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Abstract

We present a detailed analysis of the convergence properties of the finite cell method which is

a fictitious domain approach based on high order finite elements. It is proved that exponential type

of convergence can be obtained by the finite cell method for Laplace and Lamé problems in one,

two as well as three dimensions. Several numerical examples in one and two dimensions including

a well-known benchmark problem from linear elasticity confirm the results of the mathematical

analysis of the finite cell method.

1 Introduction

The finite cell method (FCM) [33, 19, 20] is a combination of a fictitious domain approach [39, 40, 23,

24, 22] with finite elements of high order [49, 7, 6, 44, 16] The main idea is to embed the domain of

the problem to be solved into a bigger domain that has a simple geometric shape and can therefore be

readily meshed. Thanks to the simple shape of the embedding or fictitious domain, mesh generation is

dramatically simplified. The geometry of the problem is considered during the integration of the cell

matrices, i.e. when computing the stiffness and mass matrices.

In this paper we will consider Neumann boundary conditions at the transition from the physical to the

fictitious domain. Our fictitious domain approach relies on the introduction of an indicator function

α which is equal to 1 inside the domain and 0 outside of the domain. In order to avoid conditioning

problems, α is set to a very small value ε close to zero outside the domain. In this way the variational

formulation is stabilized and the energy contribution of the fictitious domain is weakly penalized, shift-

ing the effort of meshing towards the numerical integration of the cell matrices. Since the quality of

the finite cell approximation strongly depends on the accuracy of the numerical integration, an adaptive

quadrature scheme is applied to compute the stiffness and mass matrices of cells that are cut by the

boundary of the domain or include holes. The adaptive integration can be carried out very generally

by applying quadtree (in 2D) and octree (in 3D) space partitioning schemes in a fully automatic, error-

controlled fashion [2]. Müller et al. [31] proposed a promising approach that enables the numerical

integration of functions that are at least partly defined by the zero iso-contour of a level set function. To

this end a solution of a small linear system based on a simplified variant of the moment fitting equations

1



[48] has to be performed to find the modified weights of Gaussian quadrature scheme. Summarizing,

the finite cell method is based on three important ingredients: a fictitious domain approach, high order

shape functions and an adaptive integration of the cell matrices. Combining these ingredients allows to

achieve an exponential type of convergence when performing a p-extension of the trial and test functions

of the cells.

The FCM has been applied to several problems like linear elasticity in 2D [33] and 3D [19], to shell

problems [36] as well as to problems in biomechanics [17, 50, 51] or wave propagation [14, 29, 15].

Nonlinear problems such as geometrically nonlinearity [43] or elastoplasticity [1, 3] have been ad-

dressed as well. The FCM has also been successfully applied to the numerical homogenization of mate-

rials with complicated microstructures [21] or to topology optimization [18, 34] in structural mechanics.

Instead of classical hierarchic shape functions [49] NURBS, which have become very popular thanks

to the isogeometric analysis [28], can also be successfully used within the FCM, see [42, 37]. Local

refinement strategies have been also developed for the FCM and it turned out that the hp-d method

[35, 17] presents a general framework for local improvement of accuracy within the FCM, see [41, 30].

Despite the fact that the FCM has been numerically demonstrated to yield high convergence rates in

many different problems, there is still a lack of a thoroughly mathematical analysis of its convergence

properties. Thus, this paper is devoted to the analysis of the FCM, proving its capabilities of achieving

exponential convergence under conditions, which are similar to those for the p-version of the finite

element method. Here, as already mentioned, we will focus on Neumann boundary conditions at the

transition from the physical to the fictitious domain. Dirichlet boundary conditions will be studied in

future work.

The layout of the paper is as follows: In Section 2 the setting of the problem is defined and the conver-

gence of the discrete and continuous problem with respect to the penalization parameter ε is presented.

In Section 3 Céa and Strang lemmas are revisited to check that strict positiveness of the bilinear forms

is not necessary. In Section 4 the convergence of the p-version of finite elements is addressed which is

one of the main ingredients of the FCM. Numerical examples for 1D problems are presented in Section

5 and the observed exponential convergence is proved. In Section 6 a two-dimensional benchmark of

linear elasticity is studied and it is demonstrated that the exponential convergence can be also obtained

in 2D. Finally, a conclusion is drawn in Section 7.

2 Neumann condition obtained by penalization

2.1 The setting

We consider a connected bounded domain Ω ⊂ R
n, n = 1, 2 or 3 with reasonable smoothness assump-

tion (Ω can be regular or polyhedral with extension property across its boundary), see Figure 1. We

assume that the boundary of Ω has at least two connected components, in such a way that Ω has a finite

number of holes: The complement domain Ω′ := R
n \Ω has one unbounded component Ω′

0 and a finite

number of bounded connected components Ω′
j , j = 1, . . . , J . We denote by H the hole

H = ∪J
j=1Ω

′
j, (2.1)

by Γ be the boundary of Ω′
0, by Σ the boundary of H and by D the domain with holes removed

D = Ω ∪H. (2.2)
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Note that the boundary of D is Γ, the boundary of Ω is Σ ∪ Γ.

Ω

Ω′
1

Ω′
2

Ω′
3

Σ

Σ

Σ

ΓΓ

D = Ω ∪H

Figure 1: Domain Ω and fictitious domain D

The aim is to solve an elliptic equation Lu = f on Ω with mixed boundary conditions, namely Dirichlet

conditions on Γ and Neumann conditions on Σ by solving Dirichlet problems on D. So D plays the role

of a fictitious domain.

More specifically, we are given two differential bilinear forms b0 and b1 of degree 1 which we assume

for simplicity to be real symmetric with constant coefficients (at this point we may consider systems –

Lamé – as well). The simplest, typical, example is given by the gradient bilinear form

b0(u, v)(x) = ∇u(x) · ∇v(x) + k2u(x)v(x) (k ≥ 0) and b1(u, v)(x) = ∇u(x) · ∇v(x), (2.3)

while Lamé system corresponds to

b0(u, v) = b1(u, v) = 2µǫ(u)(x) : ǫ(v)(x) + λdiv u(x) div v(x).

Let us define variational spaces:

V (Ω) = {u ∈ H1(Ω) : u = 0 on Γ} and V (D) = H1
0 (D), (2.4)

and the variational forms

a0(u, v) =

∫

Ω
b0(u, v)(x) dx and a1(u, v) =

∫

H
b1(u, v)(x) dx. (2.5)

Let f ∈ L2(Ω). We want to solve the variational mixed problem

Find u ∈ V (Ω), ∀v ∈ V (Ω), a0(u, v) =

∫

Ω
f(x)v(x) dx. (2.6)

Instead, we solve for small ε > 0 the following variational problem on D

Find uε ∈ V (D), ∀v ∈ V (D), a0(uε, v) + ε a1(uε, v) =

∫

D
f(x)v(x) dx, (2.7)

where the right hand side f is extended by 0 in the hole H. Note that

a0(u, v) + ε a1(u, v) =

∫

Ω
b0(u, v)(x) dx + ε

∫

H
b1(u, v)(x) dx.
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For our typical example (2.3), we have

a0(u, v) + ε a1(u, v) =

∫

D
α(x)∇u(x) · ∇v(x) + αM (x)u(x)v(x) dx, (2.8)

where the functions α and αM are defined as follows

α(x) = 1 and αM (x) = k2 in Ω, α(x) = ε and αM (x) = 0 in H. (2.9)

At the discrete level, we replace a FEM discretization of problem (2.6) by a discretization of (2.7):

With a finite dimensional approximation V ap(D) of V (D), and a numerical integration
∫
D|ap over D,

the discrete problem with parameter ε is

Find uapε ∈ V ap(D), ∀v ∈ V ap(D), aap0 (uapε , v) + ε aap1 (uapε , v) =

∫

D|ap
f(x)v(x) dx, (2.10)

where

aap0 (u, v) =

∫

D|ap
1Ω(x) b0(u, v)(x) dx and aap1 (u, v) =

∫

D|ap
1H(x) b1(u, v)(x) dx. (2.11)

We are going to prove that solutions of problems (2.7) and (2.10) are the sums of convergent power

series in ε. This helps to understand the structure of these solutions. However, our analysis of the FCM

does not rely on such power series expansions, but on an extended Strang lemma stated in Section 3.

2.2 Convergence of discrete problems with respect to the penalization parameter

Let us consider the finite dimensional space V = V ap(D) and the numerical integration
∫
D|ap as fixed,

and let ε tend to 0. Later on, we will assume that the numerical integration is sufficiently accurate. The

influence of the integration error will be studied in Section 5.4.5. However, for the following abstract

setting, we do not need any special assumption on the numerical integration.

We prove in Lemma 2.1 that, under a simple assumption, problem (2.10) converges to a limit as ε → 0.

We introduce the kernel of aap0

K0 = {v ∈ V : ∀u ∈ V, aap0 (u, v) = 0}, (2.12)

and its orthogonal space

K⊥
0 = {ϕ ∈ V ′ : ∀v ∈ K0, 〈ϕ, v〉 = 0}. (2.13)

Here 〈ϕ, v〉 denotes the duality pairing between V ′ and V .

We define the operators Āℓ for ℓ = 0, 1:

Āℓ : V −→ V ′

u 7−→
(
V ∋ v 7→ aapℓ (u, v)

)
,

(2.14)

and introduce their restrictions

A0 : V −→ K⊥
0

u 7−→
(
V ∋ v 7→ aap0 (u, v)

)
,

(2.15)
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and
A1 : V −→ K ′

0

u 7−→
(
K0 ∋ v 7→ aap1 (u, v)

)
,

(2.16)

and, finally, the operator A
A : V −→ K⊥

0 ×K ′
0

u 7−→ (A0u,A1u).
(2.17)

Lemma 2.1 In the finite dimensional framework, if A1

∣∣
K0

is bijective, then A is bijective. Let f ∈ K⊥
0 .

Then for ε small enough, problem (2.10) has a unique solution uε. Let u0 be defined as A−1(f, 0). Then

uε tends to u0 in V , and in any fixed norm ‖ · ‖ on V

‖uε − u0‖ ≤ CA ε‖f‖ .

Proof: A0 sends V into K⊥
0 , and A sends V into K⊥

0 ×K ′
0. These two latter spaces have the same

dimension. Since A1

∣∣
K0

is bijective, the kernel of A is reduced to {0}, hence the bijectivity of A.

We define recursively:

u(0) := u0 = A−1(f, 0) and u(j) = −A−1(Ā1u
(j−1), 0), j = 1, 2, . . .

This makes sense, since by definition A1u
(j−1) = 0, hence Ā1u

(j−1) belongs to K⊥
0 .

Then, for ε ≤ ε0 with ε0 small enough, the series

∑

j≥0

εju(j)

converges in V and is a solution of problem (2.10).

More generally, if the right-hand side is any element ϕ of V ′, we solve the problem

Find u ∈ V, ∀v ∈ V, aap0 (u, v) + ε aap1 (u, v) = 〈ϕ, v〉, (2.18)

by the series ∑

j≥−1

εju(j)

with u(−1) ∈ K0 the unique solution of

∀v ∈ K0, aap1 (u, v) = 〈ϕ, v〉,

u(0) := A−1(f − Ā1u
(−1), 0), and u(j) for j ≥ 1 defined as above.

This proves that the operator V ∋ u 7−→
(
v 7→ aap0 (u, v)+ ε aap1 (u, v)

)
∈ V ′ is onto as soon as ε ≤ ε0.

Therefore, it is injective. This ends the proof. �
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2.3 Convergence of the continuous problem with respect to the penalization parameter

Let us recall that a real symmetric bilinear form a is said to be coercive on a space V endowed with a

norm ‖ · ‖ if for some positive constant c, there holds a(u, u) ≥ c‖u‖2 for all u ∈ V .

We assume that a0 is coercive on V (Ω). Then the kernel

K0 := {v ∈ V (D) : ∀u ∈ V (D), a0(u, v) = 0},
is by definition the space of v ∈ H1

0 (D) such that for all u ∈ H1
0 (D),

∫

Ω
b0(u, v)(x) dx = 0.

Since any function u ∈ V (Ω) can be extended in a function ū ∈ H1
0 (D), and, conversely, the restriction

of any v ∈ H1
0 (D) to Ω is an element of V (Ω), the coercivity property of a0 implies that

K0 = {v ∈ H1
0 (D) : v

∣∣
Ω
= 0}.

Hence K0 is the space of the extensions by zero to Ω of the elements of H1
0 (H).

Thus the orthogonal space is

K⊥
0 = {ϕ ∈ H−1(D) : ∀v ∈ K0, 〈ϕ, v〉 = 0}.

It is the space of the extensions by zero1 to H of the elements of V (Ω)′.

We assume that a1 is coercive on H1
0 (H) and define the operator A like in (2.15)–(2.17). Let f ∈ K⊥

0 .

The function u(0) = u0 := A−1(f, 0) is by definition the solution of

Find u ∈ H1
0 (D) such that ∀v ∈ H1

0 (D), a0(u, v) = 〈f, v〉 and ∀v ∈ H1
0 (H), a1(u, v) = 0.

(2.19)

Let for k = 0, 1 the interior and boundary operators Lk and Bk be such that

a0(u, v) = −
∫

Ω
L0u v dx+

∫

Σ
B0u v dσ, ∀u, v ∈ V (Ω) such that L0u ∈ L2(Ω), (2.20)

a1(u, v) = −
∫

H
L1u v dx+

∫

Σ
B1u v dσ, ∀u, v ∈ H1(H) such that L1u ∈ L2(H). (2.21)

We can see that u0
∣∣
Ω

is the solution u+0 of the mixed Dirichlet (on Γ) Neumann (on Σ) problem associ-

ated with a0 on Ω, with right-hand side f , and u0
∣∣
H is the solution u−0 of the Dirichlet problem

L1u
−
0 = 0 in H and u−0

∣∣
Σ
= u+0

∣∣
Σ
.

Note that the next term u(1) := −A−1(Ā1u
(0), 0) as defined in the proof of Lemma 2.1 has the following

structure. Let u+1 and u−1 its restriction to Ω and H, respectively. Then u+1 is solution of the mixed

problem

L0u
+
1 = 0 in Ω, u+1

∣∣
Γ
= 0, and B0u

+
1

∣∣
Σ
= B1u

+
0

∣∣
Σ
,

and u−1 is the solution of the Dirichlet problem

L1u
−
1 = 0 in H and u−1

∣∣
Σ
= u+1

∣∣
Σ
.

We have a statement similar to Lemma 2.1

1The operator of extension by 0 from V ′(Ω) into H−1(D) has to be understood as the dual of the restriction operator from

H1
0 (D) onto V (Ω).
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Lemma 2.2 In the continuous framework, let a0 be coercive on V (Ω) and a1 be coercive on H1
0 (H).

Let f ∈ V (Ω)′. Then for ε small enough, the problem

Find uε ∈ V (D), ∀v ∈ V (D), a0(uε, v) + ε a1(uε, v) = 〈f, v〉

has a unique solution. Let u0 be the solution of (2.19). Then uε tends to u0 in H1(D), and

‖uε − u0‖H1(D)
≤ Cε‖f‖

V (Ω)′
.

Proof: It follows the same lines as the proof of Lemma 2.1. Since ϕ 7→ A−1(ϕ, 0) is continuous

from V (Ω)′ into H1(D), and u(j−1) 7→ Ā1u
(j−1) is continuous from H1(D) into V (Ω)′, we have an

estimate

‖u(j)‖
H1(D)

≤ C‖u(j−1)‖
H1(D)

, ∀j ≥ 1.

We deduce the convergence in H1(D) of the series
∑

j≥0 ε
ju(j) and the estimate of the Lemma. �

3 Céa and Strang lemmas

Céa and Strang lemmas are classical cornerstones of FEM analysis, see the monograph [10]. But in

general, to our knowledge, they use as an assumption that the bilinear forms involved are coercive. Here

we show that we may in a certain amount, replace the assumption of positiveness by a non-negativeness

assumption. Though the principles of these proofs are standard, we did not find them in such a general

framework in the literature, so we prefer to give them for the sake of completeness.

Lemma 3.1 (Céa) Let a be a real symmetric bilinear form, non-negative on the space V :

∀u ∈ V, a(u, u) ≥ 0,

defining the semi-norm

|u|
a
:= a(u, u)

1
2 .

Let V ap be a subspace of V . Let f ∈ V ′. We assume that u ∈ V and uap ∈ V ap satisfy

a(u, v) = 〈f, v〉 ∀v ∈ V and a(uap, vap) = 〈f, vap〉 ∀vap ∈ V ap.

Then

|u− uap|
a
≤ |u− vap|

a
∀vap ∈ V ap. (3.1)

Proof: We have for all vap ∈ V ap

a(u− uap, u− uap) = a(u− uap, u− vap + vap − uap) = a(u− uap, u− vap).

Inequality (3.1) then follows by Cauchy-Schwarz inequality. �

The lemma that we present here is known as first Strang lemma [10, Thm. 4.1.1] when assorted with the

usual coercivity assumptions. We may also refer to original papers by Strang himself [46, 47] where the

bases of convergence analysis are laid when variational crimes are committed, see also [8, Chap. 10].

7



Lemma 3.2 (Strang) Let a be a real symmetric bilinear form, non-negative on the space V . Let V ap

be a subspace of V and let aap be a real symmetric bilinear form, non-negative on V ap. Let d(f, v) be

a duality pairing between V ′ and V , and dap be a duality pairing between V ′ and V ap. We define the

semi-norms

|u|
a
:= a(u, u)

1
2 and |u|

aap
:= aap(u, u)

1
2 .

We assume that there exists a positive constant Cap such that

|vap|
a
≤ Cap|vap|aap ∀vap ∈ V ap. (3.2)

We assume that u ∈ V and uap ∈ V ap satisfy, for a given f ∈ V ′

a(u, v) = d(f, v) ∀v ∈ V and aap(uap, vap) = dap(f, vap) ∀vap ∈ V ap.

Then for all vap ∈ V ap the following two inequalities hold:

|u−uap|
a
≤ (1+C2

ap)|u− vap|
a
+C2

ap

{
sup

wap∈V ap

(a− aap)(vap, wap)

|wap|
a

+ sup
wap∈V ap

(d− dap)(f,wap)

|wap|
a

}

(3.3)

and

|u−uap|
a
≤ (1+C2

ap)|u− vap|
a
+Cap

{
sup

wap∈V ap

(a− aap)(vap, wap)

|wap|
aap

+ sup
wap∈V ap

(d− dap)(f,wap)

|wap|
aap

}

(3.4)

Proof: Let us choose vap ∈ V ap. We write

|u− uap|
a
≤ |u− vap|

a
+ |vap − uap|

a
. (3.5)

We set wap = uap − vap. Then we evaluate |vap − uap|2
aap

= aap(vap − uap, vap − uap):

|vap − uap|2
aap

= aap(uap, wap)− a(vap, wap) + (a− aap)(vap, wap). (3.6)

We note that

aap(uap, wap) = dap(f,wap) = d(f,wap)− (d− dap)(f,wap).

thus

aap(uap, wap) = a(u,wap)− (d− dap)(f,wap). (3.7)

Combining (3.6) and (3.7):

|vap − uap|2
aap

= a(u,wap)− a(vap, wap)− (d− dap)(f,wap) + (a− aap)(vap, wap). (3.8)

Identity (3.8) implies the inequality

|vap − uap|
aap

|wap|
aap

≤
[
|u− vap|

a
|wap|

a
+ |(d− dap)(f,wap)|+ |(a− aap)(vap, wap)|

]
. (3.9)

Combining (3.9) with (3.2):

|vap − uap|
a
|wap|

a
≤ C2

ap

[
RHS of (3.9)

]
. (3.10)
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Finally, we deduce (3.3) by dividing (3.10) by |wap|
a
, taking the sup in wap ∈ V ap, and coming back

to (3.5).

The second estimate (3.4) is obtained by dividing (3.9) by |wap|
aap

and using (3.2) next. �

We can use Lemma 3.2 with a = a0 or a = a0 + εa1, and also take numerical integration into account

in aap and dap.

Assuming exact integration, we can also use the lemma with a = a0, aap = a0 + εa1 and d = dap.

In this case, the third term in the right-hand side of (3.4) is zero and the second one is the sup for

wap ∈ V ap of

(a− aap)(vap, wap)

|wap|
aap

=
ε a1(v

ap, wap)

|wap|
aap

≤
ε |vap|

a1
|wap|

a1(
|wap|2

a0
+ ε|wap|2

a1

)1/2 ≤ √
ε |vap|

a1
.

In this case, Cap = 1 and (3.4) yields:

Corollary 3.3 Under the conditions of Lemma 3.2 with a = a0 and aap = a0 + εa1, we assume

moreover exact integration (d = dap). Then we have the estimate

|u− uapε |
a0

≤ 2|u− vap|
a0

+
√
ε |vap|

a1
∀vap ∈ V ap. (3.11)

Remark 3.4 Under the conditions of Lemma 3.1 with a = a0 and Lemma 2.1 with aap0 = a0 and

aap1 = a1 (i.e., assuming exact integration), we can write for all ε

|u− uapε |
a0

≤ |u− uap0 |
a0

+ |uap0 − uapε |
a0

.

Lemma 3.1 yields that |u− uap0 |
a0

is less than |u− vap|
a0

for all vap ∈ V ap and Lemma 2.1 yields the

information that |uap0 −uapε |
a0

is a O(ε). But the multiplicative constant in front of ε a priori depends on

the discretization. That is why we cannot improve estimate (3.11) by replacing
√
ε with ε, in general.

In fact, our numerical experiments also display a
√
ε behavior in the general case. Note that, for the

same reason, our subsequent estimate (4.2) in Theorem 4.1 contains
√
ε and not ε in order to keep the

constants independent on the discretization. △

4 p-version of finite elements

Let T be a fixed mesh of the domain D by segments, quadrilateral or hexahedral elements according

to the space dimension n. Let Vp(D) be the p-extension over the mesh T with the boundary condition

v = 0 on Γ and C0 conformity between elements. By “p-extension” we mean that on each element

K ∈ T , the discrete functions are mapped polynomials of partial degree p on the reference element K̂ .

We denote by

Ωap = interior

{ ⋃

K∈T | K∩Ω 6= ∅
K

}
and Hap = D \ Ωap. (4.1)

We note that Γ is contained in ∂Ωap and we denote the common boundary ∂Ωap ∩ ∂Hap by Γap.

We denote by A(U) the space of analytic functions up to the boundary of the domain U .
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Theorem 4.1 Let a0 be coercive on V (Ω) and a1 be coercive on H1
0 (H). Let f ∈ A(Ω). Let u0 be the

solution of the mixed problem (2.6). We assume that u0 admits an analytic extension ū0 ∈ A(Ωap). For

ε > 0 and any p ≥ 1, let uap[p, ε] be the solution of problem (2.10) with V ap(D) = Vp and assuming

exact integration. Then there exist c > 0 and γ > 0 such that for all ε > 0 small enough and all p ≥ 1

‖u0 − uap[p, ε]‖
H1(Ω)

≤ c(e−pγ +
√
ε). (4.2)

Proof: We use Corollary 3.3. By the coercivity assumption on a0, we find that the semi-norm | · |
a0

is equivalent to the H1(Ω)-norm. Thus, relying on estimate (3.11), it suffices to find vap ∈ Vp such that

‖u0 − vap‖
H1(Ω)

≤ ce−pγ and ‖vap‖
H1(H)

≤ c. (4.3)

Since ū0 ∈ A(Ωap), the fundamental approximation result of the p-version [27, 7, 6, 44] provides

exponential convergence. In dimension n = 1, this is a consequence of the analysis performed in [44,

Section 3.3]. For dimension n = 2 (and also n = 1), it is easier to rely on [13, Appendix A], where

various interpolants are constructed, providing error estimates of exponential type for analytic functions

in tensor H1-norms2. The procedure to pass from n = 1 to n = 2 relies on tensorial properties of

the discrete and continuous spaces. A similar procedure provides corresponding results in dimension

n = 3. These interpolants reproduce nodal values. We obtain C0 conformity using tensor trace liftings

from edges (and faces in dimension n = 3), see [13, Prop. A.2]. Thus we can find vp ∈ Vp(Ω
ap) such

that

‖ū0 − vp‖H1(Ωap)
≤ c0e

−pγ . (4.4)

with a similar control of the elementwise tensor H1-norm. Therefore, in particular,

‖vp‖H1(Γap)
≤ c1 (4.5)

with a similar control of nodal values and, if n = 3, of H1-norm on edges. Then using tensor trace

liftings as mentioned above, we find that there exists ṽp ∈ Vp(Hap) such that

ṽp
∣∣
Σ
= vp

∣∣
Σ

and ‖ṽp‖H1(Hap)
≤ c2. (4.6)

We define vap by vp on Ωap and ṽp on Hap and we deduce (4.3) from (4.4)-(4.6). �

In the case where the grid is matching with the interface Σ, the estimate (4.2) is improved (see also

Remark 3.4 on this question — why such an improvement does not hold in the general case).

Theorem 4.2 Under the assumptions of Theorem 4.1 we assume moreover that Ωap = Ω. Then there

exist c > 0 and γ > 0 such that for all ε > 0 small enough and all p ≥ 1

‖u0 − uap[p, ε]‖
H1(Ω)

≤ c(e−pγ + ε). (4.7)

2Let Î = (−1, 1) be the reference segment. Tensor H1-norms are defined as follows in dimension n = 2 and n = 3:

‖u‖
2

H1,1(Î2)
=

1∑

α1=0

1∑

α2=0

‖∂α1

x1
∂
α2

x2
u‖

2

L2(Î2)
and ‖u‖

2

H1,1,1(Î3)
=

1∑

α1=0

1∑

α2=0

1∑

α3=0

‖∂α1

x1
∂
α2

x2
∂
α3

x3
u‖

2

L2(Î3)
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Proof: Let us choose the degree p. When the grid is matching the interface Σ, the terms u(j)[p] of

the expansion of uap[p, ε] in powers of ε can be described as discrete FEM solutions: Let u+j [p] and

u−j [p] be the restrictions of u(j)[p] to Ω = Ωap and H = Hap, respectively. For j ≥ 1, u+j [p] is the

discrete solution of the mixed problem in Ω with Neumann data on Σ coming from u−j−1[p], and u−j [p]
is the discrete solution of the Dirichlet problem in H with Dirichlet data on Σ coming from u+j [p]. The

uniformity of continuity constants with respect to p can be deduced. �

If Ωap coincides with D, we may even have exponential convergence with ε = 0:

Theorem 4.3 We assume that Ωap = D (i.e., Hap = ∅). Let a0 be coercive on V (Ω). Let f ∈ A(Ω)
and let u0 be the solution of the mixed problem (2.6). We assume that u0 admits an analytic extension

ū0 ∈ A(Ωap). Let uap[p] be solution of (here we assume exact integration)

Find uap ∈ Vp(D), ∀v ∈ Vp(D), a0(u
ap, v) =

∫

D
f(x)v(x) dx, (4.8)

Then there exist c > 0 and γ > 0 such that for all p ≥ 1

‖u0 − uap[p]‖
H1(Ω)

≤ c e−pγ . (4.9)

Proof: This is a consequence of Céa Lemma 3.1 if we have proved that uap[p] does exist. Let us

choose the degree p. It suffices to show that the kernel K0 defined as

K0 = {v ∈ Vp(D) : ∀u ∈ Vp(D), a0(u, v) = 0}
is reduced to {0}. Let v ∈ K0. Then a0(v, v) = 0. Since v

∣∣
Ω

belongs to V (Ω), we deduce from the

coercivity property of a0 that v
∣∣
Ω
≡ 0. By assumption any element K of the mesh T has a non-empty

intersection with Ω. Since v is a polynomial on K which is zero on K ∩ Ω, it is zero over the whole of

K . Hence v ≡ 0, which ends the proof. �

Remark 4.4 If corners (and edges in dimension n = 3) are present on the external part Σ of the

boundary, a local hp-extension could be used near Σ, leaving unchanged the FCM around the holes.

The important point for the analysis of Theorem 4.1-4.3 to hold is that the boundary of H is analytic, so

that the analytic continuation of solutions across Γ is possible. Near corners and edges, solutions with

analytic data belong to weighted analytic spaces (also called countably normed spaces), see [4, 5] when

n = 2, [25, 26] for preliminary results and [11, 12] for complete results when n = 3.

Nevertheless, we will see in Section 6 an example where these assumptions are not satisfied, i.e., a

mere p-extension is used for the Lamé system on a square, and where pre-asymptotic exponential con-

vergence for ε = 0 can be observed in an error range which is relevant for engineering practice. △

Remark 4.5 The polynomial recovery property of finite element approximations is only fulfilled in the

limit case ε = 0, as for all finite ε a model error is included and the modified problem will in general not

have the polynomial as exact solution. Yet, in all numerical tests using a sufficiently small ε, deviations

from a polynomial solution were negligible. △

In Theorems 4.1–4.3, we have assumed exact numerical integration. In the FCM, the numerical integra-

tion is based on a subpartition of cells, the sub-cells, which are geometrically refined near the boundary

Γ, see Figure 16. The numerical integration is exact, except on a set of very fine sub-cells covering Γ;

This latter contribution to the error can be kept exponentially small with respect to p, see Figure 17.

The capabilities of hp quadrature are illustrated by the paper [9].
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5 1D test problem with Neumann boundary conditions at the hole

5.1 Problem definition and exact solution

As the simplest possible model for a hole in 1D, we choose the two component domain

Ω = (−1,−1
4 ) ∪ (14 , 1). (5.1)

Thus, the “hole” H is the interval (−1
4 ,

1
4). The associated fictitious domain D is

D = (−1, 1). (5.2)

We consider the family of bilinear forms, indexed by the coefficient ε

aε(u, v) =

−1/4∫

−1

u′v′ + k2uv dx+

1∫

1/4

u′v′ + k2uv dx+ ε

1/4∫

−1/4

u′v′ dx . (5.3)

Here, the coefficient ε inside the hole has been set to zero only for the mass matrix and small for the

stiffness matrix. It corresponds to our general setting with

b0(u, v) = u′v′ + k2uv and b1(u, v) = u′v′.

The domain Ω is symmetric with respect to the origin. We investigate two problems with different

symmetry properties: the first one is odd, and the second, even.

The odd problem is described by




−u′′(x) + k2u(x) = 0 , x ∈ Ω
u(−1) = −1
u(1) = 1

u′(−1
4) = 0

u′(14) = 0

(5.4)

with the corresponding exact solution

u(x) =





ek(0.5−x) + ekx

e−0.5k + ek
if x > 0,

−ek(0.5+x) + e−kx

e−0.5k + ek
if x < 0.

(5.5)

The even problem reads 



−u′′(x) + k2u(x) = 0 , x ∈ Ω
u(−1) = 1
u(1) = 1

u′(−1
4) = 0

u′(14) = 0

(5.6)

where

u(x) =





ek(0.5−x) + ekx

e−0.5k + ek
if x > 0

ek(0.5+x) + e−kx

e−0.5k + ek
if x < 0

(5.7)

denotes the exact solution.
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5.2 Finite cell approach

The bilinear form (5.3) as described in the previous subsection is discretized by means of the finite cell

method. To this end, the fictitious domain D is subdivided into a mesh T consisting of nc cells with

the corresponding nodal coordinates denoted as Xc,Xc+1 with 1 ≤ c ≤ nc. On each cell hierarchic

shape functions Ni based on integrated Legendre polynomials [49, 16] are applied to discretize the trial

and test functions. The discretization of the bilinear form results in a matrix composed of two parts: the

stiffness matrix and the mass matrix. Since in general the cells do not conform with the geometry, the

integrand of the cell stiffness matrix

Kc
ij =

Xc+1∫

Xc

α
dNi

dx

dNj

dx
dx =

2

Xc+1 −Xc

1∫

−1

α
dNi

d ξ

dNj

dξ
dξ , i, j = 1, 2, 3, ... (5.8)

and the cell mass matrix

M c
ij =

Xc+1∫

Xc

αM Ni Nj dx =
Xc+1 −Xc

2

1∫

−1

αM NiNj dξ , i, j = 1, 2, 3, ... (5.9)

might be discontinuous. In (5.8) and (5.9) x, ξ denote the global and local coordinates, which are related

to each other by a linear mapping function. Note, that we distinguish between α and αM that are defined

by (2.9). Whereas α jumps from 1 in Ω to ε in H, αM jumps from k2 to 0 (inside the hole, we set the

mass matrix to 0). The integration of the cell matrices is carried out by applying a composed Gaussian

quadrature. To account for the hole, i.e. the jump of α,αM , the corresponding cell is divided for the

purpose of (exact) integration into nsc sub-cells, so that on each sub-cell α and αM are constant. In this

way it is possible to perform an exact computation of the stiffness and mass matrix with nG = p + 1
Gaussian points applied on the sub-cells which are introduced just for integration purposes. Considering

a mesh with one cell only, the minimum number of sub-cells needed for an exact integration is nsc = 3.

5.3 Evaluation of the error

In order to quantify the efficiency and accuracy of the finite cell method we briefly present in this section

the definition of the error. Thanks to availability of the exact solution, the error

e = u− uap (5.10)

of the finite cell approximation can be evaluated directly. In the following we compute the error in the

H1 norm

‖e‖2H1 =

−1/4∫

−1

(e′ 2 + k2e2) dx+

1∫

1/4

(e′ 2 + k2e2) dx (5.11)

by considering the contribution in the domain Ω only, i.e. ignoring the results of the finite cell method

in the hole H. Since the computation of the error in H1 norm (5.11) involves the integration of non-

polynomials a Gaussian quadrature will not yield exact values. Therefore we apply an composite Gaus-

sian quadrature as described in the previous section in order to reliably determine the error.

13



5.4 Numerical examples for Neumann boundary conditions at the hole

In the following we present several numerical results obtained with the finite cell method discretizing

the problem described in Section 5.1. We choose k = 3 and compute the error in terms of Equation

(5.11).

5.4.1 Non-matching grid with one cell

First, we choose one finite cell with nodal coordinates X1 = −1 and X2 = 1 to discretize the fictitious

domain and perform a p-extension with p = 1, 2, 3, ..., 20. In this example, α and likewise αM is set to

0 inside the hole. The integration of the stiffness and mass matrix is carried out exactly. A comparison

of the exact solution and the finite cell approximation for p = 20 is given in Figure 2. It can be seen

that one cell very accurately represents the exact solution. Note that in the hole the FCM approximation

presents a smooth behavior, connecting the two branches of the exact solution. To quantify the efficiency

exact solution approximation

-1 +1

x

u(x)

exact solution approximation

-1 +1

x

u(x)

Figure 2: Comparison of exact solution and FCM approximation with one cell and p = 20; odd problem

(upper part), even problem (lower part)

more precisely, the error ‖e‖2H1 of the FCM approximation with p = 1, 2, 3, ... is plotted in Figure 3

against the polynomial degree. From this it is evident that an exponential convergence can be obtained

although the mesh consisting of one cell only does not conform to the geometry. It is also noted that the

convergence of the problem with the even solution is faster.
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Figure 3: p-Extension on mesh with one element, ε = 0, exact integration

Based on the Céa Lemma 3.1 used with the form a0, we prove this exponential convergence if we know

the existence of a polynomial vp of degree ≤ p such that

‖u− vp‖H1(−1,− 1
4
)
+ ‖u− vp‖H1( 1

4
,1)

≤ c e−pγ . (5.12)

Lemma 5.1 Let λ ∈ (0, 1). Let g be a function defined and analytic on the union of intervals [−1,−λ]∪
[λ, 1]. There exists c > 0 and γ > 0 and for all p ≥ 1 a polynomial vp ∈ Pp(−1, 1) such that

‖g − vp‖H1(−1,− 1
4
)
+ ‖g − vp‖H1( 1

4
,1)

≤ c e−pγ . (5.13)

Proof: Considering the even and odd parts of g, we may reduce to the case when g is either even or

odd.

Even case: By the formula G(t) = g(
√
t) we define an analytic function G ∈ A[

√
λ, 1] such that

∀x ∈ [−1,−λ] ∪ [λ, 1], g(x) = G(x2).

Let p = 2q be a positive (even) integer. By [44, Thm. 3.20], there exists Φq ∈ Pq(
√
λ, 1) satisfying the

estimate

‖G− Φq‖H1(
√
λ,1)

≤ c e−qγ′

. (5.14)

We set vp(x) = Φq(x
2) and have proved (5.13) with γ = γ′/2.

Odd case: Similarly, by the formula G(t) = t−1/2g(
√
t) we define an analytic function G ∈ A[

√
λ, 1]

such that

∀x ∈ [−1,−λ] ∪ [λ, 1], g(x) = xG(x2).

Let p = 2q + 1 be a positive (odd) integer. Like above, there exists Φq ∈ Pq(
√
λ, 1) satisfying the

estimate (5.14). We set vp(x) = xΦq(x
2) and have proved (5.13) as before. �
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Remark 5.2 The steps in both curves in Figure 3 originate from the improvement of convergence when

the parities of the solution and the polynomials coincide, since only one element is used. Both curves

indicate an exponential convergence, involving however a larger prefactor in the odd case. This is due to

distinct approximation properties of the auxiliary functions G in the even and odd case (G(t) = g(
√
t)

and G(t) = t−1/2g(
√
t), respectively). △

5.4.2 Matching grid with three cells

Next, we consider the odd problem discretized by a mesh with three cells where the layout is such

that the hole is precisely covered by one cell. The nodal coordinates Xc of the mesh correspond to

{−1,−0.25, 0.25, 1}. In this case, the integration of the cell matrices can be carried out exactly by a

standard Gaussian quadrature with nG = p + 1 without the necessity of introducing sub-cells. The

aim of this example is to consider the influence of the parameter ε. In Figure 4 the results of the FCM

obtained with p = 20 for two different values of ε, i.e. ε = 10−01 and ε = 10−14 are presented.

Small deviations from the exact solution are observed in the case of ε = 10−01. These deviations are

due to the fact that a value different from ε = 0 inside the hole corresponds to a modification of the

original problem, replacing the hole by a (very) soft material. Therefore, it can not be expected that a

p-extension of the FCM converges to the exact solution of the problem when ε 6= 0 inside the hole. In

exact solution approximation

-1 +1

x

u(x)

exact solution approximation

-1 +1

x

u(x)

Figure 4: Comparison of exact solution and FCM approximation with p = 20 and ε = 10−01 (upper

part) and ε = 10−14 (lower part)
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order to study the influence of ε let us consider the convergence of a p-extension for different values of ε
inside the hole, see Figure 5. It can be observed that the error ‖e‖2H1 converges exponentially down to a

certain threshold which depends on the value of ε. The smaller we choose ε the higher is the achievable

accuracy. The influence of ε is investigated more systematically in Figure 6, where the error ‖e‖2H1 is

100101

1
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1e-10

1e-15

1e-20

1e-25

1e-30

ε = 10−01

ε = 10−02

ε = 10−04

ε = 10−06

ε = 10−08

ε = 10−10

ε = 10−12

ε = 10−14

er
ro

r
‖e
‖2 H

1

polynomial degree p

Figure 5: p-Extension on a mesh with three cells for different values of ε

plotted against ε obtained with three cells with a polynomial degree of p = 20. From this it can be

observed that a p-extension on the mesh with three cells, with nodes being aligned to the hole, yields

exponential convergence up to the error ε2 in quadratic energy. This is in coherence with Theorem 4.2.
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Figure 6: Influence of ε on the error
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5.4.3 Non-matching grid with three cells - case I

Again, we consider a mesh with three cells but this time non-matching with the hole. The nodal coor-

dinates Xc of the mesh correspond to {−1,−0.3, 0.3, 1}. Therefore the nodes of the middle element

are slightly outside of the hole, or in other words the hole is located completely inside the middle el-

ement. A comparison of the exact solution with the FCM approximation with p = 20 and ε = 10−14

is presented in Figure 7. The convergence of a p-extension applying the FCM for different values of ε

exact solution approximation

-1 +1

x

u(x)

Figure 7: Comparison of exact solution and FCM approximation with p = 20 and ε = 10−14

shows again an exponential convergence up to a certain threshold depending on the chosen value of ε.

However, in this example where the grid is not matching with the hole, the convergence is not as fast

as in the case of the matching grid. The convergence of the error ‖e‖2H1 with respect to ε is plotted in
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Figure 8: p-Extension on mesh with three elements for different ε values

Figure 9. From this it is evident that the error in quadratic energy depends linearly on ε. This numerical
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result is in coherence with Theorem 4.1.
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Figure 9: Influence of ε on the error
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5.4.4 Non-matching grid with three cells - case II

In this example again three cells are used to mesh the fictitious domain resulting in a non-matching

grid. However, this time the coordinates Xc of the cells {−1,−0.2, 0.2, 1} are chosen such that the

middle element lies completely inside the hole. The results of the FCM computation with p = 20 and

ε = 10−14 are plotted together with the exact solution in Figure 10. The convergence in terms of the

exact solution approximation

-1 +1

x

u(x)

Figure 10: Comparison of exact solution and FCM approximation with p = 20 and ε = 10−14

error ‖e‖2H1 of a p-extension applying the FCM for different values of ε is plotted in Figure 11. First

of all, we observe a similar behavior as in the previous example, i.e. an exponential convergence can

be obtained which is limited by the value of ε. However, increasing the polynomial degree further on

can result also in an increase of the error. This effect can be explained by the poor conditioning of the

resulting equation system observed by the increase of the number of iterations of the preconditioned

conjugate gradient method which is applied to solve the overall equation system. The poor conditioning

is due to the fact that one cell is completely inside the hole and therefore almost no stiffness is related

to the corresponding degrees of freedom of that element. Increasing the polynomial degree further on

deteriorates the situation and therefore round-off errors start to accumulate. Considering the scale of

the y-axis of Figure 11 reveals that still very accurate results can be obtained with the FCM. Figure

12 presents, as in the previous examples, the dependency of the error ‖e‖2H1 on ε. Although the condi-

tioning problem interferes in this investigation, the numerical results are again in good coherence with

Theorem 4.1, stating that the error in quadratic energy converges linearly in ε.
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Figure 11: p-Extension on mesh with three elements for different ε values
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Figure 12: Influence of ε on the error
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5.4.5 Influence of integration error

Next, we consider computations based on a mesh with two equidistant cells, i.e. with nodal coordinates

Xc corresponding to {−1, 0, 1}. A comparison of the exact solution with the FCM approximation with

p = 20 and ε = 10−14 is given in Figure 13. Note, that an exact integration has been carried out by

applying a composite Gaussian integration. Since the convergence of the error ‖e‖2H1 with respect to

exact solution approximation

-1 +1

x

u(x)

Figure 13: Comparison of exact solution and FCM approximation with p = 20 and ε = 10−14

a p-extension and the choice of ε is very similar to the results of the non-matching grid with the hole

being completely located inside the middle element, see Section 5.4.3, they are not presented here in

detail. Summarizing the results, a p-extension on the (non-matching) mesh with two cells yields an

exponential convergence up to the error ε in quadratic energy ‖e‖2H1 .

Since in two and three spatial dimensions an exact integration of the stiffness and mass matrix is in

general impossible, we investigate also the influence of the quality of the quadrature. The integration

of the matrices of the two equidistant cells can be carried out exactly when applying nsc = 4 uniform

sub-cells with nG = p + 1 Gaussian points on each sub-cell. Here we choose nsc such that we cannot

perform an exact integration in order to investigate the influence of the quadrature. We choose ε = 0
in order to exclude a modelling error and focus only on the influence of the integration. In Figure 14

the convergence of the error ‖e‖2H1 is plotted as a function of the number of sub-cells nsc in a double

logarithmic style. From the figure it is evident that the convergence is up to n−2
sc in quadratic energy.

Here the size Lsc of the sub-cells is uniform. We notice that the error ‖e‖H1 is proportional to Lsc. In

fact, the integration error is concentrated in the two sub-cells which cross Γ. In practice, a geometrical

refinement towards Γ is used, so that the size of the sub-cells crossing Γ is very small. In [3, 2] an

adaptive integration algorithm based on quadtree/octree schemes is proposed. To this end, the leaves of

the quadtree/octree are introduced as the sub-cells on which the composite integration of the underlying

cell is performed. The refinement process of the adaptive integration can be controlled by applying

different criteria. One possibility is to refine the quadtree/octree by geometrical considerations, i.e.

only those sub-cells are refined which are intersected by an interface or boundary. Alternatively the

convergence during the adaptive integration of selected quantities such as the area or volume or selected

entries of the stiffness matrix can be considered to control the refinement of the sub-cells.
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6 A 2D benchmark of linear elasticity

Finally, we study a two-dimensional benchmark problem of linear elasticity which was defined in [45] to

compare different adaptive finite element strategies. The benchmark problem is a two-dimensional plate

under plane strain condition. Due to symmetry it is sufficient to discretize one quarter of the system, see

Figure 15. The width and height are b = h = 100 mm and the radius is r = 10 mm. Linear isotropic

elasticity with Young’s modulus E = 206900 MPa and Poisson’s ratio of ν = 0.29 is assumed. The

plate is loaded by a traction of p = 450 MPa. The quantities to be computed are given in Table 1

in which also the reference values are listed. The plate is discretized with 2 × 2 quadrilateral cells on

p

r

x

y b

h

1 2
3

45

Figure 15: Square plate with a circular hole taking advantage of symmetry

strain energy node 2 node 4 node 5

Uref [Nmm] ux [mm] σyy [MPa] uy [mm] ux [mm]

4590.773146 0.021290 1388.732343 0.209514 0.076758

Table 1: Reference values

which the tensor product space utilizing hierarchic shape functions [49, 16] is used to discretize the trial

and test functions. In Figure 16 the FCM grid as well as the sub-cells that are introduced for integration

purposes only are presented. The sub-cells are generated in a fully automatic way by means of a space

partitioning scheme based on a quadtree. We set ε = 10−14 inside the hole independent of the degree

p and the quadtree is refined towards the boundary of the circle. Note that in practical computations ε
is usually set to 10−6, yielding a sufficiently small model error for engineering problems. The larger

ε poses, due to a small condition number of the resulting linear equation system, less demands on the

solver. The leafs of the quadtree correspond to the sub-cells that are used for the adaptive quadrature

[2]. On each of the sub-cells a Gaussian quadrature is performed to accurately compute the stiffness

matrix of the cell that is cut by the circle. As a first result the relative error in energy norm

erel =

√
|Uref − U|

Uref
100 [%] (6.1)
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Figure 16: FCM grid with 2× 2 cells (left) and corresponding sub-cells for integration purposes (right)

is plotted in Figure 17 demonstrating clearly the exponential convergence of the p-extension. Similar

to the one-dimensional test example the optimal type of convergence for the FCM performing a p-

extension can be obtained also in the case of holes in two-dimensions. In order not to hinder the optimal

convergence rate, the integration of the cell cut by the circle has been carried out with a very high

accuracy, demonstrating that the exponential convergence can be observed within a p-extension from

p = 1 up to p = 20. In practice, however, a finer grid of cells with a moderate polynomial degree of

p = 6, ..., 8 would lead to accuracies which are relevant for engineering decisions. The FCM results for
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Figure 17: Convergence of the error in energy norm for a p-extension on 2× 2 cells

the displacement uy at point 4 and the displacement ux at point 5 are depicted in Figure 18 showing a

fast convergence of the p-extension also for point-wise quantities like displacements. More challenging

than the results at points 4 and 5 are those quantities which are computed directly at the boundary of

the hole. Therefore we study also the convergence of the displacement ux and stress component σyy at

point 2, see Figure 19. Again, a fast convergence towards the reference values can be observed even for

the stress component σyy.
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Figure 18: Convergence of the displacement uy at point 4 and ux at point 5 for a p-extension on 2 × 2
cells

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0.02

 0.022

 0  500  1000  1500  2000  2500  3000  3500

degrees of freedom N

u
x

at
p

o
in

t
2

reference solution

2× 2 cells, p = 1, 2, 3, ...
 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0  500  1000  1500  2000  2500  3000  3500

degrees of freedom N

σ
y
y

at
p

o
in

t
2

reference solution

2× 2 cells, p = 1, 2, 3, ...

Figure 19: Convergence of the displacement ux and stress component σyy at point 2 for a p-extension

on 2× 2 cells
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7 Conclusions

A mathematical analysis of the finite cell method has been presented, proving exponential rate of con-

vergence which has been observed earlier by numerical investigations, only. The sufficient smoothness

conditions that we require on the exact solution are similar to those that ensure the exponential conver-

gence for the classical p or hp-version of the finite element method. Furthermore, the dependence of an

inherent modelling error on the computational scheme’s penalization parameter was proved and numer-

ically confirmed. This high order fictitious domain approach thus not only yields significant advantages

over FEM concerning engineering applications by virtually eliminating the necessity to generate a fi-

nite element mesh, it also guarantees convergence properties, which are unachievable for low order

methods.

This paper concentrates on Neumann boundary conditions at the transition from the physical to the

fictitious domain. Numerical experiments using Nitsche’s method [32] to apply Dirichlet conditions

show [43, 38] that also in this case exponential convergence rates can be obtained. A mathematical

investigation confirming this observation still has to be done in future work.
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[18] A. DÜSTER, J. PARVIZIAN, AND E. RANK, Topology optimization based on the finite cell method, Pro-

ceedings in Applied Mathematics and Mechanics, 10 (2010), pp. 151–152.
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[30] M. JOULAIAN AND A. DÜSTER, Local enrichment of the finite cell method for problems with material

interfaces, Computational Mechanics, 52 (2013), pp. 741–762.
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[50] Z. YANG, S. KOLLMANNSBERGER, A. DÜSTER, M. RUESS, E. GARCIA, R. BURGKART, AND E. RANK,

Non-standard bone simulation: interactive numerical analysis by computational steering, Computing and

Visualization in Science, 14 (2012), pp. 207–216.

[51] Z. YANG, M. RUESS, S. KOLLMANNSBERGER, A. DÜSTER, AND E. RANK, An efficient integration tech-
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