally, all other
points of D besides the N closest neighbors are given a null
weight.

2) Inverse Model:
Given a query point yq ∈ S, we want to compute an

estimate of xe ∈M so that ‖f(xe)− yq‖ is minimal.
Since M is a hyperrectangle of RdM , we use L-BFGS-

B [4][5], a quasi-Newton method for bound-constrained
optimization, to minimize the the error function :

ERRyq (x) = ‖PREDICTLWLR(x, D)− yq‖

The optimization process is initialized with the motor
command corresponding to the closest neighbor of yq in the
training data.

Algorithm 1: EXPLORE(A, Kboot, pgoal)
Data:
• A = (S,M, f, n), source task.
• Kboot, duration of pure motor bootstrapping.
• pgoal, ratio of goal babbling.

Result: ξA = {xi,yi}0≤i≤n ∈ (S ×M)n, exploration
trajectory.

ξA ← []
for t from 0 to n do

if t ≤ Kboot or RANDOM() ≥ pgoal then
choose xt randomly in M
yt ← f(xt) // execute the command
append (xt,yt) to ξA

else
choose a goal gt randomly in S
minimize ||gt − PREDICTLWLR(xt, ξA)|| using
L-BFGS-B
yt ← f(xt) // execute the command
append (xt,yt) to ξA

3) Exploration:
For each trial, our algorithm chooses a motor command to

sample f . Usually with robots, the motor space is too large to
be sampled exhaustively. In our experiments the number of
allowed samples is small in comparison with what would be
needed to exhaustively sample the motor space to a useful
precision. The works of [7] and [8] has shown that goal
babbling is an effective method in these situations.

For each sampling of f , the exploration algorithm can
decide to either do some random motor babbling — pick
a random point in the hyperrectangle M —, or do some
random goal babbling, i.e. pick a random point in the
bounded sensory space S as a goal for the inverse model.

The exploration algorithm of the source task proceeds
in two phases. The first phase is of pure, random, motor
babbling, and last an arbitrary number of Kboot samples.
The second phase features mixed motor and goal babbling;
the algorithm chooses, for each sample, to do random goal
babbling with probability pgoal, with 0 < pgoal < 1, and
random motor babbling otherwise (see Algorithm 1). The
reason for the existence of a pure motor babbling phase is
that goal babbling relies on the inverse model, which needs
data to derive useful motor commands. In fact, one of the
consequence of goal babbling is that the motor command
chosen depends on the training data, whereas with random
motor babbling it does not. Goal babbling eventually leads to
creating heterogeneous exploration of the motor space, where
some regions are well sampled and other completely unex-
plored, since the uniformity of the exploration is enforced
on the sensory space.

B. Transfer Algorithm

The main idea behind our transfer algorithm is to identify
the motor commands that help the robot to learn the model
of the environment faster. The hope is that a portion of these
commands are beneficial to the current learning task not only
because they are adapted to it, but also because they fit the
intrinsic morphological and dynamics properties of the robot.
As such, in other situations, they might prove to have better
learning value than random commands, if those underlying
intrinsic properties are present and shared across situations.

Another way to put it is to say that faced with an unknown
situation, the robot will try motor commands that proved
valuable in the past, rather than random ones.

1) Formalization: Given a trajectory exploration ξ, we
divide the sensory space into regions. In this article, we
create regions in S using a simple grid. For each region,
we consider the yi belonging to that region that were the
result of an episode of goal babbling. Those yi have an
associated goal gi that was chosen during learning. We call
the negative of the euclidean distance between yi and gi the
competence of yi. For each region, we compute the history of
the competence of the yi belonging to the region. In region
were learning happened, the competence typically exhibits
an increasing trend, faster when learning was easier.

We define the interest of a region by the derivative of the
competence over time. Due to the presence of outliers in the

Algorithm 2: TRANSFER(D, G)
Data:
• ξ = {(xi,yi)}0≤i≤n, exploration trajectory.
• G, set of goals used during learning.

Result: W = {(xi, wi)}0≤i≤n, weighted commands.
Divide S into a set of regions R
for R ∈ R do

history = []
for (xi,yi) ∈ ξ, with yi ∈ R do

if yi has an associated goal gi ∈ G then
append ||yi − gi|| to history

INTEREST(R) = SEIGEL(history)

W = []
for (xi,yi) ∈ D do

R = region where yi belongs
append (xi, INTEREST(R)) to W

data, we compute the interest using a Siegel estimator [6],
a robust linear regression method, rather than using a least-
square regression method. Mathematically, given a region R,
we define :

INTEREST(R) = SEIGEL({||gi − yi||}i∈R)

For each observation (xi,yi) of D, we associate a weight
wi to the command xi corresponding to the interest of the
region yi is in (note that those weights are not related to the
weights of the LWLR regression routines). We thus define
the set {(xi, wi)0≤i≤n}. This is the information that will be
transferred between tasks.

Algorithm 2 summarizes the computational steps.

C. Exploration in Target Tasks

The transfer algorithm provides motor commands and how
high the learning rate was in the region of the effects they
produced. We use this information to modify our motor
babbling behavior : with a probability ptransfer, instead of
random motor babbling, the algorithm will draw without
replacement from the transferred set of commands, with
a probability proportional to the commands’ weights. We
describe the modified algorithm in Algorithm 3.

IV. EXPERIMENTS

We conducted two experiments, the first to measure the
increase in learning performance using the transfer learning
on an interaction task, and the second on a situation, the
learning of inverse kinematic, where the transfer didn’t affect
learning significantly.

A. Simulation Settings

All our experiments were done in simulation. We consid-
ered a idealized interaction task; a 6-DOF robot arm is inside
a room, with an object. The position of the object or of the
walls of the room is not known by the learner. The arm is
controlled in velocity, and each joint is equipped with a PID

Algorithm 3: TRANSFEREXPLORATION(B, W , Kboot,
pgoal, ptransfer)

Data:
• B = (S,M, f, n), target task.
• W = {(xi, wi)}0≤i≤n, weighted commands.
• Kboot, duration of pure motor bootstrapping.
• pgoal, ratio of goal babbling.
• ptransfer, ratio of transfer motor babbling.

Result: ξB = {xi,yi}0≤i≤n ∈ (S ×M)n, exploration
trajectory.

ξB ← []
for t from 0 to n do

if then
if RANDOM() ≥ ptransfer and W is not empty
then

draw xt from W without replacement,
proportionally to its weight wt.

else
choose xt randomly in M

execute the command; yt ← f(xt)
append (xt,yt) to ξB

else
GOALBABBLING(B, ξB) (see Algorithm 1)

controller on the angular position, with a frequency of 60Hz.
The robot prepares an command by selecting a starting pose
(6 angles), a target pose (6 angles) and a global maximum
rotational velocity for the joints. Each angle can have values
between 2.0 and -2.0 radians, and the velocity limit cannot
exceed 2.0 rad/s. The arm operate on the horizontal plane
(see figure 2); no gravity force applies. Every body in the
simulation is simulated using the physic engine jBox2D2,
and possesses properties such as mass, friction, restitution
(how much kinetic energy is conserved by the body when
colliding with another), linear and angular dampening, the
latter two being strictly positive and used to simulate friction
with the floor. The 13 parameters of a motor command are
thus parameters of a dynamical system whose execution is
constrained by collisions (toy, walls, and the arm with itself)
and inertia (the joints do not have infinite torque).

An command is executed in the following manner (see
figure 2) :

1) the robot is placed in the starting pose defined in
the command. Note that if the starting pose implies
that some links of the robot be placed inside walls,
they are effectively placed that way, and the affected
joints are immobilized, greatly reducing the movement
possibility of the robot over the episode.

2) the object is positioned in the environment, always at
the same place.

3) the robot reaches for the target position for 12 seconds.
The environment response is the final spatial position of the

2code.google.com/p/jbox2d/

Fig. 2. An example of the execution of a motor command. The arm swings
from the init position (1.17, -1.26, 1.33, 0.19, 0.82, 0.75) (in radians) to
the target position (-0.31, -0.20, -0.68, 1.16, -0.77, -0.54) at a maximum
velocity of 1.0 rad/s, hitting the ball in the process. The motor command
is the concatenation of the init pose, the target pose and the velocity, and
the sensory response is (xe, ye, 1.0) = (293.2, 599.7, 1.0) (in mm).

object after 12 seconds (the object might still be in motion
at that time) and if a collision between the object and the
arm occurred during execution (0.0 or 1.0); as such, S is a
subset of R3. This constitute one episode, i.e., one sampling
of the environment.

In each environment, we generate a grid of test cases over
the entire space minus the walls.

B. Configuration

We consider one source task (figure 3.a) and 7 variations
(figures 3.b-h).

The room in our simulation is a square of 800 mm by 800
mm, with walls of 50 mm width. The origin is in the upper
left corner, with axis oriented as in figure 2. The effective
attainable space for the position of the center of a body is
thus [50, 750] × [50, 750], and less as the size of the body
increases. The arm is composed of 6 links, each of length 50
mm. The mass of each links is equal to its area (density = 1),
and the same is true for the ball. In figure 3, the arm is
portrayed in position where all joints are in position zero.
The ball is placed at the position (500, 350).

C. First Experiment

In this experiment, we set Kboot to 1000, pgoal to 0.7 and
ptransfer to 0.8, which means that after a period of 200 steps
of motor babbling, the exploration strategy does 30% of the
time motor babbling, and 70% of the time goal babbling. In
the case of a target task, when motor babbling is selected
(either during in 1000 first steps or after), 80% of the time,
transferred motor commands will be chosen, and 20% of
the time a random motor command will be generated. Over
10000 steps, approximately 30% of the motor commands
come from transfer.

In this experiment, we consider the tasks described pre-
viously, and impose a limit of 10000 trials on training. For
each configuration, we consider the case of learning without
transfer, and with transfer from the source task.

Fig. 3. Different tasks considered for the first experiment.

D. Second Experiment

In the second experiment, we use the same source setup,
and configuration (3.d). The sensory response from the
environment for both is not the final position of the toy
(although it is still present), but the final position of the tip
of the arm, as in a classical inverse kinematic setup.

All and every aspects of the experiments, from the motor
representation, to the set of tasks, to the parameters Kboot,
pgoal, and ptransfer were fixed before the results were pro-
duced.

V. RESULTS

Each experiement was repeated 20 times. We computed
and plotted the average over the repetitions of the average
error, with and without transfer from the source task. The
average error was computed using a set of 400 test cases,
using a grid layout covering the area inside the walls. We
also computed τ2000 and τ10000 from (1) to measure the early
and overall performance increase due to the transfer.

A. First Experiment

In figure 4, we see that overall, the transfer is significantly
beneficial for early performance, although it does not impact
long-term performance. Figure 4.a depicts the performance
reduction of the source task with itself, which is used as
a control case rather than the illustration of a useful one.
The error reduction, which is more than half, is concentrated
before the 2000th time step, after which, the non-transfer
learning performance catches up. This pattern is repeated to
varying degrees across all variations, except in the ”corner”
task.

The corner task, figure 4.e, sees no effect from the
transfer during the first 1500 timesteps, and then is affected
negatively by it, staying constantly at a level of error of
rougly 12mm more than the task without transfer. In the
corner task, many of the motor command that would have
connected with the ball have intial positions that start the
arm in the wall, where it stays stuck. As such, many of the
transfered command have low learning value in regards to the
tests that measure performance. Still, more work is needed
to understand this result.

Overall, the results are encouraging, because they show
that reusing the right commands from a previous task, in
situations where the morphology of the robot or the physical
property of the objects it is interaction with has changed,
a robot can autonomously boostrap its learning, and reach
precision levels far quicker than without transfer.

B. Second Experiment

The results in figure 5 paint a different picture than the
results of the first experiment. The transfer has no discernable
effect on the performance, even when it comes from the
same task. One possible explanation is that, when the sensory
output is the position of the tip of the arm, a far greater
ratio of the possible motor commands provides beneficial
learning information, whereas when the object is tracked,
most motor commands miss the ball and thus provide little

Fig. 4. Results of the first experiment. For each graph, in abscissae the
timesteps, and in ordinate the repetitions’ average of the average error to the
to the testcase set (in mm). The blue curve is for the case without transfer,
while the pink is for transfer from the source task. The shaded area around
each curve is the standart deviation over the repetitions.

learning information. That makes efficient motor babbling
less important. This experiments helps starting to character-
ize in which situations the transfer algorithm is useful, and
in which it is not.

VI. DISCUSSION

A. Limitations

As it stands, our paper presents several limitations :

• While the results are conclusive, they do not show if
they could work just as well with a simpler criteria
than intrinsic motivation. Some aspects of the results
raise more questions than they provide answers; specific
analysis are needed to better understand them.

• The motor commands are grouped and discriminated in
the sensory space. Yet, commands whose effects belong
to the same sensory region might have very different

Fig. 5. Results of the second experiment. The axis and curves character-
istics and colors are the same as figure 4.

learning benefits. Our method does not distinguish be-
tween those.

• The results are demonstrated on noiseless, non-
stochastic simulations in 2D worlds.

• The effectiveness of the transfer could be heavily tied
to the motor command representation used in this
article. While the representation was fixed before we
obtained the first results (therefore, no ”optimization”
of the motor representation occurred to produce better
experimental results), we can’t rule it out.

• All the same, the effectiveness of the transfer could be
heavily tied to the specifics of the learning algorithm
used in this article (optimization of a LWLR predictor
using L-BFGS-B). More experiments are needed to ac-
cess the robustness of our methods to different learning
algorithms.

• In the experiments we arbitrarily fixed the parameters
Kboot, pgoal, and ptransfer (before the results were pro-
duced). An empirical analysis of the influence of those
parameters is needed to better understand the dynamic
of the transfer mechanism.

B. Perspectives

Each of the limitations highlighted previously calls for
further work, as we view none of them as irremediable.
Specifically, we plan to work on :

• Experiments with real robots, in the context of affor-
dance learning in particular.

• Search for values of the parameters or new methods
that minimize the amount or frequency of transfer
while still retaining good performance. In particular,
as motor babbling biggest effect is in the beginning
of learning, a mechanism that decreases the amount of
transfer as the learning progresses could exhibit compa-
rable performances while increasing the time at which
the no-transfer performance catches up, and possibly
mitigating the negative transfer issues exposed in the
experiments.

• New criteria to further discriminate the learning benefits
of different motor commands, even when their effect
belong to the same sensory regions.

ACKNOWLEDGEMENTS

I am particularly grateful to Paul Fudal for his technical
assistance in the setup of the simulations.

This work was partially financed by the ANR MACSi and
the ERC Starting Grant EXPLORERS 240 007. Computing
hours for running simulations were graciously provided by
the MCIA Avakas cluster.

REFERENCES

LEARNING ALGORITHMS AND METHODS

[1] W.S. Cleveland, S.J. Devlin, ”Locally-Weighted Regression: An Ap-
proach to Regression Analysis by Local Fitting”. Journal of the
American Statistical Association 83(403) (1988) 596610.

[2] C. G. Atkeson, A. W. Moore, S. Schaal, ”Locally Weighted
Learning”, Artificial Intelligence Review, 11(1) (1997) 11-73,
10.1023/A:1006559212014

[3] R. Penrose. ”A generalized inverse for matrices”, Proceeding of
Cambridge Philosophical Society 51 (1955) 406-413.

[4] R. H. Byrd, P. Lu and J. Nocedal, ”A Limited Memory Algorithm for
Bound Constrained Optimization”, SIAM Journal on Scien. and Stat.
Computing 16(5) (1995) 1190-1208.

[5] C. Zhu, R. H. Byrd and J. Nocedal, ”L-BFGS-B: Algorithm 778:
L-BFGS-B, FORTRAN routines for large scale bound constrained
optimization”, ACM Transactions on Mathematical Software, 23(4)
(1997) 550-560.

[6] A. F. Siegel, ”Robust regression using repeated medians”, Biometrika
69(1) (1982) 242244.

EXPLORATION ALGORITHMS

[7] A. Baranes, P-Y. Oudeyer, ”Active Learning of Inverse Models with
Intrinsically Motivated Goal Exploration in Robots”, Robotics and
Autonomous Systems, (2012).

[8] M. Rolf, ”Goal Babbling for an Efficient Bootstrapping of Inverse
Models in High Dimensions”, PhD Thesis Bielefeld University (2012)

[9] M. Lopes, T. Lang, M. Toussaint, P-Y. Oudeyer, ”Exploration in
model-based reinforcement learning by empirically estimating learning
progress.”, Neural Information Processing System (NIPS) , (2012).

[10] M. Lopes, P-Y. Oudeyer, ”The strategic student approach for life-long
exploration and learning.” Development and Learning and Epigenetic
Robotics (ICDL), (2012).

[11] J. Schmidhuber. ”Formal Theory of Creativity, Fun, and Intrinsic
Motivation (1990-2010)”. IEEE Transactions on Autonomous Mental
Development, 2(3) (2010) 230-247

TRANSFER ALGORITHMS

[12] F. Fernández, M. Veloso. ”Probabilistic policy reuse in a reinforcement
learning agent.” In Proceeding of the fifth conference on Autonomous
Agents and Multiagent Systems, ACM, (2006) 720-727.

[13] M. E. Taylor, N. K. Jong, P. Stone, ”Transferring instances for model-
based reinforcement learning.” Machine Learning and Knowledge
Discovery in Databases. Springer Berlin Heidelberg, (2008) 488-505.

[14] M. E. Taylor, P. Stone, ”Transfer learning for reinforcement learning
domains: A survey.” The Journal of Machine Learning Research, 10,
(2009) 1633-1685

[15] L. Torrey, J. Shavlik, ”Transfer Learning”, Handbook of Research on
Machine Learning Applications (2009).

[16] F. Doshi-Velez, G. D. Konidaris, ”Transfer Learning by Discover-
ing Latent Task Parametrizations.” In the NIPS 2012 Workshop on
Bayesian Nonparametric Models for Reliable Planning And Decision-
Making Under Uncertainty, (2012).

[17] M. G. Madden, T. Howley, ”Transfer of experience between rein-
forcement learning environments with progressive difficulty.” Artificial
Intelligence Review 21.3-4 (2004) 375-398.

[18] S. Barrett, M. Taylor, P. Stone. ”Transfer learning for reinforcement
learning on a physical robot.” In The Ninth International Conference
on Autonomous Agents and Multiagent Systems - Adaptive Learning
Agents Workshop, number May, 2010.

[19] S. Thrun and T. Mitchell. ”Lifelong Robot Learning”. Robotics and
autonomous systems, (March 1993), 1995.

OTHER

[20] D. L. Silver, Y. Qiang, L. Lianghao, ”Lifelong Machine Learning Sys-
tems: Beyond Learning Algorithms.” 2013 AAAI Spring Symposium
Series., 2013.

[21] J. Konczak, ”On the notion of motor primitives in humans and robots”,
Lund University Cognitive Studies (2005)

