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Abstract

Goal oriented error estimation and adaptive procedures are essential for
the accurate and efficient evaluation of finite element numerical simulations
that involve complex domains. By locally improving the approximation qual-
ity, for example, by using the extended finite element method (XFEM), we
can solve expensive problems which could result intractable otherwise. Here,
we present an error estimation technique for enriched finite element approxi-
mations that is based on an equilibrated recovery technique, which considers
the stress intensity factor as the quantity of interest. The locally equilibrated
superconvergent patch recovery is used to obtain enhanced stress fields for the
primal and dual problems defined to evaluate the error estimate.

KEY WORDS: goal oriented, error estimation, recovery, quantities of interest, error con-

trol, mesh adaptivity

1 Introduction

Nowadays, complex mechanical problems are solved using large numerical simula-
tions in many engineering settings. One particular aspect of the design process is
to offer good reliable solutions with the lowest computational cost. As numerical
methods introduce an error in the solution due to the approximations used to solve
the problem, it becomes necessary to quantify this error in order to guarantee the
quality of the results [1, 2]. Moreover, in order to increase the computer efficiency,
it is common practice to use adaptivity procedures to improve the accuracy whilst
keeping the model with a tractable small size.
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Since the beginning of the use of numerical simulations many methods have been
developed to control the discretisation error of finite element approximations, mostly
based on the evaluation of global energy norms. These methods can be broadly clas-
sified in residual based [3], recovery based [4] and dual analysis [5]. However, a more
interesting approach is to control the error in a particular quantity relevant for the
design process [1, 6, 7, 8]. This quantity could be defined as a bounded functional
that describes the displacement or stresses in a given area of the domain, or for the
case of fracture mechanics, the stress intensity factor that characterises the crack.
This approach, referred to as goal oriented, is usually based on the use of duality
techniques that involve the formulation of an adjoint or dual problem directly re-
lated to the quantity of interest (QoI). Residual methods have been frequently used
to evaluate the error in quantities of interest although examples involving recovery
techniques can be found in [9, 10], and considering dual analysis in [11]. In [10],
recovery and residual based estimates of the error in evaluating the J-integral for
finite element (FE) approximations in the context of linear elastic fracture mechan-
ics are presented. The numerical results showed that a recovery technique with a
standard superconvergent patch recovery (SPR) gives more accurate results than the
residual estimates presented. Note that if we use an energy estimate with bounding
properties, then the error estimate for the quantity of interest is bounded [8, 7].
On the other hand, it is usually difficult to obtain guaranteed error bounds of the
quantities of interest while maintaining the accuracy of the estimate. The need of
such a bound is also arguable in an engineering context as the reliability of an a
posteriori error estimate, which is quantified by its local effectivity, can be verified
beforehand on a number of practical cases. Here, we are interested in increasing the
effectivity of the error estimate used to guide adaptive algorithms rather than error
bounding.

In the context of fracture mechanics, the extended finite element method (XFEM)
[12] has been successfully used to enrich the finite element approximation in order to
represent the particular features of cracks, namely, the discontinuity along the crack
faces and the singularity at the crack tip. This method helps to overcome some of
the difficulties when modelling crack propagation, such as the need for remeshing to
obtain conforming meshes to the crack topology. Error estimators in energy norm for
XFEM and other partition of unity methods have been proposed in [13, 14, 15, 16]
using recovery techniques, and in [17, 18, 19] using the residual approach. A goal
oriented approach for enriched finite element approximations based on the constitu-
tive relation error has been presented in [20]. In [21] goal oriented error estimators
based on the explicit residual method were introduce for the XFEM framework. In
[22], adaptive techniques based on energy norm and goal oriented error estimation
have been investigated for enriched finite element approximations.

In this paper, we propose a goal oriented error estimation technique for XFEM
approximations that is based on the enhanced recovery technique previously pre-
sented in [15, 16]. We use the stress intensity factor (SIF) typical of fracture me-
chanics problems as the quantity of interest. As shown in [13, 23], error estimators
based on standard recovery techniques (e.g. SPR) provide inaccurate results because
the polynomial basis of the recovered stress field is unable to improve the XFEM
solution in fracture mechanics problems, which includes the singular terms. The
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use of enhanced recovery techniques is recommended in these references. Therefore,
error estimates in quantities of interest will also require a careful consideration of
the singular character of the XFEM solution, and the use of extended recovery ap-
proaches becomes a necessity to obtain accurate estimates. To improve the quality
of the recovered stresses for the primal and dual problems, and therefore, the accu-
racy of the error estimate, we consider equilibrium constraints locally in patches of
elements and the splitting of the stress field to describe the singular behaviour of
the solution.

The paper is organised as follows. In Section 2, we introduce the problem under
consideration and its corresponding enriched approximation. The general framework
for error measures is presented in Section 3. In Section 4, we show useful analytical
definitions of QoI for the enforcement of equilibrium conditions. We discuss the
formulation of the dual problem when considering the stress intensity factor as the
quantity of interest in the goal oriented approach. Numerical results are provided
in Section 5 and conclusion are drawn in Section 6.

2 Problem statement and XFEM solution

In this section, we introduce the 2D linear elasticity problem. We denote by u the
displacement, by σ the Cauchy stress and by ε the strain, all these fields defined
over the domain Ω ⊂ R2, of boundary denoted by ∂Ω. ΓN and ΓD refer to the parts
of the boundary where the Neumann and Dirichlet conditions are applied, and ΓC
to the free traction surface describing a crack such that ∂Ω = ΓN ∪ ΓD ∪ ΓC and
ΓN ∩ΓD∩ΓC = ∅. We denote as b the body loads, t the tractions imposed along ΓN
and σ0, ε0 the initial stresses and strains. The displacement field u is the solution
of the problem given by

LTσ + b = 0 in Ω (1)

Gσ = t on ΓN (2)

Gσ = 0 on ΓC (3)

u = 0 on ΓD (4)

ε(u) = Lu in Ω (5)

σ = D(ε(u)− ε0) + σ0 in Ω (6)

where L is the differential operator for linear elasticity, and G is the projection
operator that projects the stress field into tractions over any boundary, with n the
unit normal to ΓN , such that

LT =

[
∂/∂x 0 ∂/∂y

0 ∂/∂y ∂/∂x

]
, G =

[
nx 0 ny
0 ny nx

]
, (7)

D is the matrix of the linear constitutive relation for stress and strain. We consider
an homogeneous Dirichlet boundary condition in (4) for simplicity.
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The problem expressed in its variational form is written as:

Find u ∈ V such that ∀v ∈ V = {v | v ∈ [H1(Ω)]2,v|ΓD
= 0} :∫

Ω

ε(u)TDε(v)dΩ =

∫
Ω

vTbdΩ +

∫
ΓN

vT tdΓ +

∫
Ω

ε(v)TDε0dΩ−
∫

Ω

εT (v)σ0dΩ

(8)
Let us consider a finite element approximation of u denoted as uh. In the XFEM

formulation [12], the approximation is usually enriched with two types of enrichment
functions by means of the partition of unity: (i) a Heaviside function H to describe
the discontinuity of the displacement field along the crack, in the set of nodes Icrack

whose support is intersected by the crack and (ii) a set of branch functions F` to
represent the asymptotic behaviour of the stress field near the crack tip, in the
set of nodes I tip whose support contains the singularity. The XFEM displacement
interpolation in a 2D model reads:

uh(x) =
∑
i∈I

Ni(x)ai +
∑

i∈Icrack
Ni(x)H(x)bi +

∑
i∈Itip

Ni(x)

(
4∑
`=1

F`(x)c`i

)
(9)

where Ni denotes the classical shape functions associated with node i and a, b, c
are the unknown coefficients. The F` functions used in this paper for the 2D case
are [12]:

{F` (r, φ)} ≡
√
r

{
sin

φ

2
, cos

φ

2
, sin

φ

2
sinφ, cos

φ

2
sinφ

}
(10)

Considering the enriched finite-dimensional subspace V h ⊂ V spanned by locally
supported finite element shape functions, we solve for a discrete solution uh ∈ V h

of the variational problem in (8) such that ∀v ∈ V h:

∫
Ω

ε(uh)TDε(v)dΩ =

∫
Ω

σT (uh)D−1σ(v)dΩ =∫
Ω

vTbdΩ +

∫
ΓN

vT tdΓ +

∫
Ω

ε(v)TDε0dΩ−
∫

Ω

ε(v)Tσ0dΩ (11)

3 Error estimates in energy norm

3.1 Zienkiewicz Zhu error estimate

The discretisation error is defined as e := u − uh, in the absence of other types of
errors. To quantify the error introduced by the discretisation a common approach
is to use the energy norm of e defined as:

‖e‖2 =

∫
Ω

ε(e)TDε(e)dΩ. (12)

Using the constitutive relation and introducing the error in the stress field eσ :=
σ − σh, where σh = D

(
ε(uh)− ε0

)
+ σ0 is the finite element stress field, the

previous expression can be written as

‖e‖2 =

∫
Ω

eTσD−1eσdΩ (13)
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Whereas the exact field u is in general unknown, it is possible to obtain an estimate
of the error by means of the approximation introduced in [4] in the context of FE
elasticity problems

‖e‖2 ≈
∫

Ω

(e∗σ)T D−1 (e∗σ) dΩ, (14)

where e∗σ is the approximated stress error defined by e∗σ := σ∗ − σh, being σ∗

the recovered stress field. Local element contributions are also obtained from (14)
considering the domain of the element Ωe.

3.2 Recovery technique

The accuracy of the Zienkiewicz-Zhu error estimator shown in (14) depends on the
quality of the recovered field σ∗. In this work we consider the SPR-CX recovery
technique, which is an enhancement of the error estimator introduced in [24], to
recover the solutions for the primal and dual problems. The technique incorpo-
rates the ideas in [25] to guarantee locally on patches the exact satisfaction of the
equilibrium equations, and the extension in [15] to singular problems.

Let us define the field σ− such that we subtract the initial stress and strain from
the field σ:

σ− = σ − σ0 + Dε0, (15)

and perform the recovery on σ−. Then, the recovered field is

σ∗ = (σ−)∗ + σ0 −Dε0, (16)

where (σ−)∗ is the smoothed field that corresponds to σ−.
In the SPR-CX technique, as in the original SPR technique, we define a patch

P(J) as the set of elements connected to a vertex node J . On each patch, a poly-
nomial expansion for each one of the components of the recovered stress field is
expressed in the form:

σ̂∗k(x) = p(x)ak k = xx, yy, xy (17)

where p represents a polynomial basis and ak are unknown coefficients. Usually, the
polynomial basis is chosen equal to the finite element basis for the displacements. A
least squares approximation to the values of FE stresses evaluated at the integration
points of the elements within the patch, xG ∈ P(J), is used to evaluate the coefficients
ak.

For the 2D case, the linear system of equations to evaluate the recovered stress
field coupling the three stress components reads:

σ̂∗(x) =


σ̂∗xx(x)
σ̂∗yy(x)
σ̂∗xy(x)

 = P(x)A =

p(x) 0 0
0 p(x) 0
0 0 p(x)


axx
ayy
axy

 (18)

In the basic SPR, we obtain the coefficients A from the minimisation of the
functional

F (J)(A) =

∫
P(J)

(PA− σ−h)2dΩ (19)
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where σ−h = Dε(uh).
The continuity of the recovered field is obtained by using a partition of unity

procedure [26] to weight the stress fields obtained from the patches formed at the
vertex nodes of the element. The field σ∗ is interpolated using linear shape functions
N (J) associated with the nv vertex nodes such that

σ∗(x) =
nv∑
J=1

N (J)(x)σ̂∗(J)(x)−Dε0(x) + σ0(x). (20)

Note that in (20) we add back the contribution of the initial stresses and strains
subtracted in (15).

3.3 Equilibrium conditions

Constraint equations are introduced via Lagrange multipliers into the functional
defined in (19) on each patch, in order to enforce the satisfaction of the:

• Internal equilibrium equation: The constraint equation for the internal equi-
librium in the patch is defined as:

∀xj ∈ P(J) LT σ̂∗(J)(xj) + LT (σ0(xj)−Dε0(xj)) + b̂(xj) := cint(xj) = 0
(21)

where b̂(x) is a polynomial least squares fit of degree p− 1 to the actual body
forces b(x), being p the degree of the recovered stress field σ̂∗(J). We enforce
cint(xj) at a sufficient number of j non-aligned points (nie) to guarantee the

exact representation of b̂(x).

• Boundary equilibrium equations: We use a point collocation approach to im-
pose the satisfaction of a polynomial approximation to the tractions along the
Neumann boundary intersecting the patch. The constraint equation reads

∀xj ∈ ΓN∩P(J) Gσ̂∗(J)(xj)+GLT (σ0(xj)−Dε0(xj))−t(xj) := cext(xj) = 0
(22)

We enforce cext(xj) in nbe = p + 1 points along the part of the boundary
crossing the patch. In the case that more than one boundary intersects the
patch, only one curve is considered in order to avoid over-constraining.

• Compatibility equations: ccmp(xj) is only imposed in the case that p ≥ 2 in a
sufficient number of non-aligned points. σ̂∗ directly satisfies ccmp for p = 1.

Thus, the Lagrange functional enforcing the constraint equations for a patch
P(J) can be written as

L(J)(A,λ) = F (J)(A) +
nie∑
i=1

λint
i

(
cint(xi)

)
+

nbe∑
j=1

λext
j

(
cext(xj)

)
+

nc∑
k=1

λcmp
k (ccmp(xk)) .

(23)
Optimizing functional (23) we obtain a linear system of equations to evaluate

the coefficients A. To enforce equilibrium conditions along internal boundaries (e.g.
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bimaterial problems, problems with zones subjected to different body forces, etc.),
we consider different polynomial expansions on each side of the boundary and en-
force the statical admissibility condition imposing equilibrium along this boundary.
Suppose that we have a patch intersected by ΓI such that Ωe = Ω1,e ∪ Ω2,e for in-
tersected elements, as shown in Figure 1. To enforce equilibrium conditions along
ΓI we define the stresses σ̂∗Ω1

, σ̂∗Ω2
at each side of the internal boundary. Then, the

boundary equilibrium along ΓI given the prescribed tractions tΓI
= [tx ty]

T is:

G(σ̂∗Ω1
|ΓI
− σ̂∗Ω2

|ΓI
) = tΓI

. (24)

Figure 1: Equilibrium conditions along internal boundaries.

The same procedure can be used for patches intersected by the crack. In this
case, we could consider the traction-free condition along the crack faces or define a
different prescribed condition depending on the configuration.

After evaluating the equilibrated recovered fields on each patch σ̂∗(J), we use
(20) to obtain a continuous field. This process introduces a lack of equilibrium
s =

∑nv

J=1∇N (J)σ∗(J) when evaluating the divergence of the internal equilibrium
equation, as explained in [24, 16].

3.4 Singular fields

Different techniques have been used to account for the singular part during the
recovery process [15, 13]. Here, following the ideas in [15], for singular problems the
exact stress field σ is decomposed into two stress fields, a smooth field σsmo and a
singular field σsing:

σ = σsmo + σsing. (25)

Then, the recovered field σ̂∗ required to compute the error estimate given in (14)
can be expressed as the contribution of two recovered stress fields, one smooth σ̂∗smo

and one singular σ̂∗sing:
σ̂∗ = σ̂∗smo + σ̂∗sing. (26)

For the recovery of the singular part, the expressions which describe the asymp-
totic fields near the crack tip are used. To evaluate σ̂∗sing we first obtain estimated
values of the stress intensity factors KI and KII using a domain integral method
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based on extraction functions [27, 28]. Notice that the recovered part σ̂∗sing is an
equilibrated field as it satisfies the equilibrium equations.

Once the field σ̂∗sing has been evaluated, an FE-type approximation (discontin-

uous) to the smooth part σ̂hsmo can be obtained subtracting σ̂∗sing from the raw FE
field:

σ̂hsmo = σ̂h − σ̂∗sing. (27)

Then, the field σ̂∗smo is evaluated applying the enhancements of the SPR tech-
nique previously described, i.e. satisfaction of equilibrium and compatibility equa-
tions at each patch. Note that as both σ̂∗smo and σ̂∗sing satisfy the equilibrium equa-
tions, σ̂∗ also satisfies equilibrium at each patch.

4 Error in quantities of interest

4.1 Exact error representation and auxiliary problem

The goal of many numerical computations is to control a specific design parameter,
thus, it results natural to formulate the error in terms of such quantity. For this
purpose, error estimators measured in the energy norm might be utilised to estimate
the error in a particular quantity of interest [1]. In this section we show how the ZZ
estimate with the SPR-CX recovery may be used to evaluate the error in quantities
of interest.

A common approach to evaluate the error in QoI involves the use of duality
techniques which solve two different problems. A primal problem, which is the
problem at hand as shown in (8), and a dual problem used to extract information
on the QoI. Thus, we shall explain the formulation of the dual problem.

Consider the primal problem given in (8) and its approximate finite element
solution uh ∈ V h ⊂ V . Let Q : V → R be a bounded linear functional representing
some quantity of interest, acting on the space V of admissible functions for the
problem at hand. We are interested in estimating the error in the functional Q(u)
when calculated using the value of the approximate solution uh:

Q(u)−Q(uh) = Q(u− uh) = Q(e) (28)

To evaluate Q(e) the standard procedure is to solve the auxiliary or dual problem

Find ũ ∈ V such that ∀v ∈ V,∫
Ω

ε(v)TDε(ũ)dΩ = Q(v),
(29)

which can be seen as the variational form of an auxiliary mechanical problem used
to extract information of the QoI. The dual displacement field ũ ∈ V vanishes over
ΓD. Test function v is a virtual displacement. Field σ̃ = D(ε(ũ)− ε̃0) + σ̃0, where
σ̃0 and ε̃0 are known initial stress and strain, can be interpreted as a mechanical
stress field. The left-hand side of (29) is the work of internal forces of the auxiliary
mechanical problem and Q(v) is the work of an abstract external load.
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We consider the same finite element space used in the primal problem to look
for an approximation of ũ ∈ V such that the problem is

Find ũh ∈ V h such that ∀v ∈ V h,∫
Ω

ε(v)TDε(ũh)dΩ = Q(v).
(30)

To obtain an exact representation for the error Q(e) in terms of the solution of the
dual problem we substitute v = e in (29) and, considering the Galerkin orthogonal-
ity, for all ũh ∈ V h:

Q(e) =

∫
Ω

ε(e)TDε(ẽ)dΩ (31)

where ẽ := ũ−ũh is the discretisation error of the dual problem (29). We can obtain
an expression in terms of the mechanical stresses using the constitutive relation:

Q(e) =

∫
Ω

eTσD−1ẽσdΩ (32)

where ẽσ := σ̃ − σ̃h is the stress error of the dual problem and σ̃h = D(ε(ũh) −
ε̃0) + σ̃0 the finite element stress field.

4.2 Smoothing-based error estimate

The error in the QoI in (32) is related to the errors in the FE approximations uh

and ũh. Thus, we can select from the set of available procedures to estimate the
error in the energy norm a technique to obtain estimates of the error in the QoI.
Considering expressions (14) and (32) we can derive an estimate for the error in the
QoI which reads

Q(e) ≈ E =

∫
Ω

(e∗σ)TD−1(ẽ∗σ)dΩ (33)

where the approximate dual error is ẽ∗σ = σ̃∗− σ̃h and σ̃∗ is the recovered auxiliary
stress field. Here, we expect to have a sharp estimate of the error in the QoI if the
recovered stress fields are accurate approximations to their exact counterparts.

The recovered stress fields can be computed in many ways, for example, by using
the SPR technique as explained in [29]. To obtain accurate representations of the
exact stress fields for the primal and dual solutions, we propose the use of the locally
equilibrated recovery technique described in Section 3.2. This technique, which is
an enhancement of the SPR, enforces the fulfilment of the internal and boundary
equilibrium equations locally on patches. For problems with singularities the stress
field is also decomposed into two parts: smooth and singular, which are separately
recovered.

Two remarks have to be made. First, the analytical expressions that define the
tractions and body forces for the dual problem are obtained from the interpretation
of the functional Q in terms of tractions, body loads, initial stresses and strains, as
seen in Section 4.3. Second, to enforce equilibrium conditions during the recovery
process along the boundary of the domain of interest (DoI) used to define the QoI, we
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consider it as an internal interface. We use different polynomial expansions on each
side of the boundary and enforce statical admissibility of the normal and tangential
stresses as previously explained in Section 3.2

4.3 Analytical definitions for the dual problem

The SPR-CX recovery requires that the mechanical equilibrium must be made ex-
plicit in order to recover the dual stress field. Thus, the right-hand side of (29) is
interpreted as the work of mechanical external forces, and the analytical expression
of these forces is derived, depending on the quantity of interest:

Find ũ ∈ V such that ∀v ∈ V :∫
Ω

ε(v)TDε(ũ)dΩ = Q(v)

=

∫
Ω

vT b̃dΩ +

∫
ΓN

vT t̃dΓ +

∫
Ω

ε(v)TDε̃0dΩ−
∫

Ω

ε(v)T σ̃0dΩ

(34)

The problem in (34) is solved using a FE approximation with test and trial
functions in V h. The finite element solution is denoted by ũh ∈ V h.

Such derivations were presented in [30, 31, 32]. Here, we only recall some of the
results presented in these papers. Additionally, we provide the analytical expression
of the dual load when the quantity of interest is the generalised stress intensity factor
(GSIF).

4.3.1 Mean strain in ΩI

In this case we are interested in some combination of the components of the strain
over a subdomain ΩI such that the QoI is given by:

Q(u) =
1

|ΩI |

∫
ΩI

cTε ε(u)dΩ =

∫
ΩI

cTε
|ΩI |

ε(u)dΩ (35)

where cε is the extraction operator used to define the combination of strains under
consideration. Thus, the term σ̃0 = cTε /|ΩI | represents the vector of initial stresses
that are used to define the auxiliary problem for this particular QoI.

4.3.2 Mean stress value in ΩI

Let us consider now as QoI the mean stress value given by a combination cσ of the
stress components σ = D(ε(u)− ε0) + σ0 in a domain of interest which reads:

Q(u) =
1

|ΩI |

∫
ΩI

cTσ (D(ε(u)− ε0) + σ0)dΩ. (36)

Q is an affine functional. Let us define

Q̃(v) =

∫
Ω

cTσD(ε(v))dΩ (37)
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for v an arbitrary vector of H1(Ω). Q̃ is such that Q̃(e) = Q(e), so that by solving
the dual problem ∫

Ω

ε(v)TDε(ũ)dΩ = Q̃(v) (38)

for ũ, the derivations of Section 4.1 apply.
Similarly to the previous quantity, the right-hand side of the auxiliary problem

is defined by the term ε̃0 = cTσ /|ΩI |, which represents in this case a vector of initial
strains.

4.3.3 Generalised stress intensity factor

The generalised stress intensity factor (GSIF) K is the characterizing parameter in
singular problems as in the case of reentrant corners or in fracture mechanics. For
that reason, it is important to evaluate error estimates considering this parameter
as the quantity of interest. To evaluate the GSIF in XFEM approximations it is
a common practice to use the interaction integral in its equivalent domain integral
(EDI) form. There are different expressions already available to evaluate EDI inte-
grals for singular problems. In this work, we are going to consider the method based
on extraction functions, as shown in [27], which is a generalisation of the interaction
integral for the singular problem of a V-notch plate:

Q(u) = K = − 1

C

∫
Ω

(
σjku

aux
k − σaux

jk uk
) ∂q
∂xj

dΩ (39)

where uaux, σaux are the auxiliary fields used to extract the GSIFs in mode I or mode
II and C is a constant that is dependent on the geometry and the loading mode. q is
an arbitrary C0 function that defines the extraction zone ΩI which takes the value
of 1 at the singular point and 0 at the boundary Γ, xj refers to the local coordinate
system defined at the singularity.

To formulate the dual problem, we assemble the vector of equivalent nodal forces
corresponding to the volume loads in the domain of interest that represent the stress
intensity factor. Consider the expanded expression for K with three terms function
of the primal stresses and two terms function of the primal displacements:

Q(u) = K =

∫
ΩI

(σ)T
(
− 1

C

) uaux
1 q,1
uaux

2 q,2
uaux

2 q,1 + uaux
1 q,2

−
(u)T

(
− 1

C

)[
σaux

11 q,1 + σaux
21 q,2

σaux
12 q,1 + σaux

22 q,2

]
dΩ (40)

which can be rewritten as a function of initial strains ε̃0 and body loads b̃:

Q(u) = K =

∫
ΩI

σ(u)T ε̃0 + (u)T b̃dΩ. (41)

Thus, if we replace u with the vector of arbitrary displacements v, the quantity
of interest can be evaluated from

Q(v) =

∫
ΩI

σ(v)T ε̃0dΩ +

∫
ΩI

vTb̃dΩ. (42)
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Hence, the initial strains and the body loads per unit volume that can be applied
in the dual problem to extract the GSIF are defined as

ε̃0 = − 1

C

 uaux
1 q,1
uaux

2 q,2
uaux

2 q,1 + uaux
1 q,2

 , b̃ =
1

C

[
σaux

11 q,1 + σaux
21 q,2

σaux
12 q,1 + σaux

22 q,2

]
(43)

5 Numerical results

In this section we consider numerical examples for 2D problems with exact analytical
solution to evaluate the performance of the technique presented above. For that
purpose we define the effectivity index of the error estimator θ as:

θ =
E

Q(e)
(44)

where Q(e) denotes the exact error in the quantity of interest, and E represents the
evaluated error estimate. We can also represent the effectivity in the QoI defined as

θQoI =
Q(uh) + E
Q(u)

(45)

and the relative error in the QoI for the exact and estimated error

ηQ(e) =
|Q(e)|
|Q(u)|

, ηE =
|E|

|Q(uh) + E|
(46)

5.1 Westergaard problem – FEM solution.

Let us consider the Westergaard problem [15, 33] of linear elastic fracture mechanics
for which the exact analytical solution is known. The Westergaard problem corre-
sponds to an infinite plate loaded at infinity with biaxial tractions σx∞ = σy∞ = σ∞
and shear traction τ∞, presenting a crack of length 2a as shown in Figure 2. Com-
bining the externally applied loads we can obtain different loading conditions: pure
mode I, pure mode II or mixed mode.

The numerical model corresponds to a finite portion of the domain (a = 5 and
b = 10 in Figure 2). The applied projected stresses for mode I are evaluated from
the analytical Westergaard solution [33]:

σIx(x, y) =
σ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
+ y

a2

|t|2

(
m sin

φ

2
− n cos

φ

2

)]
σIy(x, y) =

σ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
− y a

2

|t|2

(
m sin

φ

2
− n cos

φ

2

)]
τ Ixy(x, y) = y

a2σ∞

|t|2
√
|t|

(
m cos

φ

2
+ n sin

φ

2

) (47)
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Figure 2: Westergaard problem. Infinite plate with a crack of length 2a under
uniform tractions σ∞ (biaxial) and τ∞. Finite portion of the domain Ω0, modelled
with FE.

and for mode II:

σIIx (x, y) =
τ∞√
|t|

[
2

(
y cos

φ

2
+ x sin

φ

2

)
− y a

2

|t|2

(
m cos

φ

2
+ n sin

φ

2

)]
σIIy (x, y) = y

a2τ∞

|t|2
√
|t|

(
m cos

φ

2
+ n sin

φ

2

)
τ IIxy (x, y) =

τ∞√
|t|

[(
x cos

φ

2
− y sin

φ

2

)
+ y

a2

|t|2

(
m sin

φ

2
− n cos

φ

2

)] (48)

where the stress fields are expressed as a function of x and y, with origin at the
centre of the crack. The parameters t, m, n and φ are defined as

t = (x+ iy)2 − a2 = (x2 − y2 − a2) + i(2xy) = m+ in

m = Re(t) = Re(z2 − a2) = x2 − y2 − a2

n = Im(t) = (z2 − a2) = 2xy

φ = Arg(t̄) = Arg(m− in) with φ ∈ [−π, π] , i2 = −1

(49)

For the problem analysed, the exact value of the SIF is given by

KI,ex = σ∞
√
πa KII,ex = τ∞

√
πa (50)

Material parameters are Young’s modulus E = 107 and Poisson’s ratio ν = 0.333.
We consider loading conditions in pure mode I with σ∞ = 100 and τ∞ = 0, and pure
mode II with σ∞ = 0 and τ∞ = 100. We assume plane strain conditions.

In the numerical analyses, we use a geometrical enrichment defined by a circular
fixed enrichment area B(x0, re) with radius re = 2.5, with its centre at the crack
tip x0 as proposed in [34]. Bilinear elements are considered in the models, using
a sequence of uniformly refined meshes. For the numerical integration of standard
elements we use a 2 × 2 Gaussian quadrature rule. We use a 5 × 5 quasipolar
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integration in the subdomains of the element containing the crack tip [34]. We do
not consider correction for blending elements. Methods to address blending errors
are proposed in [35, 36, 37, 38].

To evaluate the stress intensity factor K we use an EDI technique [27]. For the
primal problem we consider a square plateau function q centred at the crack tip,
as shown in Figure 3. q = 1 for the domain defined by an inner square with side
length 6 and q = 0 for the part of the domain outside the outer square with side
length 8, q is interpolated in-between the two squares. This plateau function is also
used to define the subdomain Ωi when extracting the quantity of interest in the
dual problem. As the dual problem is also a singular problem we have to evaluate
a second stress intensity factor. In this case, we use a plateau function such that
q = 1 for all nodes inside a square with side length 4.9 and q = 0 otherwise.

Figure 3: Domain of interest for the extraction of the stress intensity factor

In Figure 4 we represent the equivalent nodal forces used to solve the primal and
dual problems. For the dual problem the vector of forces is constructed using the
discrete approximation of the dual function. The Dirichlet boundary constraints are
the same for both models. For the dual problem, we can see that the forces are
distributed in the nodes located in the domain of interest. For the recovery of the
primal and dual fields we perform the splitting of stresses and enforce internal and
boundary equilibrium and the compatibility equation.

The yy-component of the stress field for the raw FE and the recovered solutions is
represented in Figure 5. The enrichment area is indicated with a circle. In Figure 6
we show the same results for the dual problem. Notice how the recovery procedure
smoothes the stresses along the interface of the domain of interest. As the dual
problem is also characterised by the crack, we have to evaluate the corresponding
stress intensity factor and perform the singular+smooth decomposition of the stress
field.

Figure 7 shows the evolution of the effectivity index θ as we increase the number
of degrees of freedom (dof). We consider as quantities of interest the two GSIFs
characterising two different loading conditions, i.e. mode I and mode II. We can see
that for both quantities the error estimator yields effectivities close to the optimal
value θ = 1.

14



Figure 4: Equivalent forces at nodes for the primal (left) and dual (right) problems.

In Tables 1 and 2 we indicate the values for the estimated, E , and exact, Q(e),
errors, the global effectivity index θ and the effectivity for the quantity of interest
θQoI using the proposed recovery technique and the standard SPR (denoted with †).
The magnitude of the exact error is accurately captured by the estimated obtained
with the SPR-CX, which is clearly reflected in the good effectivity index for both
loading modes. As expected, the effectivity in the quantities of interest θQoI is highly
accurate. For the SPR, although the value E decreases as we increase the number of
dof, the error estimate is not as accurate as the estimate obtained with the SPR-CX
and does not decrease as fast as the exact error, loosing asymptotic exactness. The
SPR does not consider the splitting of the singular stresses, giving less accurate
results close to the crack tip, and does not enforce equilibrium conditions in the
primal and dual recovered fields, which results in a poorer description of the stresses
close to the boundaries and the interface of the domain of interest.

Figure 8 compares the results of the proposed SPR-CX recovery with the stan-
dard SPR technique. In particular, the SPR cannot properly recover singular fields,
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Figure 5: FE (left) and recovered (right) σyy for the primal problem.
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Figure 6: FE (left) and recovered fields (right) σyy for the dual problem.

thus, the error estimate provided by the technique does not converge to the exact
error [23]. This behaviour is similar for the two loading modes.

In Figure 9 we represent the distribution of the estimated error for the second
mesh of the sequence for the error in energy norm ‖ees‖ and the error considering the
quantity of interest E . This error distribution might guide the refinement during the
adaptivity procedure. The approach based on energy norm estimates that the most
critical part is located in the vicinity of the singular point whilst the goal oriented
approach also considers the domain where the information of the QoI is extracted.

Table 1: Stress intensity factor KI as QoI. †Results using the standard SPR recovery.

dof E Q(e) θ θQoI E† θ† θ†QoI

351 2.5264 2.1144 1.1948 1.00261 13.7089 6.4835 1.07333
1,289 0.4822 0.5146 0.9369 0.99979 6.3880 12.4124 1.03715
4,973 0.1140 0.1216 0.9376 0.99995 3.1756 26.1141 1.01932

19,637 0.0267 0.0278 0.9617 0.99999 1.5789 56.7646 1.00981
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Figure 7: Evolution of the effectivity index θ considering the SIF as quantity of
interest under mode I and mode II loading conditions.

Table 2: Stress intensity factor KII as QoI. †Results using the standard SPR recovery.

dof E Q(e) θ θQoI E† θ† θ†QoI

351 2.2886 1.1273 2.0302 1.00735 5.6052 4.9724 1.02832
1,289 0.2827 0.2902 0.9744 0.99995 2.2203 7.6517 1.01221
4,973 0.0700 0.0689 1.0147 1.00001 1.1078 16.0677 1.00657

19,637 0.0168 0.0159 1.0554 1.00001 0.5502 34.6562 1.00338

6 Conclusions and future work.

We have presented a locally equilibrated recovery procedure for goal oriented error
estimation in XFEM. We have considered as the design parameter the generalised
stress intensity factor that characterises the solution of singular problems in the
context of linear elastic fracture mechanics. The technique proposes the use of a
stress recovery that provides locally equilibrated stress fields for both the primal
and the dual problem.

To formulate the dual problem we consider the linear equivalent domain inte-
gral representing K to obtain the applied loads of the dual FE approximation. To
perform the recovery of the primal and dual solutions we consider three main ideas:
(i) enforcement of the internal equilibrium equation, (ii) enforcement of boundary
equilibrium and (iii) splitting of the stress field into singular and smooth parts.

The proposed technique has been tested with problems under different loading
conditions. The obtained results show that the error estimator accurately captures
the exact error in the evaluation of the stress intensity factor.
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Figure 8: Evolution of the effectivity index θ for the SPRCX and SPR. Mode I and
mode II loading conditions.
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