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DIRECT AND REVERSE CARLESON MEASURES FOR

H (b) SPACES

ALAIN BLANDIGNÈRES, EMMANUEL FRICAIN, FRÉDÉRIC GAUNARD,
ANDREAS HARTMANN, AND WILLIAM T. ROSS

Abstract. In this paper we discuss direct and reverse Carleson
measures for the de Branges-Rovnyak spaces H (b), mainly when
b is a non-extreme point of the unit ball of H∞.

1. Introduction

In this paper we wish to discuss reverse Carleson measures for the
reproducing kernel Hilbert space H (b) of analytic functions on the
open unit disk D whose reproducing kernel is given by

kb
λ(z) :=

1− b(λ)b(z)

1− λz
, λ ∈ D.

Here b belongs to H∞
1 , the unit ball in H∞, and H∞ is the Banach

algebra of bounded analytic functions on D normed with the supremum
norm ‖·‖∞. The space H (b) is often known as the de Branges-Rovnyak
space and we will review the basics of this space in a moment. For now,
note that when ‖b‖∞ < 1, then H (b) is just the classical Hardy space
H2 [16, 18] with an equivalent norm while if b is an inner function,
meaning |b| = 1 almost everywhere on T = ∂D, then H (b) is the
classical model space (bH2)⊥ = H2 ⊖ bH2. For any b, the space H (b)
is contractively contained in H2. As is often the case, the properties of
H (b) spaces, including direct and reverse Carleson measures, depend
on whether or not b is an extreme point of H∞

1 . Recall [14] that b is
an extreme point of H∞

1 when
∫
T
log(1 − |b|)dm = −∞, where m is

normalized Lebesgue measure on the unit circle T.
Let M+(D

−) denote the positive finite Borel measures on the closed
unit disk D−. By a reverse Carleson measure for H (b) we mean a
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measure µ ∈ M+(D
−), for which

‖f‖b . ‖f‖µ,

where ‖ · ‖µ represents the standard L2(µ) norm, ‖ · ‖b represents the
norm in H (b), and f ranges over a suitable set in H (b). We will make
this more precise below.
A direct Carleson measure is, as to be expected and is well studied

for many spaces of analytic functions, a measure µ for which ‖f‖µ .
‖f‖b for all f ∈ H (b), i.e., H (b) embeds continuously into L2(µ).
A reader familiar with H (b) spaces will know how difficult it can be
to compute or even estimate the norm of an element in H (b). This
question of direct and reverse Carleson measures could be helpful in this
direction. Note that such measures are also called sampling measures.
In particular, there is an interesting and close connection with the
problem of sampling sequences (see Corollary 4.19 below).
In order to give a more precise defintion of reverse Carleson measure,

the alert reader will have noticed that when the measure µ has part of
the unit circle T in its carrier, it is not quite clear if the boundary values
of every f ∈ H (b) exist µ-almost everywhere so that the integrals ‖f‖µ
might not make sense. By a carrier of a measure µ ∈ M+(D

−) we mean
a Borel set C ⊂ D− for which µ(A ∩ C) = µ(A) for all Borel subsets
A ⊂ D−. In a way, we want to be as broad as possible as to not impose
a too stringent condition on µ, and so we will only require the reverse
inequality to hold on a dense set in H (b). To specify this dense set,
and to make sure the integrals ‖f‖µ are well defined for f in this dense
set, we make the following definition.

Definition 1.1. For µ ∈ M+(D
−) we say that an analytic function f

on D is µ-admissible if the non-tangential limits of f exist µ-almost ev-
erywhere on T. We let H (b)µ denote the set of µ-admissible functions
in H (b).

With this definition in mind, if f ∈ H (b)µ, then defining f on the
carrier of µ|T via its non-tangential boundary values, we see that ‖f‖µ
is well defined with a value in [0,+∞].
Of course if µ is carried on D, i.e., µ(T) = 0, then H (b)µ = H (b).

So Definition 1.1 becomes meaningful when µ has part of the unit cir-
cle T in its carrier. Certainly for (normalized) Lebesgue measure m on
T we know that H (b) = H (b)m (since H (b) is always contractively
contained in H2 and, via standard theory [16, 18], H2 functions have
non-tangential boundary values m-almost everywhere) though there
are often other µ, even ones with non-trivial singular parts on T with



DIRECT AND REVERSE CARLESON MEASURES 3

respect to m, for which H (b) = H (b)µ. The Clark measures asso-
ciated with an inner function b (which are known to be singular with
respect to m) have this property (see [5, 9]).
If b is a µ-admissible function, then so are all the reproducing kernels

kb
λ (along with finite linear combinations of them) and thus, with this

admissibility assumption on b, H (b)µ is a dense linear manifold in
H (b). When b is a non-extreme point of H∞

1 , then H (b)µ contains
H (b) ∩ C(D−) which also turns out to be dense (see Section 2 below).
This motivates our definition of reverse Carleson measure.

Definition 1.2. For µ ∈ M+(D
−) and b ∈ H∞

1 we say that µ is a
reverse Carleson measure for H (b) if H (b)µ is dense in H (b) and
‖f‖b . ‖f‖µ for all f ∈ H (b)µ.

In this definition, we allow the possibility for ‖f‖µ to be infinite.
We are now ready to state our main reverse Carleson result. For an

open arc I in T, let

(1.3) S(I) :=

{
z ∈ D

− :
z

|z|
∈ I, 1− |z| ≤

m(I)

2

}

be the Carleson window over I.

Theorem 1.4. Let µ ∈ M+(D
−) and let b be a non-extreme point of

H∞
1 and µ-admissible. If h = dµ|T/dm, then the following assertions

are equivalent:

(1) The measure µ is a reverse Carleson mesure for H (b);
(2) The inequality ‖kb

λ‖b . ‖kb
λ‖µ holds for every λ ∈ D;

(3) The measure ν defined by dν := (1− |b|)dµ, satisfies

inf
I

ν (S(I))

m(I)
> 0;

(4) We have ess infT(1− |b|)h > 0.

Let us place this theorem in some context. As we have already
mentioned, when ‖b‖∞ < 1, then H (b) = H2, with a norm equivalent
to the usualH2 norm. In this situation, Lefèvre et al. [22] characterized
reverse Carleson measures under the additional assumption that µ is
already a Carleson measure. In [19], the authors were able to get rid of
this extra assumption using a balayage type argument. This argument
will play an important role in the proof of Theorem 1.4.
We should also point out that the reverse Carleson inequality stated

in [19] is tested on the dense set H2∩C(D−), where C(D−) denotes the
complex-valued continuous functions on D

−.
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Of course the reader will immediately recognize that when the infi-

mum being positive in statement (3) is replaced by the supremum being

finite, we get the well known Carleson embedding condition which char-
acterizes the boundedness of the embedding of H2 into L2(µ) (see [18]).
The implication (2) ⇒ (1) is known as the (reverse) reproducing ker-

nel thesis and often appears in many Carleson and reverse measure
problems [28, 31]. When b is an inner function, then reverse Carleson
measures for model spaces were discussed in our recent paper [5]. As
it turns out there is no (reverse) reproducing kernel thesis in this set-
ting [19]. Reverse Carleson measures for other classical spaces were
discussed in [6, 24, 25].
For a general, possibly extreme, point b of H∞

1 , we will prove the
following.

Theorem 1.5. Suppose µ ∈ M+(D
−) and b ∈ H∞

1 is µ-admissible. If

h = dµ|T/dm and µ is a reverse Carleson measure for H (b) then

(1.6) (1− |b|2) . (1− |b|2)2h

m-almost everywhere on T.

When b is inner, the inequality in (1.6) is trivial, while in other cases,
as we will see now, it yields very important information:

Corollary 1.7. Suppose µ ∈ M+(D
−), b ∈ H∞

1 is µ-admissible and

not inner, h = dµ|T/dm, and Zb := {ζ ∈ T : |b(ζ)| < 1}. If µ is a

reverse Carleson measure for H (b) then h 6≡ 0 and
∫

Zb

1

1− |b|
dm < ∞.

The above corollary says that any reverse Carleson measure for
H (b), when b is not inner, must have a non-zero absolutely contin-
uous component with respect to m. In particular, there cannot be
sampling sequences when b is not inner (see Corollary 4.19). Notice
how this is quite the dichotomy from the inner case where a reverse
Carleson measure can be carried by D or even be singular with respect
to m.
We will also discuss (direct) Carleson measures for H (b). Here we

make the following definition.

Definition 1.8. A measure µ ∈ M+(D
−) is a Carleson measure for

H (b) if H (b)µ = H (b) and ‖f‖µ . ‖f‖b for all f ∈ H (b).

A result of Aleksandrov [2] shows that when b is inner then H (b)
(which is just the model space (bH2)⊥) contains a dense set of con-
tinuous functions. Furthermore, if the embedding ‖f‖b . ‖f‖b holds
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for the continuous functions in H (b) then every function in H (b) is
µ-admissible, i.e., H (b)µ = H (b). Moreover, the embedding extends
to all functions in H (b).
For a non-extreme point b of H∞

1 there is a unique outer function a
with a(0) > 0 and such that |a|2 + |b|2 = 1 m-almost everywhere on
T. See Section 2 for more on this. Here is a sample result concerning
Carleson measures.

Theorem 1.9. Let b be a rational and non-extreme point of H∞
1 and

let µ ∈ M+(D
−). Then the following assertions are equivalent:

(1) The measure µ is a Carleson measure for H (b);
(2) The measure |a|2 dµ is a Carleson measure for H2.

The reader might look at the definition of the measure |a|2dµ with
some suspicion. However, when b is rational then so is a [35, Remark
3.2] and so |a|2dµ is clearly defined even if µ|T has a non-trivial singular
part with respect to m (a point mass for example). Note that not every
rational function in H∞

1 is non-extreme. For example, a finite Blaschke
product is rational and extreme. See Section 5, where we consider more
general (not only rational) functions b.
When b is inner then H (b) is a model space (bH2)⊥ and Carleson

measures for these spaces were discussed in [1, 3, 11, 36, 37] (see also
[21, 23, 29, 30] for some earlier related results).
We will also examine when L2(µ) can be used to define an equiv-

alent norm of H (b), i.e., when each f ∈ H (b) is µ-admissible and
‖f‖b ≍ ‖f‖µ. This does indeed occur but only under very stringent
circumstances. If we were to require the stronger condition that µ is
an isometric measure, i.e., ‖f‖b = ‖f‖µ for all f ∈ H (b), then this
never occurs:

Theorem 1.10. If b is non-constant and a non-extreme point of H∞
1 ,

then there are no positive isometric measures for H (b).

When b is inner, there are plenty of isometric measures [1, 5].

2. Some reminders about H (b) spaces

For a wonderful detailed treatment of de Branges-Rovnyak spaces,
we refer the reader to Sarason’s book [34] which contains essentially all
the material presented in this section. Here, we merely set the notation
and remind the reader of some standard facts we will use in this paper.
For φ ∈ L∞ := L∞(T, m), define the Toeplitz operator on the classical
Hardy space H2 by

Tφf = P+(φf), f ∈ H2,
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where P+ is the orthogonal projection (often called the Riesz projec-
tion) of L2 := L2(T, m) onto H2. Note, as is standard, how we regard
H2 as both a Hilbert space of analytic functions on D and, via non-
tangential boundary values and Fourier coefficients, a closed subspace
of L2 [16, 18]. We will use

〈f, g〉2 :=

∫

T

f(ζ)g(ζ)dm(ζ)

for the inner product on H2 (or L2) and ‖f‖2 =
√

〈f, f〉2 to denote the
norm. Also note that when φ ∈ H∞ (the bounded analytic functions
on D), we have Tφf = φf which is just a multiplication operator on
H2.
For b ∈ H∞

1 the de Branges-Rovnyak space H (b) is defined to be

H (b) := (I − TbTb)
1/2H2,

endowed with the inner product

〈(I − TbTb)
1/2f, (I − TbTb)

1/2g〉b := 〈f, g〉2,

for f, g ⊥ ker((I − TbTb)
1/2). That is to say, H (b) is normed to make

(I−TbTb)
1/2 a partial isometry of H2 onto H (b). When ‖b‖∞ < 1, the

operator I − TbTb̄ is an isomorphism on H2 and thus H (b) = H2 with
an equivalent norm. On the other extreme, when b is an inner function
then TbTb̄ is the orthogonal projection of H2 onto bH2 and thus H (b)
turns out to be (bH2)⊥ = H2 ⊖ bH2 with the standard H2 norm.
The space H (b) is a reproducing kernel space with kernel

kb
λ(z) :=

1− b(λ)b(z)

1− λz
, λ, z ∈ D,

i.e.,

f(λ) = 〈f, kb
λ〉b, λ ∈ D, f ∈ H (b).

We point out that if

(2.1) kλ(z) :=
1

1− λz

is the standard reproducing kernel for H2, then

kb
λ = (I − TbTb)kλ.

Observe the notation here: kb
λ is the reproducing kernel for H (b) while

kλ is the reproducing kernel for H2.
As already mentioned in the introduction, starting with the positive

definite kernel kb
λ, H (b) can also be defined as the reproducing kernel

Hilbert space associated with this kernel.
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We will now assume for the main part of the paper that b is a
non-extreme point of the unit ball of H∞, which, by the Arens–Buck–
Carleson–Hoffman–Royden [14] theorem, is equivalent to the condition

(2.2) −∞ <

∫

T

log(1− |b|)dm.

To abbreviate, we will simply say b is non-extreme. In this case there
is a unique outer function a with a(0) > 0 such that

(2.3) |a(ζ)|2 + |b(ζ)|2 = 1 m− a.e. ζ ∈ T.

We call a pair (a, b) satisfying the above equality a Pythagorean pair.
For φ ∈ L∞, let

M (φ) := TφH
2

endowed with the norm which makes Tφ a partial isometry from H2

onto TφH
2. Observe that when a ∈ H∞ and is outer, then Ta and Ta

are one-to-one and hence

‖Taf‖M (a) = ‖Taf‖M (a) = ‖f‖2, f ∈ H2.

When b is non-extreme then M (a) = aH2 is contractively contained
in M (a) which is, in turn, contractively contained in H (b). Moreover,
M (a) is dense in H (b) and the linear span of the reproducing kernels
kλ (for H2), λ ∈ D, is contained and dense in M (a) – and thus it is
also dense in H (b). In particular, we see that H (b) ∩ C(D−) is dense
in H (b).
It is also known, when b is non-extreme, that for every f ∈ H (b),

we have Tb̄f ∈ M (a) and one can obtain the norm of f via the formula

(2.4) ‖f‖2b = ‖f‖22 + ‖g‖22,

where g is defined by

(2.5) Tbf = Tag.

Note that g is unique since, as discussed earlier, Ta is one-to-one due to
the fact that a is outer. At least when (b/a)f ∈ L2, it can be checked
that

(2.6) g = Tb/af.

We say that (a, b) forms a corona pair if

inf{|a(z)|+ |b(z)| : z ∈ D} > 0.

Still under the hypothesis that b is non-extreme, we have that M (a) =
H (b) (with equivalent norms) if and only if (a, b) forms a corona pair.
We also have M (a) = H (b) (with equivalent norms) if and only if
(a, b) forms a corona pair and Ta/a is invertible on H2.



8 BLANDIGNÈRES, FRICAIN, GAUNARD, HARTMANN, AND ROSS

Recall (see e.g. [27, Theorem B4.3.1]) that Ta/ā is invertible if and
only if |a|2 satisfies the Muckenhoupt (A2) condition, i.e.,

(2.7) sup
I

(
1

m(I)

∫

I

|a|−2 dm

)(
1

m(I)

∫

I

|a|2 dm

)
< ∞,

where I runs over all subarcs of T. For shorthand we will often write

|a|2 ∈ (A2)

when |a|2 satisfies (2.7). The (A2) condition is equivalent to the bound-
edness of the Riesz projection P+ from L2(|a|2 dm) to itself (or from
L2(|a|−2 dm) to itself).
We end this section by noting that if (a, b) is a Pythagorean pair, the

µ-admissibility of one function does not imply that of the second one.
Indeed pick µ = δ1, the Dirac measure at the point 1. Let a0 be an
outer function bounded by 1 which has no radial limit at 1. Multiply a0
by the singular inner function I, defined by I(z) = exp((z+1)/(z−1)).
Then a = a0I has a radial limit 0 at 1. Now a and a0 have the same
Pythagorean mates eiθb (θ ∈ R). Then either b has radial limit at 1
and a0 has not, or b has no radial limit at 1 but a has.

3. A first observation about reverse Carleson measures

When b is non-extreme there is the following interesting relationship
between the reverse Carleson measure condition and the Pythagorean
pair (a, b). Recall from the previous section that since b is non-extreme,
the reproducing kernels kλ for H2 belong to H (b).

Proposition 3.1. If b ∈ H∞
1 is non-extreme and µ ∈ M+(D

−) satisfies

‖kλ‖b . ‖kλ‖µ λ ∈ D,

then b/a ∈ H2.

Proof. Since

Tb̄kλ = b(λ)kλ = b(λ) a(λ)
−1
Tākλ,

we get from (2.4)

(3.2) ‖kλ‖
2
b = ‖kλ‖

2
2 +

|b(λ)|2

|a(λ)|2
‖kλ‖

2
2 =

(
1 +

|b(λ)|2

|a(λ)|2

)
1

1− |λ|2
.

Hence there is a constant C > 0 such that

|b(λ)|2

|a(λ)|2
≤ C

∫

D−

1− |λ|2

|1− λ̄z|2
dµ(z), λ ∈ D.
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Setting λ = reit, integrating both sides of the previous inequality over
t ∈ (0, 2π), and using Fubini’s theorem, we obtain

1

2π

∫ 2π

0

|b(reit)|2

|a(reit)|2
dt ≤ C

∫

D−

(∫ 2π

0

1− r2

|1− rze−it|2
dt

2π

)
dµ(z).

Using basic properties of the Poisson kernel we get
∫ 2π

0

1− r2

|1− rze−it|2
dt

2π
=

1− r2

1− r2|z|2
≤ 1,

for every z ∈ D
−, which yields

1

2π

∫ 2π

0

|b(reit)|2

|a(reit)|2
dt ≤ Cµ(D−) < ∞

for every 0 < r < 1. Hence (by the definition of the Hardy space)
b/a ∈ H2. �

We can connect Proposition 3.1 to a series of other well-known equiv-
alences [33].

Theorem 3.3 (Sarason). Let (a, b) be a Pythagorean pair. Then the

following assertions are equivalent:

(1) The function b/a belongs to H2;

(2) The space H∞ is contained in H (b);
(3) We have supn∈N ‖z

n‖b < ∞;

(4) The function (1− |b|)−1
belongs to L1.

Remark 3.4. If b/a satisfies the stronger condition b/a ∈ H∞, then
‖b‖∞ < 1 and so H (b) = H2 (with equivalent norms). To see this,
write b = ah, for some h ∈ H∞. It follows that

1 = |a|2 + |b|2 = |a|2
(
1 + |h|2

)
a.e. on T.

From here we see that 1/a ∈ L∞ which implies ‖b‖∞ < 1.

The next result says that not every H (b) space admits a reverse
Carleson measure.

Corollary 3.5. Let b ∈ H∞
1 be non-extreme. Then H (b) admits a

reverse Carleson measure if and only if (1−|b|)−1 ∈ L1. Thus there are

H (b) spaces with non-extreme b which do not admit reverse Carleson

measures.

Proof. Suppose that H (b) admits a reverse Carleson measure. Then,
by Proposition 3.1, along with Theorem 3.3, we see that (1 − |b|)−1 ∈
L1. The converse will follow from Theorem 4.1 below (see Remark
4.15). �
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A specific example of an H (b) space which admits no reverse Car-
leson measures is with b(z) = (1−z)/2. This is because 1/(1−|b|) 6∈ L1.

4. The Main reverse Carleson measure result

For µ ∈ M+(D
−), recall that b is µ-admissible if the non-tangential

limits of b exist µ-almost everywhere on T. Also recall that when b is
µ-admissible then H (b)µ, the set of all µ-admissible functions in H (b),
contains the reproducing kernels kb

λ, λ ∈ D, and thus is a dense linear
manifold in H (b). Here is our main reverse Carleson measure result.

Theorem 4.1. Let µ ∈ M+(D
−), b ∈ H∞

1 be non-extreme and µ-
admissible, and let h = dµ|T/dm. Then the following assertions are

equivalent:

(1) The measure µ is a reverse Carleson measure for H (b);
(2) The inequality ‖kb

λ‖b . ‖kb
λ‖µ holds for every λ ∈ D;

(3) The measure ν defined by dν := (1− |b|2)dµ satisfies the condi-

tion

(4.2) inf
I

ν (S(I))

m(I)
> 0;

(4) We have ess infT(1− |b|2)h > 0.

Remark 4.3. (1) Notice that since statement (2) of the above the-
orem implies statement (1), the reverse reproducing kernel the-
sis holds for H (b) when b is non-extreme. This is not necessar-
ily the case when b is extreme. For example, in [19] it is shown
that whenever b is an inner function, then there is a measure
satisfying (2) but not (1).

(2) The part of the measure guaranteeing reverse Carleson embed-
dings in H (b) is supported on T (with the control given in
statement (4) of theorem). For example, any measure carried
only by D can not be a reverse Carleson measure.

The proof of Theorem 4.1 will require this technical lemma from
harmonic analysis. This is surely a ‘folk theorem’ but we prove it here
for the reader’s convenience.

Lemma 4.4. Let q be a bounded analytic function on D. Then for

almost every ζ ∈ T,

(4.5) lim
r→1−

∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) = |q(ζ)|2.
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Proof. Let us suppose that ζ ∈ T is a Lebesgue point of |q|2 where q
admits a radial limit l. Let u be the harmonic function on D whose
(almost everywhere defined) radial limits u(ξ), ξ ∈ T, satisfy u(ξ) =
|q(ξ)|2 a.e. Then, by the fact that |q|2 is subharmonic, we have |q|2 ≤ u
on D and it follows that∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) ≤

∫

T

u(rξ)
1− r2

|ξ − rζ |2
dm(ξ) = u(r2ζ).

By our assumptions on ζ , the above implies that

(4.6) 0 ≤ lim
r→1

∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) ≤ |q(ζ)|2 = |l|2,

and this is true almost everywhere. We now set q̃ := q − l. Repeating
the above argument for q̃, from (4.6), we deduce that

lim
r→1

∫

T

|q(rξ)− l|2
1− r2

|ξ − rζ |2
dm(ξ) = lim

r→1

∫

T

|q̃(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ)

≤ |q̃(ζ)|2 = 0,

which, since the expression on the left hand side is always non-negative,
allows us to switch from a lim sup to a regular limit, i.e.,

lim
r→1

∫

T

|q(rξ)− l|2
1− r2

|ξ − rζ |2
dm(ξ) = 0.

On the other hand,
∫

T

|q(rξ)− l|2
1− r2

|ξ − rζ |2
dm(ξ)

=

∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) + |l|2 − 2

∫

T

ℜ(lq(rξ))
1− r2

|ξ − rζ |2
dm(ξ)

=

∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) + |l|2 − 2ℜ(lq(r2ζ))

(where we have used the fact that ℜ(l̄qr) is harmonic, with qr(ζ) =
q(rζ)) and so

lim
r→1

∫

T

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ) = |l|2 = |q(ζ)|2,

which is the desired conclusion. �

Remark 4.7. It follows from Lemma 4.4 and basic facts about the
Poisson kernel that, for an interval I,

lim
r→1−

∫

I

|q(rξ)|2
1− r2

|ξ − rζ |2
dm(ξ)
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is equal almost everywhere to |q(ζ)|2 when ζ is in the interior of I and
zero when ζ does not belong to the closure of I.

Proof of Theorem 4.1. The structure of the proof will be to show: (1) ⇒
(2) ⇒ (4) ⇔ (3) and (4) ⇒ (1).
Statement (1) implies (2) is clear since b is µ-admissible and so kb

λ ∈
H (b)µ for every λ ∈ D. Statement (3) implies (4) follows from the
Lebesgue differentiation theorem and the fact that the (symmetric)
derivative of a singular measure is zero m-almost everywhere.
For the implication (4) ⇒ (3), it is sufficient to note that, for any

open arc I of T, we have

ν(S(I)) =

∫

S(I)

(1− |b|2) dµ ≥

∫

I

(1− |b|2)h dm ≥ δm(I),

where
δ := ess inf

T

(1− |b|2)h > 0.

Let us prove the implication (4) ⇒ (1). Let δ > 0 be defined as in
the previous line. To test the reverse Carleson condition, we just need
to test it on f ∈ H (b)µ for which ‖f‖µ < ∞. For such functions f we
have, with a being the Pythagorean mate for b,

∫

T

|f |2|a|−2 dm ≤ δ−1

∫

T

|f |2h dm = δ−1

∫
|f |2 dµ < ∞.

Thus f/a ∈ L2. But since a is outer, this yields (via a standard fact
from Hardy spaces) that f/a ∈ H2 and thus f = af/a ∈ M (a). Now
using the fact that M (a) is contractively contained in H (b), we get

‖f‖b ≤ ‖f‖M (a) = ‖f/a‖2 ≤ δ−1/2‖f‖µ

which is the desired inequality.
It remains to check the implication (2) ⇒ (4). If ‖kb

λ‖b . ‖kb
λ‖µ for

all λ ∈ D then

1− |b(λ)|2

1− |λ|2
.

∫

D−

∣∣∣∣∣
1− b(λ)b(z)

1− λz

∣∣∣∣∣

2

dµ(z).

This says that

1− |b(λ)|2 .

∫

D

1− |λ|2

|1− λz|2
|1− b(λ)b(z)|2dη(z)(4.8)

+

∫

T

1− |λ|2

|1− λz|2
|1− b(λ)b(z)|2h(z)dm(z)

+

∫

T

1− |λ|2

|1− λz|2
|1− b(λ)b(z)|2dσ(z),
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where

dµ = dη + hdm+ dσ,

η = µ|D, h = dµ|T/dm, and σ is the singular part of µ|T. Note that
the three integrals on the right-hand side of (4.8) are well defined since
we are assuming that b is a µ-admissible, bounded analytic function.
Let E be the measurable subset of ζ ∈ T which satisfies the following

conditions:

(4.9) ζ is a Lebesgue point of h;

(4.10) b has a radial limit at ζ ;

(4.11) (Dσ)(ζ) = 0,

where Dσ is the symmetric derivative of σ – which is zero m-almost
everywhere. Notice that E is a set of full Lebesgue measure in T.
Let I be a sub-arc of T containing ζ ∈ E. For this interval define

S(I, y) := {z ∈ S(I) : |z| ≥ 1− y}.

Integrating the left-hand side of (4.8) over S(I, y) and dividing by y
we get

1

y

∫ 1

1−y

(∫

I

(1− |b(reit)|2)dt

)
rdr.

One can argue by the dominated convergence theorem that this quan-
tity goes to ∫

I

(1− |b(eit)|2)dt as y → 0.

Now integrate the first integral on the right-hand side of (4.8) over
S(I, y) and divide by y to get (after applying Fubini’s theorem)

(4.12)

∫

D

1

y

∫ 1

1−y

(∫

I

1− r2

|1− re−itz|2
|1− b(reit)b(z)|2dt

)
rdrdη(z).

Note that the inner two integrals, i.e.,

1

y

∫ 1

1−y

(∫

I

1− r2

|1− re−itz|2
|1− b(reit)b(z)|2dt

)
rdr

is bounded above by a constant times

1

y

∫ 1

1−y

(∫

I

1− r2

|1− re−itz|2
dt

)
rdr
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which approaches χI as y → 0. Thus the integral in (4.12) is bounded
above by a quantity which approaches

(4.13)

∫

D

χIdη, as y → 0,

which is equal to zero since I ∩ D = ∅.
Now integrate the second integral on the right-hand side of (4.8) over

S(I, y) and divide by y to get (after applying Fubini’s theorem)
∫

T

1

y

∫ 1

1−y

(∫

I

1− r2

|1− e−itrζ |2
|1− b(reit)b(ζ)|2dt

)
rdrh(ζ)dm(ζ).

Apply Lemma 4.4 and Remark 4.7 to the inner integral
∫

I

1− r2

|1− e−itrζ |2
|1− b(reit)b(ζ)|2dt

to see that this quantity approaches (1 − |b(ζ)|2)2χI as r → 1. Thus
the second integral on the right-hand side of (4.8) (over S(I, y) and
divide by y) approaches

(4.14)

∫

I

(1− |b|2)2hdm, as y → 0.

Now use the exact same proof used to get (4.13) to show that the
third integral on the right-hand side of (4.8) (over S(I, y) and divide
by y) approaches ∫

I

dσ, as y → 0.

Combining our results we get
∫

I

(1− |b|2)dm .

∫

I

(1− |b|2)2hdm+

∫

I

dσ.

Now, remembering thatDσ is zero on E, we get the required result. �

Remark 4.15. (1) The above proof can be suitably modified to
show that the family of Cauchy kernels {kλ : λ ∈ D} can be used
to test the reverse embedding. More precisely, if ‖kλ‖b . ‖kλ‖µ
for every λ in D, then ‖f‖b . ‖f‖µ for every f in H (b)µ. Since
the kernels kλ are simpler than kb

λ, this could, in certain circum-
stances, provide an easier test for reverse Carleson measures.

(2) Theorem 4.1 can be used to complete the proof of the converse
of Corollary 3.5. Indeed if (1 − |b|)−1 belongs to L1 then the
measure dµ := (1−|b|)−1dm is finite, b is admissible with respect
to this measure, and µ is a reverse Carleson measure for H (b)
since ess infT(1− |b|2)(1− |b|)−1 ≥ 1 > 0.
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When b ∈ H∞
1 (not necessarily non-extreme), the proof of the impli-

cation (2) ⇒ (4) of Theorem 4.1 actually shows the following.

Theorem 4.16. Suppose µ ∈ M+(D
−), b ∈ H∞

1 is µ-admissible, and

h = dµ|T/dm. If µ is a reverse Carleson measure for H (b) then

(4.17) (1− |b|2) . (1− |b|2)2h.

almost everywhere on T.

When b is inner then the inequality in (4.17), though true, yields
no information. When b is non-extreme then the condition that the
Lebesgue measure of the set where |b| = 1 is zero along with Condi-
tion 4.17 is equivalent to Condition (4) in Theorem 4.1. We have the
following general corollary.

Corollary 4.18. Suppose µ ∈ M+(D
−), b ∈ H∞

1 is not inner and µ-
admissible. Let h = dµ|T/dm and Zb := {ζ ∈ T : |b(ζ)| < 1}. Assume

that µ is a reverse Carleson measure for H (b), then h 6≡ 0 and
∫

Zb

1

1− |b|
dm < +∞.

Moreover, if m(Zb) = 1, then b is non-extreme.

Proof. By Theorem 4.16, the inequality (4.17) holds and since b is not
inner, this inequality implies that h 6≡ 0. On Zb we now obtain from
(4.17) that

1 . (1− |b|2)h,

that is (1 − |b|)−1 . h a.e. on Zb. Since h ∈ L1(T), we see that∫
Zb

(1 − |b|)−1 dm is finite. If furthermore m(Zb) = 1, the integrability

of (1− |b|)−1 implies that of log(1− |b|) and so b is non-extreme. �

Our results have an interesting connection to sampling sequences for
H (b) spaces. Recall that if H is a reproducing kernel Hilbert space
on a set Ω, and if kH

λ denotes its reproducing kernel at point λ, then
a sequence (λn)n≥1 ⊂ Ω is called a sampling sequence for H if

‖f‖2H ≍
∞∑

n=1

‖kH

λn
‖−2

H
|f(λn)|

2,

for all f ∈ H .

Corollary 4.19. Let b ∈ H∞
1 . If H (b) admits a sampling sequence,

then necessarily b is an inner function.
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Proof. Assume that there exists a sequence (λn)n≥1 ⊂ D which is a
sampling sequence for H (b). This implies, in particular, that the mea-
sure

µ :=
+∞∑

n=1

‖kb
λn
‖−2
b δλn

is a reverse Carleson measure for H (b). But since dµ|T/dm ≡ 0, this
contradicts Corollary 4.18. �

This Corollary generalizes a result obtained in [8]. Note also that
the proof given above shows that H (b) does not have an orthogonal
basis of reproducing kernels if b is not inner. This result was already
proved in [17] using a different method based on spectral perturbation
and originally coming from Clark’s theory.

Example 4.20. Let b be the outer function whose modulus satisfies

|b(eiθ)| = 1− exp(−
1

θ2
).

Then ∫

T

log
1

1− |b|
dm ≍

∫ 2π

0

1

θ2
dθ = ∞

and so b is extreme. Moreover, Zb = T \ {1}. In particular, m(Zb) = 1
and by Corollary 4.18, H (b) will have no reverse Carleson measures.

Conspicuously missing from this discussion is the case where b is
extreme and not inner and for which∫

Zb

1

1− |b|
dm < ∞.

An example of this would be the outer function b whose modulus is 1
on T∩{ℑz > 0} and 1/2 on T∩{ℑz < 0}. Do such H (b) spaces have
reverse Carleson measures?

5. An analogous condition for direct embeddings

In this section, we again assume b is non-extreme and a is defined
by (2.3). We also recall the definition of Carleson measure from the
introduction (H (b)µ = H (b) and ‖f‖µ . ‖f‖b for every f ∈ H (b)).
We remind the reader that M (a) = aH2 is contractively contained in
H (b), i.e., for every g ∈ H2,

(5.1) ‖ag‖b ≤ ‖ag‖M (a) = ‖g‖2.

In particular, a ∈ H (b) and thus, if µ is a Carleson measure for H (b),
then necessarily a is µ-admissible.
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Proposition 5.2. Let b ∈ H∞
1 be non-extreme and let µ ∈ M+(D

−)
be a Carleson measure for H (b). Then dν = |a|2dµ is a Carleson

measure for H2.

Proof. For λ ∈ D and kλ the standard reproducing kernel for H2, apply
the direct embedding inequality to akλ and use (5.1) to obtain

‖kλ‖2 = ‖akλ‖M (a) ≥ ‖akλ‖b & ‖akλ‖µ = ‖kλ‖ν , λ ∈ D,

which implies, by the reproducing kernel thesis for H2, that ν is a
Carleson measure for H2. �

Remark 5.3. We will see in a moment that without additional as-
sumptions on a and b, the converse is not always true.

For our next set of results we need some additional facts concerning
H (b) spaces. For α ∈ T let σα be the Aleksandrov–Clark measure
[9, 10, 32] associated with the function ᾱb, i.e., σα is (via a classical
theorem of Herglotz) the unique positive measure on T satisfying

(5.4)
1− |b(z)|2

|1− ᾱb(z)|2
=

∫

T

1− |z|2

|1− ζ̄z|2
dσα(ζ), z ∈ D.

According to [34, IV-10], since b is non-extreme, σα ≪ m for m-almost
every α ∈ T.
Now let

Fα :=
a

1− ᾱb
and note that Fα belongs to H2 and is outer. From [34, IX-4] we know
that M (a) = H (b) (with equivalent norms) if and only if there is an
α ∈ T such that σα ≪ m and |Fα|

2 ∈ (A2).
The following theorem may seem overly technical at first glance but

it will have a very useful corollary (See Corollary 5.7 below).

Theorem 5.5. Let (a, b) be a Pythagorean pair, µ ∈ M+(D
−), α ∈ T

such that σα ≪ m. Assume there exists a polynomial p having all of

its roots in T and an f ∈ H2 satisfying the conditions |f |2 ∈ (A2) and
Fα = pf . Then the following assertions are equivalent:

(1) The measure µ is a Carleson measure for H (b);
(2) The function a is µ-admissible and the measure |a|2 dµ is a

Carleson measure for H2.

Proof. The implication (1) ⇒ (2) has already been proved. Let us now
focus on the reverse implication and assume that dν := |a|2dµ is a
Carleson measure for H2. Write

p(z) =

s∏

i=1

(z − ζi)
mi ,
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where, by hypothesis, ζi ∈ T. Let

N = m1 +m2 + · · ·+ms

denote the degree of p. According to [34, X-18], we know that M (a)
is closed in H (b) with co-dimension N .
If N = 0 then |Fα|

2 ∈ (A2) and we know that M (a) = H (b) with
equivalent norms. Then for every f = ag ∈ H (b), we have

‖f‖µ = ‖g‖ν . ‖g‖2 = ‖ag‖M (a) ≍ ‖f‖b,

which proves the desired embedding.
Now assume that N ≥ 1 and let us first show that H (b) can be

written as

(5.6) H (b) = M (a)∔ PN−1,

where the sum in the above decomposition is direct (not necessarily
orthogonal). First note that since b is non-extreme, the polynomials
belong to H (b). Now let q ∈ PN−1 ∩ M (a). That means that the
polynomial q can be written as q = ag for some g ∈ H2. But then,
since

pf =
a

1− αb
,

we see that the rational function
q

p
= (1− ᾱb)fg

belongs to H1. This is clearly possible if and only if the poles of q/p are
outside D−. In particular, we see that the polynomial q should have a
zero of order at least mi at each point ζi. Since the degree of q is less
or equal to N − 1, this necessary implies that q = 0. Hence the sum
M (a)∔ PN−1 is direct. Now since

dim PN−1 = N = codim M (a),

we obtain (5.6).
In particular, the angle between the subspaces M (a) and PN−1 is

strictly positive which means that

‖f‖b ≍ ‖ag‖b + ‖p‖b,

for every f = ag + p ∈ H (b) where ag ∈ M (a) and p ∈ PN−1. More-
over, since M (a) is a closed subspace of H (b), contractively embedded
(‖ag‖b ≤ ‖ag‖M (a), g ∈ H2), the open mapping theorem shows that

‖ag‖M (a) . ‖ag‖b, g ∈ H2.
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Since ν is a Carleson measure for H2, we have, for ag ∈ M (a),

‖ag‖µ = ‖g‖ν . ‖g‖2 = ‖ag‖M (a)

. ‖ag‖b.

On the other hand, if p(z) =
∑N−1

n=0 anz
n ∈ PN−1, we see, since µ is a

finite measure, that

‖p‖µ ≤
N−1∑

n=0

|an|‖z
n‖µ .

N−1∑

n=0

|an|

.

(
N−1∑

n=0

|an|
2

)1/2

= ‖p‖2 ≤ ‖p‖b.

We conclude that for f = ag + p, where ag ∈ M (a) and p ∈ PN−1, we
have

‖f‖µ = ‖ag + p‖µ ≤ ‖ag‖µ + ‖p‖µ . ‖ag‖b + ‖p‖b ≍ ‖f‖b. �

A nice application of Theorem 5.5 is the following corollary. Note
that if b is a rational function then so is a [35, Remark 3.2] so there is
no need to impose any µ admissibility conditions.

Corollary 5.7. Let b be a rational and non-extreme and µ ∈ M+(D
−).

Then the following assertions are equivalent:

(1) The measure µ is a Carleson measure for H (b);
(2) The measure |a|2 dµ is a Carleson measure for H2.

Proof. According to Theorem 5.5, it is sufficient to prove that there
exists an α ∈ T such that σα from (5.4) satisfies σα ≪ m, a polynomial
p having all of its roots on T, and a function f ∈ H2 with |f |2 ∈ (A2)
such that Fα = pf .
We first observe that the associated outer function a is also a rational

function (see [35, Remark 3.2]). Write a = q/r where q and r are two
polynomials with GCD(q, r) = 1. Then, necessarily, r(z) 6= 0 for every
z ∈ D

− and let us denote by ζi, 1 ≤ i ≤ N , the zeros of q on T. Note
that since these zeros are the same as those of a we actually have

{z ∈ T : |b(z)| = 1} = {ζ1, . . . , ζN}.

Now choose α ∈ T \ {b(ζ1), . . . , b(ζN)} such that σα ≪ m (which is
always possible because σα ≪ m for m-almost every α ∈ T). Moreover,
according to the choice of α, the function 1 − ᾱb, which is continuous
on D−, cannot vanish and hence

(5.8) inf
z∈D−

|r(z)(1− ᾱb(z))| > 0.
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It remains to factor the polynomial q as q1q2 where q1 has all of its
roots on T and q2 has all of its roots outside D−. Then

Fα =
a

1− ᾱb
= q1

q2
r(1− ᾱb)

= q1f,

where

f =
q2

r(1− ᾱb)
.

In view of (5.8), we easily see that f and 1/f are continuous on D−

which implies |f |2 ∈ (A2).
The proof is completed by an application of Theorem 5.5. �

Remark 5.9. As a byproduct of our proof of Corollary 5.7 and The-
orem 5.5, we see that if b is rational and non-extreme and if ζ1, . . . , ζn
are the zeros of a on T, listed according to multiplicity, then

H (b) =

(
n∏

j=1

(z − ζi)

)
H2 ∔ Pn−1.

This decomposition already appears in [13, Lemma 4.3] but their ar-
gument is based on a difficult result of Ball and Kriete which gives a
condition as to when one H (b)-space is contained in another.
Moreover, if we gather [13, Theorem 4.1.] and Corollary 5.7, then we

recover a result of [7] concerning the characterization of direct Carleson
measures for a Dirichlet-type space associated with a finite sum of Dirac
measures.

We already mentioned in Section 2 that if (a, b) is a corona pair and
if Ta/a is invertible then H (b) = M (a). We also pointed out that
this is equivalent to the fact that there exists α ∈ T with σα (from
(5.4)) satisfies σα ≪ m and |Fα|

2 ∈ (A2). In particular, applying
Theorem 5.5 to this situation (or by direct inspection) immediately
gives the following result.

Corollary 5.10. Suppose that (a, b) forms a corona pair and Ta/a is

invertible. If µ ∈ M+(D
−), then the following assertions are equivalent.

(1) The measure µ is a Carleson measure for H (b);
(2) The function a is µ-admissible and the measure |a|2 dµ is a

Carleson measure for H2.

Remark 5.11. A sufficient condition for direct Carleson measures for
H (b) is given in [4]. More precisely, for ε ∈ (0, 1), we let Ω(b, ε) denote
the sub-level set

Ω(b, ε) := {z ∈ D : |b(z)| < ε},
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and

σ(b) := {ζ ∈ T : lim inf
z→ζ

|b(z)| < 1},

denote the boundary spectrum of b and we set

Ω̃(b, ε) = Ω(b, ε) ∪ σ(b).

It is known [4, Theorem 6.1] that if µ satisfies

µ(S(I)) . |I|,

for any arc I such that S(I) ∩ Ω̃(b, ε) 6= ∅, then

‖f‖µ . ‖f‖b, f ∈ H (b).

Note that our results, in some sense, complete the picture because
one can, using Corollary 5.7, produce an example of a Carleson measure
for H (b) where the above criterion cannot be applied. Indeed let

b(z) =
1 + z

2
.

Then

a(z) =
1− z

2

and σ(b) = T \ {1}. Thus checking the Carleson condition for µ on

Carleson squares (1.3) which intersect Ω̃(b, ε) is, in this case, equivalent
to saying that µ is a Carleson measure for H2. But now it is easy to
construct an example of a measure µ which is Carleson for H (b) but
not for H2. For instance, we can consider the measure µ on the interval
(0, 1) defined by

dµ(t) = (1− t)−βdt,

for β ∈ (0, 2]. According to Corollary 5.7, µ is a Carleson measure for
H (b) but cannot be a Carleson measure for H2 because if we consider
the arc Iϑ := (e−iϑ, eiϑ), ϑ ∈ (0, π/2), we have

µ(S(Iϑ)) =

∫ 1

1−ϑ/2π

dt

(1− t)β
=

(ϑ/2π)1−β

1− β
,

and thus

sup
ϑ>0

µ(S(Iϑ))

|Iϑ|
= ∞.

However, it is important to note here that our results focus on the
case where b is non-extreme whereas in [4], there are no such assump-
tions on b.



22 BLANDIGNÈRES, FRICAIN, GAUNARD, HARTMANN, AND ROSS

Remark 5.12. In [4], it is shown that for a particular class of functions
b, the reproducing kernel thesis is true. More precisely, let b ∈ H∞

1 and
assume that there exists ε ∈ (0, 1) such that Ω(b, ε) is connected and
its closure contains the spectrum σ(b). If ‖kb

λ‖µ . ‖kb
λ‖b holds for

every λ ∈ D, then ‖f‖µ . ‖f‖b for every f ∈ H (b). However, in [26],
F. Nazarov and A. Vol’berg showed that this is no longer true in the
general case (their counterexample corresponds to the case where b is
an inner function). According to the results of this paper, it would be
natural to conjecture that the reproducing kernel thesis is true in the
non-extreme case. However, we currently do not know how to prove
this.

6. Examples

We would like to discuss the necessity of the two hypotheses appear-
ing in Corollary 5.10. To do so, we will construct two examples where
either of the two conditions

(6.1) (a, b) is a corona pair

(6.2) Ta/a is invertible

are violated and yet ν is a Carleson measure for H2 for which there is
no Carleson embedding H (b) →֒ L2(µ). Let us start with condition
(6.1).

Example 6.3. There is a Pythagorean pair (a, b) and a µ ∈ M+(D
−)

such that (a, b) is not a corona pair, Ta/a is invertible, ν is a Carleson
measure for H2, yet µ is not a Carleson measure for H (b).
To see this, let

a(z) = c(1− z)α, α ∈ (0, 1/2),

guaranteeing that |a|2 ∈ (A2) (equivalently Ta/a is invertible). Here
c = 2−α so that ‖a‖∞ = 1. Clearly 1−|a|2 is a bounded, log-integrable
function, and so that there is an outer function b0 ∈ H∞ such that
|a|2+ |b0|

2 = 1 a.e. on T. Symmetrically, b0 is also non-extreme, and its
Pythagorean mate is a. Now consider the Blaschke product B = BΛ

whose zeros are Λ = {1−1/2n}n≥1, and set b = Bb0. Then (a, b) is not
a corona pair since

|a(λn)|+ |b(λn)| = |a(λn)| → 0, n → ∞.

Now consider the measure µ on T defined by

dµ(z) =
1

|1− z|β
dm(z)
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for some 0 < β ≤ 2α. Then

dν = |a|2dµ = c2|1− z|2α−βdm

has bounded Radon-Nikodym derivative and is thus a Carleson measure
for H2.
To show that µ is not a Carleson measure for H (b), we now estimate

the L2(µ)-norms of the normalized reproducing kernels

κλn
(z) =

kλn
(z)

‖kλn
‖2

=

√
1− |λn|2

1− λnz
, z ∈ D.

Indeed,

‖κλn
‖2L2(µ) =

∫

T

1− |λn|
2

|ζ − λn|2
dm(ζ)

|1− ζ |β
≃

1

2n

∫ π

−π

1

|eit − λn|2
1

tβ
dt

≥
1

2n

∫ 1/2n

−1/2n

1

|eit − λn|2
1

tβ
dt ≃

1

2n
× 22n

∫ 1/2n

−1/2n

1

tβ
dt

≃
1

2n
× 22n ×

1

2n(1−β)
= 2n(2−1−(1−β))

= 2nβ → ∞, n → ∞.

By (3.2), since b(λn) = 0, n ≥ 1, we have

‖κλn
‖b = 1.

As a result, µ is not a Carleson measure for H (b).

The following result discusses the necessity of condition (6.2).

Theorem 6.4. Let (a, b) be a corona pair such that |a|−2 ∈ L1 and let

dµ = |a|−2dm. Then µ is a Carleson measure for H (b) if and only if

|a|2 ∈ (A2).

Proof. The following equivalences are quite obvious:

M (a) →֒ L2(µ) ⇔ ‖f‖µ . ‖f‖M (a), f ∈ M (a),

⇔ ‖Tag‖µ . ‖g‖2, g ∈ H2,

⇔ Ta : H
2 → L2(µ) is bounded

⇔ Ta : L
2 → L2(µ) is bounded
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Let j : L2 −→ L2(µ) be the onto isometry j(f) = af and observe that
the following diagram commutes:

L2

L2(µ)

j

? P+
- L2(µ).

T
a

-

Hence

M (a) →֒ L2(µ) ⇔ P+ : L2(µ) → L2(µ) is bounded

⇔ |a|2 ∈ (A2).

Remembering that since (a, b) is a corona pair, then H (b) = M (a)
with equivalent norms which completes the proof. �

Example 6.5. Based on Theorem 6.4, we now construct an explicit
example of a corona pair (a, b) so that dµ = |a|−2dm is not a Carleson
measure for H (b) whereas |a|2dµ = dm is naturally a Carleson measure
for H2. In view of Corollary 5.10, condition (6.2) will not be satisfied
here.
Let {βn}n≥1 be a sequence decreasing to zero and bounded by 1/2.

For n ≥ 1, introduce the intervals

In :=
[ 1

22n+1
+

1

23n
,
1

22n
−

1

23n

)
, Jn :=

[ 1

22n
+

1

23n
,

1

22n−1
−

1

23n

)

and define a symmetric function u (u(eit) = u(e−it)) on these intervals
by

u(eit) =

{
1/2 if t ∈ Jn,
βn if t ∈ In.

Connect smoothly and monotonically the values 1/2 and βn between
these intervals and set u(eit) = 1/2 on the remaining part of the circle.
We need to impose two conditions on {βn}n≥1. First suppose that

∑

n≥1

1

22n
log β−1

n < ∞

guaranteeing that u is log-integrable. Hence there is an outer function
a given by

a(z) = exp

(
1

2

∫ π

−π

eit + z

eit − z
log u(eit)

dt

2π

)
, z ∈ D.
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Obviously |a|2 = u a.e. on T. Secondly we impose the condition
∑

n≥0

1

22n
1

βn
< ∞

which guarantees that |a|−2 = u−1 ∈ L1(T). One can pick, for instance,
βn ≥ 2−2αn with α < 1.
Now, in view of the smoothness and non-vanishing properties of u,

the function a extends continuously from D to every point ζ ∈ T \ {1}.
Note that a satisfies (2.2). Thus we can consider an outer function b
such that |b|2 = 1− |a|2 almost everywhere on T. Then we have

log |b(z)| =
1

2

∫ π

−π

1− |z|2

|eit − z|2
log(1− u(eit))

dt

2π
, z ∈ D.

Now if (a, b) were not a corona pair, then there would be a sequence
{zn}n≥1 such that a(zn) → 0 and b(zn) → 0. Clearly we can suppose
zn → ζ ∈ T. The only point where this can happen for a is ζ = 1. Now,
fix an arc of T which contains 1. There, the function b is bounded below
by 1/2 so that the outer function b cannot be small in this neighborhood
(the harmonic function log |b| cannot tend to −∞ there). Hence b(zn)
can not approach 0. We conclude that (a, b) is a corona pair.
Let us check that |a|2 is not (A2). Consider the intervals

Kn :=
[ 1

22n+1
+

1

23n
,

1

22n−1
−

1

23n

)
⊃ In ∪ Jn,

the length of which is comparable to 2−2n. We have

1

m(Kn)

∫

Kn

|a(eit)|2dt ≃ 22n
∫

Jn

u(eit)dt ≃ 1

(the contribution of u on In is negligible and m(Jn) ≃ 2−2n). On the
other hand,

1

m(Kn)

∫

Kn

1

|a(eit)|2
dt ≃ 22n

∫

In

1

u(eit)
dt ≃

1

βn

(the contribution of 1/u on Jn is negligible and m(In) ≃ 2−2n). Hence,
as n → ∞,
(

1

m(Kn)

∫

Kn

|a(eit)|2dt

)(
1

m(Kn)

∫

Kn

1

|a(eit)|2
dt

)
≃

1

βn
→ ∞,

which proves the claim. Then according to Theorem 6.4 dµ = |a|−2 dm
is not a Carleson measure for H (b).

To finish this section we comment further on the general situation
dµ = hdm when h is not necessarily equal to |a|−2. Then the direct em-
bedding result is connected with the so-called two-weighted estimates.
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Indeed, with a similar argument as in Theorem 6.4, we can show that
when (a, b) is a corona pair such that |a|−2 ∈ L1 and dν = |a|2dµ for
some absolutely continuous measure dµ = hdm on T, then

M (a) →֒ L2(µ) ⇔ ‖f‖µ . ‖f‖M (a), f ∈ M (a),

⇔ ‖Tag‖µ . ‖g‖2, g ∈ H2,

⇔ Ta : H
2 → L2(µ) is bounded

⇔ Ta : L
2 → L2(µ) is bounded.

As was done earlier, let us consider the corresponding commutative
diagram. To do this set dγ = |a|−2dm and j : L2 → L2(γ) be the
onto-isometry j(f) := af . Then the following diagram commutes:

L2

L2(γ)

j

? P+
- L2(µ)

T
a

-

Hence, recalling that dµ = h dm, M (a) embeds into L2(µ) if and only
if

P+ : L2
(
|a|−2dm

)
→ L2(h dm) is bounded.

Using one more time that M (a) = H (b) (with equivalent norms), we
get:

Theorem 6.6. Let us suppose that (a, b) forms a corona pair such that

|a|−2 ∈ L1. Let dµ = h dm with h ∈ L1. Then µ is a Carleson measure

for H (b) if and only if P+ : L2
(
|a|−2dm

)
→ L2(h dm) is bounded

It is known that the generalized Muckenhoupt condition is neces-
sary for the continuity of P+ (or the Hilbert transform) between two
weighted L2-spaces:

(6.7) sup
I

(
1

m(I)

∫

I

h dm

)(
1

m(I)

∫

I

|a|2 dm

)
< ∞,

but this condition is, in general, not sufficient (see for instance [15,
p.154]).

7. Norm equivalence and isometric embeddings

This next to last section is devoted to a discussion of equivalent
norms on H (b) and isometric embeddings of H (b) in L2(µ). It will
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turn out that the L2(µ) norm is equivalent to the H (b)-norm only
when H (b) = M (a).
Let us make the following observation. If we are to impose the

condition that the L2(µ) norm is equivalent to the H (b) norm then we
require that H (b)µ = H (b) and that ‖f‖µ ≍ ‖f‖b for all f ∈ H (b).
When b is non-extreme then Proposition 3.1 and Theorem 3.3 imply
that H∞ ⊂ H (b). This means that if every function in H (b) has a
non-tangential limit µ-almost everywhere on T then every function in
H∞ must also have this property. By a classical result of Lusin [12,
p. 24] (given any closed subset of T with Lebesgue measure zero there
is an f ∈ H∞ which does not have non-tangential limits on this set),
we see that the singular part of µ|T (with respect to m) is zero.

Proposition 7.1. Let b ∈ H∞
1 be non-extreme point, µ ∈ M+(D

−),
and h = dµ|T/dm. Assume that H (b)µ = H (b) and

‖f‖µ ≍ ‖f‖b, f ∈ H (b).

Then (a, b) is a corona pair and |a|2 ∈ (A2). In other words, it is

necessary that H (b) = M (a).

Proof. First note that by our above discussion we have dµ|T = hdm.
Second, according to Theorem 4.1, we have

(7.2) δ := ess inf
T

|a|2h > 0.

Third, using (3.2) there exists a constant c > 0 such that

c

∫

D−

1

|1− λ̄z|2
dµ(z) ≤

|a(λ)|2 + |b(λ)|2

|a(λ)|2(1− |λ|2)

for every λ ∈ D. Hence with (7.2) we get

cδ

∫

T

|a(ζ)|−2 1− |λ|2

|1− λ̄ζ |2
dm(ζ) ≤

|a(λ)|2 + |b(λ)|2

|a(λ)|2
.

Now subharmonicity of |a|−2 gives

cδ

|a(λ)|2
≤

|a(λ)|2 + |b(λ)|2

|a(λ)|2
≤

(|a(λ)|+ |b(λ)|)2

|a(λ)|2
,

which proves that (a, b) is a corona pair. Let us now prove that |a|2 ∈
(A2). From Theorem 6.6 we know that

P+ : L2(|a|−2dm) → L2(hdm)

is bounded (note that 0 ≤ |a|−2 ≤ δh and thus |a|−2 ∈ L1). On the
other hand, since h & |a|−2, the space L2(hdm) embeds continuously
into L2(|a|−2dm). As a consequence, P+ is bounded from L2(|a|−2dm)
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to itself which implies that |a|−2 (and equivalently |a|2) satisfies the
(A2) condition. �

As a consequence of our discussion, we can deduce the following
result:

Theorem 7.3. Let b ∈ H∞
1 be non-extreme, and µ ∈ M+(D

−). Then

the following are equivalent:

(1) We have H (b)µ = H (b) and ‖f‖µ ≍ ‖f‖b for any f ∈ H (b);
(2) The following conditions hold:

(a) the function a is µ-admissible,

(b) the pair (a, b) is a corona pair,

(c) the function |a|2 satisfies (A2),
(d) the measure ν, defined by dν = |a|2 dµ, satisfies

0 < inf
I

ν (S(I))

m(I)
≤ sup

I

ν (S(I))

m(I)
< ∞,

where the infimum and supremum above are taken over all

open arcs I of T.

Example 7.4. Surely an example is important here. Let a(z) := cα(1−
z)α, where α ∈ (0, 1/2) and cα is chosen so that a ∈ H∞

1 . As we have
already mentioned earlier, since 0 < α < 1/2, the function |a|2 satisfies
the (A2) condition. Choose b to be the outer function in H∞

1 satisfying
|a|2 + |b|2 = 1 on T. Standard theory, using the fact that a is Hölder
continuous on D−, will show that b is continuous on D− (see [20]). It
follows that (a, b) is a corona pair. If σ ∈ M+(D

−) is any Carleson
measure for H2, then one can show that dµ := |a|−2dm + dσ satisfies
the conditions of the above theorem.

We end this section with a proof that if b is non-extreme and non-
constant then there are no isometric measures for H (b). This requires a
preliminary technical result already known [33]. We provide a different
proof which is slightly shorter but needs the additional assumption that
b/a ∈ H2. Recall from Section 2 that the polynomials belong to H (b)
when b is non-extreme.

Lemma 7.5. Let (ck)k≥0 be the Taylor coefficients of the analytic func-

tion b/a and assume that b/a ∈ H2. Then

‖zn‖2b = 1 +
n∑

j=0

|cj|
2.

Proof. By (2.4) and (2.6) we need to calculate ‖hn‖2, where

hn = Tb̄/āz
n.
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We have

‖hn‖
2
2 =

∥∥∥∥P+
b̄

ā
zn
∥∥∥∥
2

2

=

∥∥∥∥P−z̄
n+1 b

a

∥∥∥∥
2

2

=

∥∥∥∥z
n+1P−z̄

n+1 b

a

∥∥∥∥
2

2

=

n∑

j=0

|cj|
2,

where for the last identity, we used the fact that zn+1P−z̄
n+1 is the or-

thogonal projection onto (zn+1H2)⊥, that is the orthogonal projection
onto the set of polynomials of degree at most n. �

Theorem 7.6. When b is non-constant and non-extreme, there are no

positive isometric measures for H (b).

Proof. Let us assume to the contrary that b is non-constant and that
there exists a µ ∈ M+(D

−) such that

‖f‖b = ‖f‖µ, f ∈ H (b).

Let us apply this identity to f = zn. First observe that

‖zn‖2µ =

∫

D−

|z|2ndµ(z) = µ(T) +

∫

D

|z|2ndµ(z).

Lemma 7.5 yields

(7.7) µ(T) +

∫

D

|z|2ndµ(z) = ‖zn‖2b = 1 +

n∑

j=0

|cj|
2, n ≥ 0.

Now let n → ∞ to get

µ(T) = 1 +
+∞∑

j=0

|cj|
2.

Combine this identity with the one in (7.7) to obtain
∫

D

|z|2ndµ(z) = 0

and
+∞∑

j=n+1

|cj|
2 = 0

for all n ≥ 0. In particular, the last identity for n = 0 gives that b/a
must be constant, or equivalently b = ka, with k ∈ C. Hence, since

1 = |a|2 + |b|2 = |a|2(1 + |k|2) a.e. on T,

|a|2 is constant on T. But since a is outer, this forces a, and hence b,
to be constant, yielding the desired contradiction. �
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Remark 7.8. When b is constant then H (b) = H2 with the norms

differing by the constant
√
1− |b|2. In this case the only isometric

measure for H2 is Lebesgue measure m. Surely this is well-known but
we include the following simple proof for the convenience of the reader.
Indeed for each n ∈ N ∪ {0}

1 = ‖zn‖22 =

∫

D

|z|2ndµ+ µ(T).

By the dominated convergence theorem, the first term on the right
hand side goes to zero as n → ∞ and so µ(T) = 1. But this means,
by setting n = 0 in the previous equation, that µ(D) = 0. This implies
that µ = µ|T. By Carleson’s criterion we see that µ ≪ m and so
dµ = hdm. To see that h is equal to one almost everywhere, apply
the fact that µ is an isometric measure to the normalized reproducing
kernels

(7.9) κλ(z) :=

√
1− |λ|2

1− λz

to get that

1 =

∫

T

1− |λ|2

|1− ζλ|2
h(ζ)dm(ζ), λ ∈ D.

From basic facts about the Poisson integral it follows that h ≡ 1. Thus
µ = m.

8. Final Remark

Suppose that b is an inner function. Then H (b) = (bH2)⊥ is the
classical model space and is certainly a closed subspace of H2. There is
a concept developed in [5] of a dominating set. Here a Borel set E ⊂ T

with m(E) < 1 is called a dominating set for (bH2)⊥ if
∫

T

|f |2dm .

∫

E

|f |2dm, f ∈ (bH2)⊥.

In [5] it is shown that dominating sets exist for every model space
(bH2)⊥ and can be used to give sufficient conditions for reverse Carleson
embeddings for these spaces.
One might be tempted to define a notion of dominating set for H (b)

as a Borel set E ⊂ T satisfying

‖f‖2b .

∫

E

|f |2dm, f ∈ H (b).

However, there is no real point to this.
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Proposition 8.1. If b ∈ H∞
1 and not an inner function then there is

no Borel subset E of T with 0 < m(E) < 1 for which

(8.2) ‖f‖2b .

∫

E

|f |2dm, f ∈ H (b).

Proof. If E were such a set satisfying (8.2) then T would also satisfy
(8.2). However, since the embedding of H (b) into H2 is contractive,
then we have

∫

T

|f |2dm ≤ ‖f‖2b .

∫

T

|f |2dm, f ∈ H (b).

This means that H (b) is a closed subspace of H2, which can only
happen when either b is an inner function or when ‖b‖∞ < 1 [34,
p. 10].
Since we are assuming that b is not an inner function, we are left with

dealing with the case ‖b‖∞ < 1. Here H (b) = H2 with an equivalent
norm. By using the normalized kernel functions κλ(z) from (7.9) in
the inequality (8.2) and basic facts about pointwise limits of Poisson
integrals (and the fact that m(E) < 1) we get a contradiction. �
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