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ABSTRACT – Seismic waves may be strongly amplified in deep alluvial basins due to the 
velocity contrast (or velocity gradient) between the various layers as well as the basin 
edge effects. In this work, the seismic ground motion in a deep alpine valley (Grenoble 
basin, French Alps) is investigated through various 'classical' Boundary Element models. 
This deep valley has a peculiar geometry (“Y”-shaped) and involves a strong velocity 
gradient between surface geological structures. In the framework of a numerical 
benchmark [21-23], a representative cross section of the valley has been proposed to 
investigate 2D site effects through various numerical methods. The 'classical' Boundary 
Element Method is considered herein to model the strong velocity gradient with a 2D 
piecewise homogeneous medium. 
For a large incidence angle, the transfer functions estimated from plane SH waves are 
close to the one computed with shallow SH point sources. The fundamental frequency is 
estimated at 0.33 Hz (SH wave) and the agreement with previous experimental results 
(spectral ratios) is good. Comparisons between 1D and 2D amplification are then 
performed: the values of the fundamental frequency and the corresponding amplitude are 
larger in 2D. Converting frequency domain results into the time domain, we underline 
surface waves generated at the valley edges and the directivity effect for the amplified 
wave-field. In the time domain for plane SV-wave, we also computed the ground motion 
for a strong seismic event (M=6): time duration and peak ground velocity are found to be 3 
times larger than for the input signal. Such 2D models involving basin effects are then 
capable to recover the high amplification level measured in the field. Nevertheless, to deal 
with complex 3D basins as also proposed in the "ESG" benchmark [21-23], the 
capabilities of the classical Boundary Element Method are limited. As shown recently 
[43,47,52], such improvements as the fast multipole formulation (FM-BEM) may be a 
promising alternative for future 3D simulations. 
 

1. Introduction  
The local geological structure of a site can strongly modify the seismic wave propagation 
and it can lead to large amplifications and strong spatial variations of the ground motion 
[1-3]. The amplification process may enhance the impact of earthquakes even for 
moderate ones. 

Both experimental and numerical approaches allow the characterization of site effects. 
Various numerical methods have been considered for 2D [4-13], 2.5D [14] and 3D 
analyses [15-19]. For such models, the need for reliable field data is then strong since the 
amplification process is very sensitive to the properties and geometry of the geological 
layers. 

In the present analysis, we consider a deep alpine valley (Grenoble basin, French 
Alps). This deep valley has a peculiar geometry (“Y”-shaped) and involves a strong 
velocity gradient in the surface geological structures. The 500m deep Grenoble basin is 
schematized in Fig.1 and several acceleration recordings of the Laffrey 1999 earthquake 



Soil Dynamics and Earthquake Eng., 38, pp. 15-24, 2012 http://dx.doi.org/10.1016/j.soildyn.2012.02.001 

 

2 

are displayed [20]. The reference bedrock site is called OGMU (top left) and the other 
stations are located at the surface of the deposit. These stations are part of the French 
accelerometric network ("RAP", http://www-rap.obs.ujf-grenoble.fr/). As shown in this 
figure, the Grenoble basin strongly amplifies the seismic motion due to multiple reflections 
and diffractions at the basin edges. 

In the framework of an international numerical benchmark [21-23], a 3D model and a 
representative 2D cross section of the valley have been proposed to investigate site 
effects through various numerical methods. The benchmark proposed an idealized 
velocity profile in the alluvial deposit (strong velocity gradient). In this paper, since the 
classical Boundary Element Method is limited to piecewise homogeneous media and has 
a significant computational burden in 3D [24], we shall model the 2D geological profile 
proposed in the benchmark. The perspectives in terms of 3D BEM modeling will be also 
discussed in the following. 
 

 
 

Fig. 1. View of the alpine valley (Grenoble basin) and velocity recordings 
at the surface for the Laffrey 1999 earthquake [20]. 

 

2. Modeling seismic wave propagation by the BEM 

2.1 Numerical methods for wave propagation 
To analyze seismic wave propagation in 2D or 3D geological structures, various numerical 
methods are available: 
• the finite difference method is accurate in elastodynamics but is mainly adapted to 

simple geometries [25-26], 
• the finite element method is efficient to deal with complex geometries and numerous 

heterogeneities (even for inelastic constitutive models [27-29]) but has several 
drawbacks such as numerical dispersion and spurious wave reflections [30-37]. It may 
(consequently) lead to huge numerical costs in 3D elastodynamics, 

• the spectral element method has been increasingly considered to analyse 2D/3D wave 
propagation in linear media with a good accuracy due to its spectral convergence 
properties [38-40] but the spurious wave reflections still have to be removed [30-37], 

• the boundary element method allows a very good description of the radiation conditions 
but is preferably dedicated to weak heterogeneities and linear constitutive models 
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[11,17,24,33,41,46]. It is thus difficult to deal with strong heterogeneities in 3D except if 
considering the original developments recently proposed to reduce the computational 
cost of the method [43-44,47], 

• the Aki-Larner method takes advantage of the frequency-wavenumber decomposition 
but is limited to simple geometries [45,46], 

• the scaled boundary finite element method is a kind of solution-less boundary element 
method [48], 

• other methods such as series expansions of wave functions [49]. 
 
Furthermore, when dealing with wave propagation in unbounded domains, many of these 
numerical methods raise the need for absorbing boundary conditions to avoid spurious 
reflections [30-37]. It is also possible to couple FEM and BEM [14,24,50] allowing an 
accurate description of the near field (FEM model including complex geometries, 
numerous heterogeneities and nonlinear constitutive laws) and a reliable estimation of the 
far-field (BEM involving accurate radiation conditions). 
 
2.2 The 'classical' Boundary Element Method 
The Boundary Element Method arises from the application of Maxwell-Betti reciprocity 

theorem leading to the expression of the displacement field inside the domain  from the 

displacements and tractions along the boundary  of the domain [24]. The main 
advantage of the method is to avoid artificial truncation of the domain in the case of infinite 
medium [24]. For dynamic problems, this truncation leads to artificial wave reflections 
giving a numerical error in the solution.  
 
2.3 Elastodynamics 

We consider an elastic, homogeneous and isotropic solid of volume  and external 

surface . In this medium, the equation of motion can be written under the following 
form: 
 ufuu   )()(  (1) 

 

where u is the displacement field, f a density of body force and , the Lamé parameters. 
 

In this article, the problem is solved in frequency domain by superposition of solutions 

having a harmonic dependence in time of circular frequency . The equation of motion for 

a steady state (u(x), (x)) can then be written as follows: 

 )()()())(()( 2 xuxfxuxu    (2) 
 

This equation is written in the framework of linear elasticity but, since the analysis is 
performed in the frequency domain, damped mechanical properties may be considered 
through the complex modulus of the medium [33, 47] (it is discussed in the following). 
 
2.4 Integral formulation 
The integral formulation is obtained through the application of the reciprocity theorem 

between the elastodynamic state (u(x), (x)) and the fundamental solutions of a reference 
problem called Green kernels [24]. The reference problem generally corresponds to the 
infinite full space case in which a concentrated body force at point y acts in any given 
direction e. 
 
In the harmonic case, the Green kernel of the infinite medium corresponds to a body force 
field such as: 
 eyxxf )()(   (3) 
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In this article, the model involves the Green functions of an infinite medium [24] or semi-

infinite medium (in the case of SH-waves). The Green kernel is denoted ),( yxU
ij  and 

characterizes the complex displacement in direction j at point x due to a unit force 

concentrated at point y along direction i. The corresponding traction for a surface of 

normal vector n(x) is denoted ),()( yxT n 
i j . The application of the reciprocity theorem 

between the elastodynamic state (u(x), (x)) and that defined by the Green kernel 

),( yxU
ij  gives the following integral representation : 

   )()(),()()(),()(),()()( )()( xdvxfyxUxdsxuyxTxtyxUyuy nn
   ji jji jji jiI    (4) 

where I(y) is 1 when y and 0 when y. 
 

Numerical solution of equation (4) can be performed by collocation method or by an 

integral variational approach [24]. When the domain  is infinite and there is no source at 
infinite distance, it is necessary to give restrictive conditions on the behaviour of the 
displacement field u(x,t) at infinity. These assumptions are called outgoing Sommerfeld 

radiation conditions. When there are some sources at infinity (denoted by the field u
inc

), 

the Sommerfeld conditions are applied to the scattered displacement field  u
s
 = u - u

inc
. 

 
2.5 Boundary integral equation and discretization 

The integral representation defined by equation (4) is generally not valid for x. The 

formulation of the boundary integral equation along  is then not very easy to obtain as 

the Green kernels have singular values when x. It is then necessary to regularize 
expression (4) to write the boundary integral equation [17,24,41]. Afterwards, the 
regularized solution of equation (4) is estimated by classical boundary finite elements 
discretization and then by collocation method, that is application of the integral equation at 
each node of the mesh. 
 

With the classical BEM formulation, it is necessary to compute all the contributions 
between the source points and the observation points in the mesh. The computational 
burden may thus be large especially in complex 3D media. Recent improvements of the 
BEM [43,47] allow to reduce such a large numerical cost but the reduction is not sufficient 
for the deep alluvial basin considered herein since it has a strong velocity gradient. 
We will thus consider two dimensional piecewise homogeneous models (plane or anti-
plane strains). Two dimensional Green kernels of the infinite space are written using 
Hankel’s functions [24]. 
 

3. BEM Model of the deep alluvial basin 
As proposed in the numerical benchmark for this basin [21-22], and due to the 

limitations of the classical BEM to model complex 3D media, we choose the 2D geological 
profile with a strong velocity gradient. It is located in the north eastern part of the valley 
(Fig.2, top) and, as shown by the symbols in this area, detailed geophysical surveys were 
performed to characterize this geological profile. The simulations are performed in the 
frequency domain considering the classical BEM (FEM/BEM code CESAR-LCPC [42]); 
time domain ground motions may be post-processed from frequency domain results in a 
second step. 
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Fig. 2. The Grenoble valley (top) with the locations of the 2D geological profile and of the 
epicenters of scenarios 1 and 2; Boundary Element model (bottom) with its 7 layers. 

 
3.1 Modeling the incident seismic motion 
As depicted in Fig.2 (top), two scenarios of earthquakes were proposed in the benchmark: 
a first one having its epicenter in the north-eastern part of the model and the second one 
located in the southern part of the model. As mentioned in Fig.2 (top), weak ("W") and 
strong ("S") events may be considered in the (1D/2D or 3D) simulations. In the BEM 
model, the first scenario (local event) will be modeled through a point source and the 
second scenario (regional event) will be modeled through plane waves with various 
incidences. In all cases, monochromatic waves are considered for frequency domain 
simulations. 
 

3.2 Modeling the velocity variations 
As proposed in the benchmark [21-22], the wave velocities are supposed to increase 
continuously with depth (strong velocity gradient). Since the Boundary Element method 
requires piecewise constant velocities through several homogeneous sub-domains [24], 
we have divided the alluvial basin in 7 different sedimentary layers (Fig.2, bottom). The 
constant mechanical properties of each layer are given in Table I and plotted in Fig.3. The 
thickness of the surficial layers is smaller due to their lower velocity (shorter wavelength). 
It is not currently possible to deal with such a complex 3D model including a strong 
velocity gradient with the BEM. Some ongoing research on accelerated BEM techniques 
may allow to do so in the near future [43,47,52]. 

The velocity-depth variations suggested in the benchmark [21-22] are displayed in 
Fig. 3 (dotted lines). The piecewise constant velocities chosen for our classical BEM 
model (solid lines) are close to the previous reference ones (difference with the proposed 
gradient within a few percents). 
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Table I. Constant velocity values in the 7 sedimentary layers. 
 

Layer Z1 (m) Z2 (m) VP (m/s) VS (m/s) 

1 0 15 1459 337 

2 15 40 1483 397 

3 40 100 1534 455 

4 100 200 1630 529 

5 200 320 1762 604 

6 320 450 1912 671 

7 450 591 2074 732 

 

 
 

Fig. 3. Velocity profile (left) for P (VP : right) and S waves (VS : left); dotted lines: 
benchmark values, solid lines: piecewise constant BEM model values. 

 
3.3 Modeling of damping 
The boundary element model is supposed to have a linear viscoelastic behaviour. The 
formulation of damping considered herein corresponds to a Zener model or standard solid 
[33]. Since we perform the analysis in the frequency domain, we may use various other 
types of damping-frequency dependence [47]. 
This rheological model is depicted in Fig. 4 for shear response and the expression of the 
inverse of the quality factor Q

-1
 (i.e. attenuation) is given as a function of frequency. The 

variations of Q
-1

 with frequency are also drawn in this figure showing a peak 
corresponding to the maximum value of attenuation. Considering this rheological model, 

the complex shear modulus of the medium 
*
=R+i.I can be written as a function of 

frequency, short term (instantaneous) st and long term lt shear moduli as follows : 
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where  is the viscosity coefficient of the Zener’s model (Fig. 4), R and I are the real and 
imaginary parts of the complex shear modulus and the long term shear modulus is such 

as (see Fig. 4, for the definition of ') : 
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As suggested in the numerical benchmark, we have taken the following values for the 

quality factors: QS=50 and 
2

2

4

3

S

PS
P

V

VQ
Q  . 

 

 
 

Fig. 4. Zener’s model (standard solid) and corresponding attenuation vs frequency dependency. 

 

4. Incident SH-wave 
4.1. Plane SH-wave 
First, various plane waves with various incidences will be considered for the second 
scenario (regional event). 
 

4.1.1. Amplification in the frequency domain 
Considering a vertical plane SH wave in the BEM model (incidence 90° from the 
horizontal), the transfer functions (Fig. 5, top left) of the surface ground motion show 
several amplitude maxima for frequencies ranging from 0.325 to 0.95 Hz (with a nearly 
constant frequency step of 0.105 Hz). They correspond to the various shear modes of the 
2D basin. For increasing frequencies, the shallower parts of the basin lead to larger 
ground motion levels. 
 

 
 

Fig. 5. Transfer functions from 0 to 4 Hz for a plane SH-wave and various incidence angles. 
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Fig 6. 1D and 2D transfer functions at points A, B and C (vertical plane SH-wave). 

 
We will now consider some specific areas along the basin surface (Fig. 6): point A is 

located at the center of the left part of the basin, point C at the center of the deepest area 
(right part) and point B in between the previous points (shallower area at the center of the 
whole profile). 

Near point A for instance, the horizontal motion reaches nearly 20 times the amplitude 
of incident waves at some receivers (Figs 5 & 6). The corresponding frequency (f=0.45Hz) 
is higher than the fundamental frequency since this area is located in the shallower left 
part of the basin. The equivalent 1D model (Fig. 6, dotted line) gives an amplification value 
of 7 at a lower frequency value of 0.37 Hz. For higher frequency modes, the same 
phenomena can be observed. 

For the deepest part of the basin (point C), results are similar to those obtained at point 
A: the discrepancy between 2D and 1D amplifications is large. However, the amplification 
level is significantly lower at point C when compared to point A. 

At the center of the whole basin (point B), the 2D and 1D amplification levels are very 
close. These results show that the lateral propagation and focusing effects play a crucial 
role at the basin edges for both left and right part of the valley (points A & C). Whereas, at 
the center of the basin, the 2D and 1D transfer functions are much closer (point B). 
 

4.1.2. Influence of the incidence angle 
As already observed in previous works [1,11], the fundamental frequency value of the 
basin (f=0.33Hz) is not influenced by the incidence angle (Fig. 5, top right and bottom left). 
The amplitude at the fundamental frequency is nevertheless maximum for the vertical 
incidence. For a seismic excitation with a higher incidence angle (propagating from the 
east), larger amplifications are computed in the eastern part of the basin showing strong 
directivity effects (Fig. 5). 
 
4.1.3. Time domain amplification of the seismic motion. 
To analyze site effects in the basin through time domain motion amplification, we 
considered several Ricker wavelets at various frequencies. We combine the transfer 
functions in the frequency domain (Fig. 5) with the Fourier transform of the Ricker 
wavelets to compute the time domain ground motion for various points along the free 
surface. 
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Fig. 7. Top: synthetic seismogram for a vertically incident SH-wave (Ricker signal at 0.334Hz). 
Bottom: ground motion amplification within the basin at a given frequency (f=0.334Hz). 

 
We firstly consider a Ricker wavelet at a frequency corresponding to the fundamental 

mode of the valley (f=0.33Hz). The harmonic response of the basin is recalled in Fig. 7, 
bottom (the maximum spectral amplification reaches 24.5 in the darkest area). 

The time domain results displayed in Fig. 7 (top) lead to the following comments: 

 Around t=5s, we obtain the 1D response of the basin with different arrival times 
along the profile (various mean velocities). On the right part of the basin, the late 
arrival times obviously correspond to receivers above the deepest part of the basin. 

 Until t=8s, we mainly observe the vertically reflected waves (1D effect). They lead to 
a significant amplification of the Ricker wavelet. The two convex parts of the basin 
give nearly independent responses to the seismic motion. At the edges of the basin, 
diffracted waves are generated. 

 At t=10s, the diffracted waves, coming from the left and right edges, meet each other 
at the center of the basin (point B in Fig. 6) and produce large amplifications along 
the basin. According to Fig. 7, they cross the whole basin 3 times showing the 
influence of damping on the propagation of the Ricker wavelet. 

 At the center of the whole basin (point B), we can estimate the delay between the 
different arrival times of the laterally propagating waves. The 1D response at the 
center gave t1=5s, afterwards we have t2=14s and t3=33s. We can then estimate the 

time delay : =t2-t1=9s and t3-t2=19s, which is approximately 2. The mean velocity 

of the lateral waves can then be estimated as follows: Vmean=W/=500m/s, with 
W=4500m the valley width. These lateral waves contribute to the longer duration of 
the ground motion. 

 
To better understand the influence of laterally propagating waves generated at the 

basin edges, a Ricker wavelet of larger central frequency is now considered (f=0.635Hz). 
Furthermore, two different geological structures are investigated: a homogeneous basin of 
mean shear wave velocity 530m/s and the previous 7 layers heterogeneous model. The 
ground motion all along the basin surface is computed for the 0.635Hz Ricker wavelet. 
This frequency value corresponds to the third mode of the valley (Fig. 5). 
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Fig. 8. Synthetic seismogram for a vertically incident SH-wave (Ricker signal at 0.635Hz). 
Top: homogeneous basin (Vs=530m/s); middle: 7 layers model. 

Bottom: ground motion amplification within the basin at a given frequency (f=0.635Hz). 

 
In Fig. 8, the ground motion for the homogeneous basin model (top) is compared to the 

heterogeneous 7 layers case (middle). As suggested by Luzon et al. [51] and Semblat et 
al. [13], the heterogeneous 7 layers model (middle) leads to a larger amount of laterally 
propagating waves than the homogeneous basin model (top). As also shown in Fig. 8 
(bottom), the spectral amplification is strong for various areas along the free surface 
(maximum spectral amplification reaching 21.5 in the darkest area). However, for larger 
frequencies, one may have significant amplification within the basin (first in its deepest 
part). 
 
4.1.4. Amplification of higher frequency components. 
To investigate the amplification of higher frequency components and thus the influence of 
the surficial soft layers, the seismic motion within the basin is displayed in Fig. 9 for 
frequencies 0.7, 0.9, 1.1 and 1.3Hz. The related maximum spectral amplifications (darkest 
areas) are as follows: 6.5, 5.7, 11.1 and 8.6. At 0.9Hz, the in-depth seismic motion is 
amplified at a significant level. At 1.1Hz, the in-depth amplification is obvious in both left 
and right part of the basin. For frequencies above 1.3Hz, the amplification of the surface 
motion mainly concerns the soft surficial layers. It clearly shows the influence of the 
velocity profile on the amplification process. The analysis of the focusing phenomena is 
also very interesting for the deepest left and right parts of the basin as well as for the 
central shallower area. 
 
Such higher frequency simulations cannot be performed in the 3D case with the classical 
Boundary Element Method yet. The recent accelerated BEM formulations [43-44,47] may 
reach such higher frequencies in 3D simulations [52] but should be improved to deal with 
large velocity contrasts. 
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Fig. 9. Seismic motion within the basin at various frequencies; the maximum spectral 
amplifications (darkest areas) are 6.5, 5.7, 11.1 and 8.6 respectively. 

 
4.2. SH point source 
As suggested in the benchmark [21-22] (Fig. 2), we also analyzed the case of an 
earthquake due to a fault located to the east, near Grenoble area (events W1 & S1 of the 
numerical benchmark). This fault is perpendicular to the profile: the projection of the fault 
on the 2D profile is a line. We approximated this line with 3 point sources corresponding to 
the top, the middle and the bottom (s=10645m; z1=-750m, z2=-3000m, z3=-5250m). The 
epicentral distance d was estimated with respect to the point B (Fig 6) at the center of the 
profile: the source is then projected along the profile at a distance d from the point B. Such 
2D point sources correspond to sources along horizontal lines in 3D. A 2.5D BEM 
approach [14] may be needed to better model realistic 3D point sources. 
 
4.2.1. Amplification in the frequency domain 
Considering the transfer functions for the point source excitation (Fig. 5, bottom right), the 
maximum amplification reaches 22 for some receivers. The same fundamental frequency 
value as in the plane wave case is recovered (f=0.33Hz). If the directivity effects are also 
taken into account, the point source results are rather close to those of the plane wave 

case with the incidence angle =135° (Fig. 5, top right). 
 
4.2.2. Time domain amplification of the seismic motion. 
As in the plane wave case, we considered a Ricker wavelet of central frequency 
f=0.325Hz. It corresponds to the fundamental frequency of the basin (Fig. 5). The ground 
motion is then computed in time domain all along the basin surface (Fig. 10). 

A strong motion amplification can be observed on the right part of the basin: scattered 
waves are mainly generated on the right edge of the basin and the directivity effect is 
found to be strong. The laterally propagating waves coming from the right edge of the 
basin appear clearly and cross the whole basin 3 times in the time interval considered 
(60s). A much weaker wave field is generated at the left edge of the basin and can be 
observed on the right part of the valley around time t=25 s. 
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Fig. 10. Synthetic seismogram for point source SH-waves (Ricker signal at 0.325Hz). 

 
 

5. Incident plane SV-wave 
5.1. Amplification in the frequency domain 
We now estimate the amplification on the basin surface for a plane SV wave with a 
vertical and oblique incidence. For a vertical incidence, the horizontal motion component 
(Fig. 11, top left) reaches a maximum amplification value of 12 in some areas. The 
corresponding fundamental frequency is 0.38Hz. For the vertical incidence, the 
amplification of the vertical component (Fig. 11, top right) is much lower since the 
maximum level is nearly 6. For the oblique incidence (Fig. 11, bottom), the first peak of the 
transfer function for the horizontal component is associated with a larger frequency value 
than in the SH case (f=0.7Hz instead of f=0.325Hz). Concerning the amplification level, it 
is generally lower in the SV case (Fig. 11) than in the SH case (Fig. 5). 

 

 
 

Fig. 11. Transfer functions of the horizontal (left) and vertical (right) motion components 
for a vertical (top) and oblique (bottom) plane SV wave. 
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5.2. Time domain amplification of the seismic motion. 
In this section, as suggested in the numerical benchmark, the main goal is to perform 
realistic seismic motion computations. The plane SV wave transfer functions are 
considered for a vertical incidence angle. A synthetic signal is considered using the 
procedure proposed by Pousse et al. [53] as a seismic input for a Magnitude 6 
earthquake. 

In Fig. 12, the horizontal component of the velocities for 10 receivers along the profile is 
displayed. The PGV is 0.08m/s for the input and reaches PGV=0.22m/s at receiver R6 
(located 3600m from the left edge of the basin). The time duration of the signal is equal to 
3 times that of the input signal. To model strong seismic motions, it may be necessary to 
consider nonlinear constitutive laws in the surficial soil layers [27-29]. Such parameters 
were available in the benchmark for a few 1D soil profiles. 

 

 
 

Fig. 12. Horizontal component of the velocity for a vertical SV wave at the 10 receivers given by 
the numerical Benchmark (Mg. 6 earthquake at a hypocentral distance of 20km of the basin). 

 

6. Conclusion 
Strong site effects have been characterized for an alpine valley (Grenoble basin, French 
Alps) having a strong velocity gradient. Since the classical BEM is limited to weakly 
heterogeneous media and leads to a large computational burden in 3D, the 2D cross-
section proposed in the ESG benchmark was chosen [21-22]. In this 2D model, the 
computed spectral amplification reaches a maximum value of 20. The amplification 
process is strong near the free surface at moderate frequencies. As shown by other 
numerical results [21-22], the amplification within the basin itself can be significant for 
larger frequencies (shorter wavelengthes). 

The results detailed herein mainly show the specific 2D phenomena governing site 
effects for a deep basin with such a strong velocity gradient: low fundamental frequency, 
strong focusing and directivity effects, etc. In the time domain analysis, such basin 
properties produce multiple lateral waves on the edges that are strongly trapped in the 
deep valley. 

However, to model the complex 3D geometry of the Grenoble basin, as also proposed 
in the ESG benchmark, the capabilities of the classical Boundary Element Method 
considered herein are not sufficient. The recent advances in the field of fast BEM 
approaches [43] lead to a much smaller computational burden and will allow to deal with 
such complex 3D simulations in the near future. A first attempt was recently made through 
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a preconditioned 3D fast BEM model of the Grenoble basin considering a large velocity 
contrast but a homogeneous undamped basin [52]. The Fast Multipole BEM is currently 
being generalized to viscoelastodynamics [47]. Nevertheless, it should be further improved 
to model deep 3D basins with strong velocity gradients as proposed in the ESG 
benchmark. Furthermore, considering the city of Grenoble at the basin surface, one may 
try to investigate the influence of the buildings on “free-field” site effects since it may be 
significant in densely urbanized areas [54-56]. 
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