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ABSTRACT

This paper presents the use of a topological model to simulate a soft body deformation based on a Mass-Spring

System. We provide a generic framework which can integrate any kind of geometrical meshes (hexahedral or tetra-

hedral elements), using several numerical integration schemes (Euler semi-implicit or implicit). This framework

naturally allows topological changes in the simulated object during the animation. Our model is based on the 3D

Linear Cell Complex topological model (itself based on a 3D combinatorial map), adding the extra information

required for simulation purposes. Moreover, we present some adaptations performed on this data structure to fit

our simulation requirements, and to allow efficient cutting or piercing in a 3D object.

Keywords
Physically-based simulation; Mass-Spring System; Topological model; Linear Cell Complex; Hexahedral and

tetrahedral elements mesh; Deformation; Topological changes; Cutting; Piercing.

1 INTRODUCTION

Following the increasing demand of realism in com-

puter graphics, physically-based simulation has become

a very active research field over the last decade. This is

particularly apparent in medical simulation, interactive

entertainment, and more generally in all virtual real-

ity applications where animation, interaction or alter-

ation of deformable objects is required in interactive

time. Two perennial challenges in this domain are real-

time simulation of object undergoing user’s interaction

like cutting, tearing or fracture, and the adaptive mesh

coarsening and refinement, to better handle interaction

within a simulation scene (for example in collision and

contact zones).

The use of a topological model naturally provides a

framework to describe objects subdivided into cells

(vertices, edges, faces, volumes) and to modify their

topology by performing the appropriate operations. In

that case, the information required by the simulation

has to be associated with cells. Moreover, an efficient

implementation of this kind of data structure should

minimize the impact on computation time and should

still enable real-time user interactions during the simu-

lation.

Permission to make digital or hard copies of all or part of

this work for personal or classroom use is granted without

fee provided that copies are not made or distributed for profit

or commercial advantage and that copies bear this notice and

the full citation on the first page. To copy otherwise, or re-

publish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.

The aim of this paper is to put forward the benefits of

the use of a topological model for a physical anima-

tion based on a Mass-Spring System (denoted MSS).

In this sense, we use the 3D Linear Cell Complex (de-

noted LCC) as topological model (itself based on a 3D

combinatorial map). We add on the LCC all informa-

tion necessary for simulation purposes. Furthermore,

we present the adaptations operated on this data struc-

ture to facilitate topology changes during the animation,

and specifically to allow cutting or piercing of the sim-

ulated 3D object. This process is illustrated in Fig. 1.

The use of a topological model for a physical anima-

tion presents two main interests. (1) It describes all the

cells and all the adjacent and incident relationships be-

tween these cells. This is particularly important to as-

sociate information to some cells, and to efficiently up-

date this information during the operations. (2) It pro-

poses rigorous operations allowing topological changes

while guaranteeing the validity of the mesh. These two

features make the topological model unavoidable for a

problematic of adaptive mesh refinement.

In this paper, our main contributions are:

• a fully generic framework for topology-based mod-

eling, not only to describe the relationships between

geometrical elements, but specifically fitted to the

context of physically-based simulation;

• an embedded structure dedicated to storing the

mechanical properties, leading to facilitating all

the topological changes during animation while

preserving the mechanical behavior of the altered

object;

• a stable and robust implementation, as the optimized

structure will minimize the memory usage and at the
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Figure 1: Overview of our method.

same time will permit a simplification of the algo-

rithmic aspects of manipulating elements, i.e. low

cost browsing through all elements, or accessing to

neighbors;

• the detailed formulation of the force differentials

(required for the Euler implicit integration scheme)

in the context of soft body simulation with MSSs.

2 RELATED WORK

Topological model. Several topological models have

been featured in recent years, but only a few of the pro-

posed solutions are fully generic. The combinatorial

map is such a solution [1]. It consists of a combinato-

rial data structure allowing a description of nD objects

subdivided into cells (vertices, edges, faces, volumes)

using only one basic element, called dart, and a set of

pointers between these darts. Thanks to these pointers,

all the incidence and adjacency relationships between

the cells of the subdivision may be easily retrieved.

The main interest of combinatorial maps is: (1) to be

generic i.e. defined in any dimension; (2) to fully de-

scribe the incidence and adjacency relationships be-

tween cells, which information is useful for algorithmic

aspects; (3) to be possibly customized by adding any

type of information to cells. For all these reasons, these

models and their variants have already proven to be use-

ful and efficient data structures for image representation

and processing [2], or for geometrical modeling [3].

Physical simulation and cutting. In Computer Graph-

ics, significant efforts have been put in proposing effi-

cient methods to model deformable objects, as stated in

the following state of the art [4]. Among them, the Fi-

nite Element Method (denoted FEM) is the most com-

mon. However, it generally requires expensive pre-

computation to allow interactive topological changes.

In [5], a cutting method based on a co-rotational im-

plicit FEM [6] is presented to overcome this limitation,

by successively removing, subdividing and adding el-

ements. This avoids the reconstruction of the global

matrix, but may generate ill-conditioned elements that

are prone to produce numerical instabilities.

The MSS is an interesting alternative for physical mod-

eling. Indeed, as for the tensor-mass model, it supports

modification of its geometry in a more natural way, that

can be managed locally. Moreover, the principle of

splitting faces, instead of removing elements, will re-

sult in more plausible animations. The difficulty is then

to redistribute the mass and physical parameters over

the elements, but none of the past attempts was able to

preserve exactly the same behavior as the original MSS.

Concerning cutting, some process have been proposed

to follow a cutting path either by refining the element

or by moving artfully the vertices [7, 8]. This gener-

ally implies complex topological modifications and an

exhaustive knowledge on the incident and adjacency

relationships. For example, an algorithm is proposed

in [9] to guarantee the manifold property of the ob-

ject after topological changes to avoid ill-structured el-

ements. However, this solution requires to handle sub-

stantial number of cases. Hence, in our paper, we show

a cutting method along edges, particularly tailored for

simulation of deformable objects.

Hybrid model. The use of a topological model to

dynamically handle changes of object during a physi-

cal simulation (generally for cutting purposes) is rare

enough to be worthy of note. In 2010, Meseure [10, 11]

have presented in this sense a physical simulation based

on a MSS using generalized maps, a variant of combi-

natorial maps. In 2011, Darles [12] has also used the

generalized map topological model, this time for simu-

lation based on a model of mass-interaction.

In the first two papers [10, 11], the mechanical informa-

tion of the objects discretized into tetrahedra is embed-

ded in the topological model by attaching it to the darts.

Then, a semi-implicit integration scheme is used for the

simulation. But some drawbacks remain in this propo-

sition. Springs are only associated with edges of the

topological model. Thus, this cannot be generalized to

others geometries, as it will be impossible for example,

to add inner diagonal springs in a hexahedron. There is

no direct access to particles and springs. Consequently,

the topological data structure is computationally expen-
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Figure 2: (a) A 3D object composed of two hexahedra (mesh). (b) The corresponding 3D combinatorial map.

(c) We add 3D points linked with 0-cell to obtain a 3D LCC. (d) We associate the structures of Particle and

Spring to obtain our LCC+MSS, a 3D LCC allowing a physical simulation based on a MSS.

sive just to retrieve these elements. Thus, they propose

to set an additional array containing all the elements

plus a pointer through the corresponding dart. This so-

lution improves the speed up of the method, but it leads

to a more complex structure and burdens significantly

updating operations, as these arrays must be recom-

puted after each topological modification made on the

generalized maps.

The solution introduced in our paper is based on similar

ideas as in [10, 11], overcoming the above-mentioned

limitations thanks to a more generic model (not only

tetrahedra but any type of cells may be taken into

account) allowing fully integrated physical simulation

(currently based on a MSS) with incremental topo-

logical changes. Lastly, high level C++ mechanisms

present in CGAL LCC are used. For example, functors

are automatically called when a particle is split,

allowing us to simplify the updating of mechanical

information associated with the topological model.

3 3D LCC FOR MSS

MSSs have largely been used in animation. It consists

of discretizing the object in a set of particles (also called

masses) connected together by springs. The data struc-

ture of our MSS simulation is based on the 3D LCC [13]

from the CGAL Open Source geometric algorithms li-

brary [14]. This structure allows a representation of an

orientable 3D object subdivided into cells with linear

geometry.

Fig. 2 illustrates the main steps to construct a 3D LCC

for a MSS (denoted LCC+MSS): given the geometrical

input data of the 3D object - Fig. 2(a), we first describe

its topology with a 3D combinatorial map - Fig. 2(b)

which describes cells as well as their incidence and ad-

jacency relationships. Then, we add coordinates of the

points to obtain a 3D LCC - Fig. 2(c) which describes

the geometry of the objects. Finally, we associate the

structure Particle with vertices and Spring with

edges to fit the simulation requirements for a MSS -

Fig. 2(d).

3D combinatorial map. We give here an intuitive pre-

sentation of combinatorial maps. The interested reader

may find all the mathematical background in [1, 15].

In practice, a 3D combinatorial map is an edge-centered

data structure composed of a set of basic elements

called darts, four pointers between these darts noted β0,

β1, β2 and β3, and some constraints defined on these

pointers to guarantee the topological validity of the de-

scribed objects.

Fig. 2(a) presents a 3D object composed of 2 3-cells

(volumes), 11 2-cells (faces), 20 1-cells (edges) and

12 points associated with the 12 0-cells (vertices).

Fig. 2(b) shows the 3D combinatorial map describing

this object. Each cell is described by a set of darts.

Indeed, each dart (drawn by oriented segments) of the

3D combinatorial maps belongs to a vertex, an edge, a

face and a volume. Each cube is described by 24 darts.

Given a dart d, β1(d) gives the next dart belonging to

the same face and volume and β0(d) gives the previous

one; β2(d) gives the other dart belonging to the same

edge and volume but not to the same face and β3(d)
gives the other dart belonging to the same face and

edge but not to the same volume.

Thanks to these rules, starting from a dart, the differ-

ent pointers can be used to retrieve all the darts that

describe the same i-cell, ∀i ∈ {0,1,2,3}. Moreover, the

adjacency and incidence relationships between the cells

are entirely given by these pointers.

This basic description (darts, pointers and constraints)

defines a 3D combinatorial map carrying no additional

knowledge. But, some information is generally re-

quired to describe the geometry of the objects, their

colors, the area of their faces, etc. Consequently, in

3D combinatorial maps, any type of information may

be associated with any cell. This is done through an

association between all the darts that belong to a same

cell and an attribute containing the information. This

allows a direct access to every attribute of a given dart.

3D LCC. The 3D LCC uses the mechanism of at-

tributes to associate a 3D point with each vertex of

the combinatorial map (represented by grey dots in

Fig. 2(c)). Thus, the geometry of each edge of a 3D

LCC is a segment whose endpoints are associated with

the two vertices of the edge; the geometry of each face

is obtained from all the segments associated with the

edges describing the boundary of the facet; and so on.
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Figure 3: A 3D LCC with additional information of a physical model based on a MSS.

One strength of the CGAL implementation of the LCC

is to store every attributes in a compact container which

is a set of arrays. Thus, we can directly iterate through

all the attributes associated with a given dimension

without iterating through darts. Moreover, each array

can be processed in parallel, as they are independent.

Lastly, the ability to automatically call a function (de-

fined by the user), when two attributes are merged or

when an attribute is split in two during an operation, is

a powerful mechanism that we use to define our cutting

operation (explained in the following).

Another particularly interesting feature is that different

geometrical kernels are provided within CGAL, allow-

ing for example the use of exact or inexact arithmetic,

exact or inexact geometric predicates. Each kernel de-

fines basic types and geometric primitives. FT is the

field number type used as basic type to define each co-

ordinate of points and related measures. Depending on

the kernel, FT could be double or an arbitrary preci-

sion number type based on the GMP library [16]. Using

FT, Point_3 describes a 3D point, and Vector_3 a

3D vector. As LCC is templated by a kernel, all our

code is generic and any type of kernel may be chosen

without having to modify anything other than the tem-

plate argument. This will allow us to easily perform

tests of robustness thanks to exact arithmetic to detect

possible errors coming from roundness problems.

3D LCC+MSS. To understand our topological model

for a MSS, we first briefly recall here the dynamics of

a MSS. Thus, considering a MSS composed of n 3D

particles, we note M the diagonal mass matrix (of size

3n× 3n), F, V, P respectively the force, velocity and

position vectors of particles (of size 3n). For each par-

ticle i, we note mi its mass, Pi(t),Vi(t) its position and

velocity at time t, and Fi(t) the sum of forces it un-

dergoes (spring forces and external forces like gravity

or interaction). For each spring connecting particles i

and j, we note ki j its stiffness constant and li j its initial

length.

Then, the dynamics of the model are governed by New-

ton’s law with the following relation at time t for each

particle i:

mi

d2

dt2
Pi(t) = Fi(t). (1)

From this equation, the acceleration of the particles

may be deduced according to applied forces. A numer-

ical integration scheme is then used to obtain velocity

(according to acceleration) and position (according to

velocity) of the particles.

In the current version of our framework, 3D objects are

discretized either into hexahedra or tetrahedra. For a

tetrahedral discretization, a particle is associated with

each vertex, and respectively a spring with each edge of

the object. In a same way, for a hexahedral discretiza-

tion (see example in Fig. 2(d)), a particle is associated

with each vertex, a spring with each edge, but in addi-

tion there are 4 internal diagonal springs for each hexa-

hedron (with no corresponding edges, 1-cell).

Fig. 3 illustrates with more details the use of a 3D LCC

to describe a MSS containing one hexahedron. It con-

tains 8 particles (numbered from v0 to v7), 16 springs

corresponding to the 12 edges and the 4 internal diago-

nals of the hexahedron.

For each 0-cell, we store the structure Particle cor-

responding to the information related to the MSS: its

index (used for the Euler implicit integration scheme

explained later), its mass, its acceleration, its velocity,

the sum of the forces applied on this particle, and its di-

rection constraints (to fix the position of a particle along

the different axis). We also store the redundancy of

the considered particle (the number of volumes incident

to the vertex), and the diagonal springs linked to the

considered particle, as an array of pointers to Spring

(only for hexahedral element). Note that the position of

the particle is given by the Point_3 associated to the

corresponding vertex in the 3D LCC.

For each 1-cell, we store the associated Spring of

the MSS: its initial length, its stiffness and an array of

pointers to its two extremities (i.e. pointers on the two

Particle connected by the considered spring). We

also store information concerning its redundancy (the

number of volumes incident to the edge).

Lastly, we store the global stiffness matrix (used for the

Euler implicit scheme) into the 3D LCC+MSS object

as this matrix is shared by all the volumes of the same

3D LCC.
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4 TOPOLOGY-BASED SIMULATION

Fig. 1 presents an overview of our method which pro-

poses a topology-based model embedding geometrical

and physical information for an efficient response to

complex simulation cases. Our method is divided in

two parts. (1) A pre-processing part with the construc-

tion and the initialization of our model based on the 3D

LCC integrating the input parameters of the object (ge-

ometrical data, mechanical parameters). (2) An anima-

tion part with the simulation loop including the com-

putation of the forces applied on the particles and the

numerical integration scheme used to update the veloc-

ity and position of the particles; and the possibility of

dynamically cutting or piercing our object during the

animation. Moreover, we use either the semi-implicit

or the implicit version of Euler’s integration scheme,

leading to fast and stable simulation.

Initialization. The first step of the topology-based sim-

ulation consists of the computation of the mechanical

information, and in the initialization of the attributes

associated with the 3D LCC.

We start by reading an input file describing the geomet-

rical information of the hexahedral or the tetrahedral

mesh, and we create the corresponding elementary vol-

umes in the 3D LCC. Then, we identify all the faces that

share the same geometry to obtain a connected object.

Next, we iterate through all the particles (0-cells) to ini-

tialize the mass, redundancy and index. (1) The index

is initialized at the creation of a new particle. (2) The

redundancy is the number of volumes incident to the

vertex, which can be directly computed using the inci-

dence relations. (3) For the computation of the mass of

each particle, the global mass of the object is properly

distributed over its n particles. Consequently, consider-

ing a 3D homogeneous object discretized into hexahe-

dra with a mass density ρ , the mass mi of each particle

i of the MSS is defined by:

mi = ∑
j|i∈E j

ρ VE j

8

with E j the set of hexahedra of volume VE j
containing

the particle i. Identically for a tetrahedral discretization,

we get:

mi = ∑
j|i∈E j

ρ VE j

4

with E j the set of tetrahedra of volume VE j
containing

the particle i. Note that it is also possible to attribute

a specific mass density to each element, in case of het-

erogeneous material.

Then, we iterate through all the edges (1-cells) of the

LCC to create and initialize the corresponding springs.

(1) The stiffness constant is calculated and attributed

to each spring of the MSS accordingly to the desired

Young modulus E and the Poisson ratio ν (in our ex-

amples, we set E = 100 MPa and ν = 0.3). Our calcu-

lations are based on the formulations given in [17, 18].

(2) The redundancy is the number of volumes incident

to the edge, which again can be directly computed.

(3) We initialize also the two extremity pointers by us-

ing the incidence relationships given by the LCC.

Lastly, we iterate through all the volumes (3-cells) to

create diagonal springs when necessary. For each hex-

ahedron, we create the four inner diagonal springs, ini-

tialize their information, and insert them into the corre-

sponding particles.

Forces computation. The first step of the simulation’s

loop is to compute all the forces applied on the parti-

cles, due to springs or external interactions. The force

involved at time t by a spring connecting particles i and

j is defined by:

Fi j(t) = Fe
i j(t)+Fv

i j(t) (2)

• Fe
i j(t) is the elasticity force of this spring defined by:

�

Fe
i j(t) = ki j

�

di j − li j

�

Ui j(t)

Fe
ji(t) =−Fe

i j(t)

with di j = �P j(t)−Pi(t)� and Ui j(t) the normalized

direction vector defined as:

Ui j(t) =
P j(t)−Pi(t)

�P j(t)−Pi(t)�

• Fv
i j(t) is the viscosity force of this spring (used to

simulate dissipated energy due to frictions) defined

by:

Fv
i j(t) = γi j [(V j(t)−Vi(t)) ·Ui j(t)]Ui j(t)

with the spring’s viscosity coefficient defined

by [19]:

γi j = 2

�

mi +m j

2
ki j

To enable this computation with our 3D LCC+MSS

model, we first iterate through all the 0-cell attributes

to reset the particles force to a null vector, and we add

the external forces. In this work we only consider the

gravity by adding mi g to Fi (with g = 9.8 m/s2). Then,

we iterate through each spring (both non-diagonal and

diagonal for hexahedral elements). We compute the

force of the considering spring by using equation (2)

and we accumulate the calculated force on the two par-

ticles linked to it. All the required information is stored

in the topological model and may be directly accessed

through the attributes (the position, velocity and force

of the particles; the extremities, initial length, redun-

dancy, stiffness of the springs).
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Numerical integration schemes. The second step of

the simulation’s loop is to compute the velocity and po-

sition of all the particles by using a numerical integra-

tion scheme. This enables the update of the geometrical

coordinates of all the 0-cells of the LCC.

The Euler semi-implicit integration method has been

implemented first. After the computation of the accel-

eration of all the particles (using equation (1)), we get

for a time step h:











d

dt
Pi(t +h) =

d

dt
Pi(t)+h

d2

dt2
Pi(t)

Pi(t +h) = Pi(t)+h
d

dt
Pi(t +h)

But, to obtain a stable simulation, h has to be reduced,

especially when stiffness increases. So, to enable larger

time steps, the Euler implicit scheme has been imple-

mented:










d

dt
Pi(t +h) =

d

dt
Pi(t)+h

d2

dt2
Pi(t +h)

Pi(t +h) = Pi(t)+h
d

dt
Pi(t +h)

This scheme may be reformulated as follows [20]:
�

M−h
∂F(t))

∂V(t)
−h2 ∂F(t)

∂P(t)

�

ΔV= h F(t)+h2 ∂F(t)

∂P(t)
V(t)

with

ΔV =
d

dt
P(t +h)−

d

dt
P(t)

and ∂F/∂P, ∂F/∂V, the Jacobian matrices (of size

3n×3n, for n particles) encoding the variation of forces

resulting from position and velocity change at time t.

After computing these matrices, this linear system is

solved using the Conjugate Gradient method to obtain

ΔV. Then, the velocity is updated with:

d

dt
P(t +h) =

d

dt
P(t)+ΔV

and the position with:

P(t +h) = P(t)+h
d

dt
P(t +h)

Naturally, the damping coming from the environment

is taken into account when updating the velocity of the

particles. Moreover, we can note that the acceleration is

never really computed according to equation (1) within

the Euler implicit scheme.

Computation of the global stiffness matrix ∂F/∂P. To

fill, at time t, the nonzero entries of matrix ∂F/∂P, we

compute ∂Fi j/∂Pi (matrix of size 3× 3) only if parti-

cles i and j are connected (with i �= j), with:

∂Fi j

∂Pi

=
∂Fe

i j

∂Pi

+
∂Fv

i j

∂Pi

with















∂Fe
i j

∂Pi

= ki j

�

li j

di j

(I −Ui j UT
i j)− I

�

∂Fv
i j

∂Pi

=
γi j

di j

�

[Ui jU
T
i j − I]ω +[W Ui jU

T
i j]

T
�

where I is the identity matrix of size 3 × 3 and W a

diagonal matrix defined by:

W =−
Vi j

Ui j

+ω × (1,1,1)T with ω = Vi j ·Ui j

Fig. 4 illustrates the matrix ∂F/∂P for a 2D MSS with

6 particles. This matrix is composed of:

• non-diagonal elements ∂F ji/∂Pi and ∂Fi j/∂P j de-

duced from ∂Fi j/∂Pi with:

∂F
e/v

i j

∂Pi

=−
∂F

e/v

ji

∂Pi

,
∂F

e/v

ji

∂Pi

=
∂F

e/v

i j

∂P j

• diagonal elements [∂F/∂P]i,i with:

�

∂F

∂P

�

i,i

= ∑
k∈S

∂Fik

∂Pi

with S the set of particles connected to i.

Note that this global stiffness matrix is filled using the

particle index.
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Figure 4: Illustration of the Jacobian matrix ∂F/∂P for

a 2D MSS composed of 6 particles.

Computation of the damping matrix ∂F/∂V. The ma-

trix ∂F/∂V corresponds to the Rayleigh Damping de-

fined by µ M + λ ∂F/∂P, with µ and λ the mass and

stiffness proportional Rayleigh damping coefficients.

5 TOPOLOGICAL CUTTING

Amongst all the changes that a 3D object may undergo

during an animation, cutting is one of the most chal-

lenging, as it implies deep topological changes, i.e. el-

ement removing or splitting. Without an efficient topo-

logical model, it may cause difficulties, as generating
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ill-structured and non-manifold mesh when refining el-

ements or moving points to follow the cutting path.

In this section, we demonstrate through this particular

operation that the proposed model is robust and well

adapted, with limited additional computational cost.

Unsewing in 3D LCC. In a 3D LCC, the i-unsew

operation, i ∈ {1,2,3}, unglues two i-cells which are

glued along one of their (i− 1)-cells. For that, we un-

link βi pointers for all the darts belonging to the shared

(i − 1)-cell. After this operation, the initial shared

(i−1)-cell is split in two (i−1)-cells, and respectively

this initial (i−1)-cell will no more be shared by the two

i-cells.

If the unsew operation splits a j-cell c, ∀ j ∈ {0,1,2,3},

in two j-cells c1 and c2, and if c is associated with a

j-attribute attr1, then this attribute is duplicated into

attr2, and all the darts belonging to c2 are associated

with this new attribute. Next, a functor is called on the

two attributes allowing the user to update its specific

information.

In Fig. 5, an example of 3-unsew operation is pre-

sented. We start from the LCC given in Fig. 5(a) made

up of 4 hexahedra. A 3-unsew operation is pro-

cessed to unglue the dark grey and the white hexahe-

dra. The face separating these two hexahedra (named

(v1,v2,v3,v4) in the initial configuration) is split in two

by the 3-unsew operation. We can see in Fig. 5(b)

that this split involves the duplication of the two ver-

tices v1 and v2, and the duplication of the three edges

(v4,v1), (v1,v2) and (v2,v3). The user defined functor

is called on each pair of duplicated cells, for example on

(v1,v
�
1) for vertices, and ((v4,v1),(v

�
4,v

�
1)) for edges. In

this example, note that vertices v3 and v4 are not dupli-

cated during the unsew operation as they are still con-

nected by the two grey hexahedra right below, and con-

sequently the edge (v3,v4) is not duplicated either.
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Figure 5: Example of 3-unsew in a 3D LCC.

Object cutting during simulation. During the phys-

ical simulation, we use the 3-unsew operation to cut

an object by separating two adjacent volumes. As ex-

plained above, this operation duplicates the attributes

where necessary. In our case, particles and springs are

possibly duplicated. In both cases, the physical infor-

mation stored in the attributes has to be updated.

For new particle. If the cutting involves the creation of

a new particle (for example particle v�1 in Fig. 5), all the

information is first duplicated from the initial particle

(v1). Then we initialize the index of v�1 to a new index

(used for the Euler implicit integration) and we update

the mass of v1 and v�1 by decrementing their redundancy

(i.e. the number of volumes incident to the particles).

Lastly, we update the list of diagonal springs connected

to v1 and v�1. Indeed, springs associated with the second

volume are still attached to the initial particle v1, that is

incorrect (see Fig. 6(a)). Thus, we iterate through all the

springs associated with v1 and for each one whose other

extremity belongs to the second volume, we detach it

from v1 and attach it to v�1 (see Fig. 6(b)).
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Figure 6: Modification of springs in the 3D LCC+MSS

after 3-unsewing. (a) The bold segments represent the

springs wrongly attached to particle v1 before updating.

(b) Same springs after updating.

For new spring. If the cutting involves the creation of

a new spring (for example edge (v�1,v�2) in Fig. 5), all

the information of the spring associated with the ini-

tial edge (here, the edge (v1,v2)) is duplicated on the

new spring created and associated with the new edge.

Then, we update the redundancy of the two springs by

counting the number of volumes incident to each cor-

responding edge, and we update the two extremities of

the new spring to link the two particles incident to the

new edge.

As a consequence of the creation of new particles, the

cutting of the object involves the re-sizing of the data

structures that store the mechanical information: force,

acceleration (for Euler’s semi-implicit scheme), veloc-

ity, position vectors, and the global stiffness matrix (for

Euler’s implicit scheme). Then, the computation of the

forces applied on each particle is performed as usual.

6 RESULTS

In this section, we present some results to validate

the behavior of our animation based on a topological

model. We show how our model can simulate defor-

mation of a soft body and how it can be cut or pierced
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during the animation. All our experiments were car-

ried out on an Intel Core i7 processor (2.40 GHz with

4 multi-threaded cores). We set the material proper-

ties to E = 100 MPa, ν = 0.3 and ρ = 1,000 kg/m3 to

simulate behaviors similar to soft tissues. All the given

times correspond to one step of the simulation process,

in milliseconds. For all the presented results, only the

gravity force is applied. Moreover, the red spheres in

figures are particles constrained in all directions and the

3-unsewed faces are drawn in red.

Semi-implicit vs. implicit integration scheme. We

simulate a cube modeled by 1 hexahedron with 16

springs and 8 particles, and the same cube modeled

with 5 tetrahedra, 18 springs and 8 particles. Table 1

compares the computation times resulting from the

use of the Euler semi-implicit and implicit integration

schemes (with h = 1 ms). As expected, the implicit

one is slower, but this will be advantageously counter-

balanced by more stability, allowing larger time steps.

Semi-implicit Implicit

Hexahedral mesh 0.009 0.42

Tetrahedral mesh 0.012 0.42

Table 1: Time (in ms) per simulation step.

Scale up. Fig. 7 presents the scale up property of

our simulation by considering a beam with an increas-

ing number of hexahedral elements: 1 cube of 10 cm;

2× 2× 2 cubes of 5 cm; 4× 4× 4 cubes of 2.5 cm;

8 × 8 × 8 cubes of 1.25 cm; 16 × 16 × 16 cubes of

0.625 cm (simulations made with h = 0.1 ms) and

32×32×32 cubes of 0.3125 cm (simulation made with

h = 0.01 ms). Results show that the complexity of our

method is linear according to the degree of freedom

(DOF) within our system.
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Figure 7: Time (in ms) per simulation step according to

the size of a hexahedral beam (with log-log scale).

Comparison performance with SOFA. We now con-

sider a mesh with 640 hexahedra, 4,954 springs and

891 particles. We compare our simulation times with

the ones obtained using our same MSS implemented

in the Open Source Framework SOFA [21, 22]. With

our topological framework, we obtain an average of

0.55 ms by simulation step with the Euler semi-implicit

integration scheme, while we get 0.77 ms by using

the Euler explicit integration scheme in SOFA (with

h = 1 ms). We note that the additional cost due to the

topological structure remains limited, using a similar

integration scheme. This first comparison is very en-

couraging as it shows that our method is competitive

even in its preliminary form (not fully optimized).

Comparison with another topological model. In [11]

a similar solution has been proposed. With a mesh com-

posed of 1,856 tetrahedra, 2,850 springs and 564 par-

ticles, they stated that the simulation step takes 8 ms

on a dual core 2.8GHz processor, using an Euler semi-

implicit integration (4th order Runge-Kutta integration

scheme).

For comparison purposes, we built a similar beam com-

posed of 1,890 tetrahedra, 2,655 springs and 480 parti-

cles. We obtain an average of 0.5 ms by simulation step

when using the Euler semi-implicit integration (with

h = 1 ms). Even if these results do not involve the same

CPU, nor exactly the same mesh, this preliminary com-

parison is very satisfactory and demonstrates that the

proposed structure is well adapted for simulation appli-

cations, leading to minimizing the additional memory

and operative cost induced by the topological model.

Cutting. As presented above, cutting objects during the

animation is easily supported by the proposed structure.

In the following, the Euler implicit integration scheme

is used for its stability when high deformation is under-

gone by the 3D object.

Fig. 8, 10 and 11 show examples of interactive defor-

mation and cutting of a beam. The user is provided

with tools permitting him to select the particles belong-

ing to the face to 3-unsew. If necessary, a zone can be

selected by the user, where all the faces including the

selected particles are 3-unsew.

In Fig. 9, we present the cutting performed on two big-

ger meshes representing a frog. This illustrates that our

method can be used for detailed objects.

Piercing. Thanks to our cutting method, we can pierce

an object by 3-unsewing all the faces around the volume

to be removed. In Fig. 12, we pierce a beam composed

of 5×3×3 hexahedral elements by 3-unsewing 3 cubes

in the middle of the beam.

7 CONCLUSION AND PERSPECTIVE

In this paper, we have presented the use of the 3D LCC

topological model for a physical simulation based on

a MSS. The mechanical information of the object is

added to the data structure as attributes associated with

i-cells, avoiding the duplication of data and the manage-

ment of different data structures. Our first experiments

illustrate that our method is competitive, even without

any specific optimization.
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In the future, we first plan to improve our simulation

time. All the operations used for the simulation can be

easily implemented in parallel, and a version of the sim-

ulation on the GPU is under investigation. Moreover,

we work to insert other physical models like tensor-

mass model, finite element method or even a more

evolved mass-spring system. Finally, we want to in-

tegrate in our framework the automatic refining and

coarsening of cells during the simulation. Indeed, the

3D LCC provides all the basic topological operations

required for that kind of operation. Consequently, the

next stage will be: how to update the physical informa-

tion and to define the criteria to decide where these op-

erations must be applied? This improvement will allow

us to overcome the current limitation of cutting only

along the faces of the mesh. Indeed thanks to the subdi-

vision features, we will be able to follow a cutting path

through elements.

Figure 8: 10 faces are 3-unsewed of a beam composed

of 5×3×3 elements (initial state in top right).

Figure 9: Cutting one hexahedral mesh representing a

frog with 26,125 hexahedra and 32,934 particles.
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Figure 10: Beam composed of 5×3×3 elements, progressively cut by a knife (from the Avalon 3D archive).
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Figure 11: Beam composed of 5× 3× 3 elements. 1) 3 faces are 3-unsewed. 2) and 3) Two states after the

3-unsewing of 9 faces.
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Figure 12: Beam composed of 5× 3× 3 hexahedral elements. 1) Initial deformed state. 2) and 3) Two views of

the same object after piercing by 3-unsewing 14 faces.
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