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!l aboratoire de Physique de la Matiére CondenséeRENMR 6622, Université de Nice-
Sophia Antipolis, Parc Valrose, 06108 Nice Cedexrance
“Ural State University, pr.Lenina 51,EkaterinburgjsRia
Abstract

We present results of theoretical and computer stoidyhe kinetics of chain-like
aggregate formation in suspensions of non-Browmagnetizable particles. An analytical model
for calculation of the time-dependent function atdbution over chain size is suggested. This
model describes the evolution of the chain strectiue to the chain-chain aggregation. In order
to verify this model we have compared it with ttesults of computer simulations of two-
dimensional model of this suspension. Results ohpaer simulations and of the analytical
model are in reasonable agreement up to 5% ofutiece concentration of the particles.
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1. Introduction

Magnetorheological suspensions (MRS) are suspengibmaicron-sized magnetizable
particles in a carrier liquid. Right after the fisynthesis in the 40's, they attract a considerabl
interest of investigators and engineers due to sethof unique physical properties valuable for
many modern high technologies. In part, under ttmm of applied magnetic field, viscosity and
other rheological properties of MRS can be changedo several orders of magnitude. The
ability to control rheological properties and belvavof MRS find active application in the
machine building, instrument engineering, orthopg@ind many other technologies. Overview of
works on the physics of MRS and their practicalli@ggions can be found in ref. [1].

The strong dependence of the rheological and qitugrerties of MRS on the applied field
can be explained by the aggregation of the pastitidinear chains, dense column-like or other
heterogeneous structures aligned along the fi&then these structures span the chamber with
MRS and form “bridges” between the chamber walis, theological state of suspension changes
from a flowing fluid to a quasy-elastic materialagic moduli of the material strongly depend on
the applied field. Simultaneously with the “fluid elastic material” transition, the suspension
electro-conductivity changes up to several ordémnagnitude. Both of these effects are used in
many modern technologies.

Obviously, the practical applications of MRS ar¢ed@ined by the rate of change of their
physical properties after application of the fieldThus, study of kinetics of the internal
transformations in magnetic suspensions is quifgontiant both from the scientific and practical
points of view.

To our knowledge, the first model of the kineticseoblution of the chain ensembles in
the systems of magnetizable particles has beenapmde by M.Doi et al [2]. In this theory all
chains have the same size at any given instantioOgly, it is a very crude approximation.



Several numerical simulations have focused on #p@ment of the growth of the chain average
size S with time: S(f)t* and have found z between 0.5 and 0.7 . The Iat dorresponds to the
case where dipolar forces dominate Brownian foi@s[4]. A model of aggregation of
Brownian magnetic particles in the linear chains baen developed in ref. [5]. Results of this
model are in a good agreement with experiments. édew the theoretical results were
determined by the assumption of strong influencéhefBrownian effects on the kinetics of the
chain formation.

At the same time in many cases the Brownian phenante MRS are suppressed — the
energy of magnetic interaction between the miciaaesparticles is much larger than the thermal
energykT. In the presented work we consider kinetics @& thain formation in a system of
magnetizable non-Brownian particles.

The structure of this paper is the following. Inctsen 2 theoretical model of the
aggregation process is presented. In section 8tdicenputer simulations of the trajectories of the
particles are carried out. Comparisons of the tesofl the computer simulations with that of
analytical model are presented in the section 4.

2. Theoretical modd

We consider suspension of identical non-Browniargmeéizable particles in a flat gap.
Thickness of this gap is much less than the sizéiseoboundary plates. The system is subjected
to homogeneous magnetic field H perpendicular ¢ogdyp plane. We suppose that under the field
action the particles aggregate into linear chalig;med along the field. This situation is illuskdt
in Fig.1.
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Sketch of the system under consideration

Let us denote by,ghe number of n-particle chains per unitdume of the system. Our
aim is to determine the evolution of this functieith time.

To this end we use the following approximationsstFand foremost we neglect any
Brownian effects in this system. It follows therthat we can also ignore destruction of the chains
due to the thermal motion of the particles. Thisrappnation is justified when the energy of
magnetic interaction between particles is much ntioeia the thermal enerdyl. Second, we take
into account only pair interaction between the whaiignoring the simultaneous interaction
between more than two chains. This approximationlmused when volume concentratipof
the particles in the system is relatively low, abseveral per cent. It should be noted that for
concentrated MRS one can expect the formation v$esolid-like bulk columns rather than that
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of the linear chains [1]. Theoretical analysis lo¢ tequilibrium phase transitions in MRS with
formation of the dense phases of the particlesvisngin ref. [6]. The fact of appearance of only
chains in the considered systems has been chatkeat computer simulations.

Next, for the maximal simplification of the analysive suppose that the chains attach to
each other only by their extremities and negledt thgeral aggregation.

In the framework of these approximations, the ewofuof the population of chains can be
represented by the following system of kinetic eiunes:

dg, _ 1% N
___zan—kkgn—kgk -0, zan,l g +an,ngne(N_2n) (1)
dt 24 <
>0
o =%
0,x<0

Here a,, is a kinetic coefficient of amalgamation of theandm- particle chains into a chain

with (n+m) particles, N is the maximal possible number of particles ohain. This number is

determined by the gap thickness. Coefficient “that first term in eq.(1) is used to avoid counting

twice the interaction between two chains of différsizes. The term witk=n/2 (whenn is even)

is taken into account two times in the first sum{Hf thus one time - in the first term of the tigh

part of (1). The Heaviside functio® as well as the upper limit of the sum in the squarackets

in (1) implies that the maximum number of particiesa chain isN. The second term in these

brackets takes into account that when bamarticle chains merge, two n-chains disappear.
According to their physical meaning, the cméhtsa,n» must be symmetrical with respect to

the indexesn and m. Then, one can show that equation (1) automaicsditisfies to the

normalization condition

N
> ng, =const
n=1

Obviously the following equalitconst=p/V must be fulfilled, where V is the particle
volume, andp is the volume fraction of the particles.
Let us determine now the kinetic coefficiemf, . To this end we consider two chains

consisting oh andk particles respectively (Fig.2).

k particles

region of attraction

n particles

Fig.2. Sketch of the interacting chains



We denote byd,, the flux ofk-particle chains towards threparticle one, i.eJ,,g, is the

number ofk-particle chains which join to-particle chains per unit time in a unit voluofehe
system.
In the framework of Eq.(1) we have:

Jin = i LG, (2)
(here there is no summation over indigx
On the other hand this flux is defined by

3o =[GV, (r)ds (3)
S
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HereGy is the number density &fparticle chains at the distancé&om then-particle
chain, whereagy is themeannumber of these chains in a unit volume;— is the relative radial

velocity between & chain and a-chain, s, is the part of the surface of a particle at the

attr
extremity of then-particle chain, corresponding to attraction betwense chains. This situation
is illustrated in Fig.2.

The main problem now lies in the fact that the fiorcG(r) is unknown. We need to
express this function through the mean magnitaehich takes place in the kinetic equations

(1).

An exact solution of this problem is very complagiand cumbersome. However the
following physical considerations allow us to getgle estimates, which lead to reasonable
agreement with the results of computer simulations.

Below we will discuss two kinds of approximatiofi$e first one is simple and leads to
good agreement with computer simulations for weaklycentrated systems with the particle
concentration not more than 1-2%. However, this @hddes not allow to describe kinetics of the
aggregation of suspensions with the particle comagon of about 3-5%.

The second approximation is a little more compédatiowever leads to reasonable
agreement with the simulations up to 5% of theiglartoncentration.

Weakly concentrated systems. The order of magnitude of the the mean dist&ce
between the nearest particles in suspension castlmeated as

R= a¢—1/3 (4)
wherea=d /2 is the particle radius. It allows us to ass@ctae mean concentratign of the
chains in suspension with the local concentra®(R) at the distancR from extremity of the
n-particle chain. Strictly speaking, this distahetween th&- andk-particle chains must be
determined by concentrations of these chains, ntitdtotal particle concentratign. However
this modification would lead to more complicatedtatations. We will see below that the simple
estimateR = ag " leads to a good agreement with the computer stinakafor weakly

concentrated suspensions.
Due to the particle number conservation, the finotigh the surfacgy, is equal to the
flux through the surface,g at the average distanée. Thus, instead of (3) we can write down:

Jo=0 | v, (R)dS (5)
s
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Now we need to calculate the radial velocity®his velocity can be determined from the
equation



Vr(R): _ﬂkn%lr:R (6)

whereUy, is potential energy of interaction between thessrd)fy, is the Stokes coefficient of
mutual mobility of the chains.
In order to estimat&y, we will suppose that every particle in the chaas lthe same magnetic
momentm as a single particle in the magnetic field Hother words we will neglect the mutual
interaction between the different dipoles of thaink. This approximation is widely used in the
theory of magnetic suspensions [1]. In this appnation the energWy, equals to the sum of the
dipole-dipole interaction of ak particles of the first chain with atl particles of the second one.
We can approximate this double sum by using thénoakof the image charges. When the
distance between the chains is more than the deardebf the particle, the energy of the total
dipole-dipole interaction between all particlestiese chains formally is nearly equal to energy
of the Coulomb interaction between four image cesug-#m/d situated on the poles of the
extremity particles of the chains [1]. These cham@e shown in Fig. 3.

g

Fig.3. Image charges on the poles of the chains

Because the total volume concentratipif the particles is supposed small, the distance
R«n between the particles on the chain extremitieaush more than the particle diamedehat
is why the “four charge” approximation between thains can be used instead of the double
summation of the dipole-dipole interaction of akficles in the chains.

One can estimate the mobility coefficieff,, by modeling eaclk-particle chain as

ellipsoid of revolution with the minor and majoresxequal ta andkd respectively. The volume
of this ellipsoid is equal to the total volume betparticles in the chain. Analytical expressions
for the ellipsoid mobility coefficients are well &wn (see, for example, [7]). Generally speaking
the ellipsoid mobility presents a tensor. For madi simplification of calculations, taking into
account that at the moment of aggregation, the aktdee chains are nearly parallel to the line

of attraction force between them, we will use comgrd of this tensor corresponding to the
motion along the ellipsoid major axis. Keeping inndthat S, corresponds to the relative

velocity of two attracting chains, we get [7]:
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Having estimatedJ,, in the approximation of four image charges anahgigkq. (6), we
come to the following expression for the radiahtiee velocity of the chains

v = B (mjz r —dCos®d r +d(k +n-1)Cosd .

r I - 3 - 3
47t \ d (rZSin26+(rCost9—d)2)5 (rZSin29+(rCOSe+d(k+n—1))2)5 @

N r—dk-1)Cosf N r-d(n-1)Cos4

3
2

(r2Sirte + (rcosg + d(k —1))2)2 (r2Sirt6+ (rCosg + d(n-1))?)

The angld is illustrated in Fig.1.
It is convenient to define the formal velocity betchain attraction as:
vy, =0
““lov,>0"
It has been noted that we neglect lateral agg@gati chains. Therefore we consider only
the positions of the chains correspondin§ ton /2.
The flux J,, at a distance=R is:

Ju =0, Iv:dS €)
Sattr

Combining relations (2), (6) and (8), we come t® fhilowing estimate:

a,, = J'v:dS (10)

S,
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The integrals in (10) can be easily calculated micaky.

Moderately concentrated suspensions. Our analysis shows that the estimate of the
distance between interacting chaiRs ag"® leads to a bad agreement with results of computer
simulations when concentration of particles excedldiee percent. The reason for this
disagreement lies in the fact that the mean distéatween chains withandk particles depends
on concentrationg), and gk of these chains. This is not significant when gagticle volume
concentration is about one percent, however it tmesoimportant for higher concentrations. To
take it into account we will estimate the charaster distance between the chains as

R, ~ (max@,;9,))™"" (11)



The numerical multiplier in the right part of (1tannot be determined from simple
considerations but can be found from comparisoth@®fanalytical calculations with the results of
laboratory or computer experiments.

After this modification of the characteristic dista between chains, the formulas (8-10)
for the radial velocity y flux J, and the kinetic coefficienty, formally do not change. However
now the surface of integratidq, corresponds to the part of spherical surface thighradiusRq,
on which the radial velocity,vVs negative. Therefore, the position of this stefas well as the
kinetic coefficientsay, depend on the concentratiapsandgy.

Now we need to estimate the particle magnetic momeftunder assumption of constant
permeabilityy, of the particle, we have [8]:

S, -1
mzn,%d Hy H

12
> vs (12)

wherey, is the vacuum permeability. Substituting (12) i(8el10), and, then into (1), we come to

the final form for the equations of evolution oéthize distribution. Assuming that at the onset of
aggregation all particles are isolated, we gefalewing initial conditions for egs. (1):

1
t=0, g, :V¢5nl (13)

Here 9, is the Kroneker symbol.
The equations (1), (13) can be solved numerically.

3. Computer simulations.

Three-dimensional computer model of the MRS agdm@gaequires too long time of
calculations. In order to verify the main ideastbé analytical model, we use here a two-
dimensional computer model. In the framework ofstimodel the disk-shaped particles are
situated in a plane parallel to the applied magnietid H . Magnetic moment of the particle in
the computer simulation, like in the analytical rabds calculated by the formula (12). It should
be stressed that we use the two-dimensional siranlanly to verify the analytical model, not to
describe a real system of magnetic disks. Theref@ean use here the formula (12), which is
valid for magnetizable spheres.

In the simulation we take into account magnetienattions between all particles and
ignore hydrodynamical interactions between theigas.

Neglecting inertia, the equation of motion of tkt& particle is:

dr. 1 o o
[ F'vl + F'vl 14
ot 3 (JE¢i (Fy +Fg (14)

Herer, is the position of-th particle,F.’ andF.’ are the magnetic and sterical forces of

interaction between theth andj-th particles.
In the framework of the dipole-dipole interactidhe radial and tangential components of
the magnetic force can be calculated as:

3mm; 1-3cos’ 8

Fol = 15
" amy 1 (15)
Ei __3mm; 2sinfcosh

me Artyy, h



Here r, ; is the distance between the particle centens,and m, are their magnetic

moments,d is the angle between the applied fiéldand the radius vectoy.

The short range force of sterical interaction betwparticles preventing their interpenetration
was simulated as follows. In the program of the goter experiment, upon the interpenetration

of particles (j < d), the repulsive force was applied to particles viee of which makes them to
leave the region of interpenetration during oneetstep. At the same time, the force of magnetic
attraction was equated to zero under conditjond. As soon as the particles separate under the
repulsion forcer>d), we put this force equal to zero and reintrodiheemagnetic force.

We have used about 4000 patrticles in the compiunaulations and solved numerically
equations (14) for all particles. At the onset ifildations a random patrticle distribution on the
plane has been created. The time step has beeenckosthat the particle displacement for a
given step would not exceati20. The particles are in a square region whictietermined by
repulsive boundary conditions. Some results of ©mulations are illustrated in Figs. 4 and 5.
The viscosity of the carrier liquid, size of therpdes and the magnetic field correspond to
experiments made with nickel particles that wecamreently doing in order to test this model.
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Fig.4

The snapshots of the simulations for the tigrd$0 s after beginning of aggregation.
Parameters of the system: magnetic field3130 A/m; the carrier liquid viscosity=20 Pas;
diameter of the nickel particleldn; the surface concentration of the di&k8.014.



Fig.5
Same as in Fig. 4 for the time900 s after beginning of aggregation

4. Comparison between theory and computer simulations

In this part we compare results of the analyticatlel with the simulations.

It was noted in the part 3 that in order to avasd fong time of calculations, the
simulations have been carried out in two-dimendiaparoximation, in which the particles were
modeled as disks able to move only in the planalighto the applied field.

In order to adapt 3D theoretical model to 2D comepsimulations, we need to make the
following transformations. First, instead of thdwmoe concentratiop of the spherical particles
we must use the surface concentratiaf the disks. Second, in the approximationnafakly
concentrategsuspension the mean distafitlketween chains instead of (4) can be estimated as

R=af "2 (16)

Third, while calculating the fluxJ,, in the expression similar to (9), one should irdégr

*

v, over an ard_, , on which the chains attract<{®). Next, instead of volume of the spherical
particle V, the cross section S of the particle ninesused.

As a result, the kinetic equations for the 2D mduele the same form (1) as for the 3D
case, however the coefficient,, should be calculated by the formula

O = [vidi (17)
Littr

instead of eq.(10). Integral in (17) can be catad numerically. As in the 3D case, we

integrate over the regiom/i2<6<Tv2.

Some results of the computer simulations as welh@aserical solutions of the model
(1,16,17) for theweakly concentrateduspension are presented in Fig. 6. The expres$mn
coefficient S, of the mutual mobility of the chains, for the maeiif radial velocityv, as well as
for the particle magnetic moment have been used in the forms (7), (8) and (12poih cases
of the analytical model and computer simulations.



0.68 0.20 .

\ a b
0.51 0.15 J
0.5 \ 0.10

0.17 ‘r 0.05 - \

B i e - a b e b R
0 4 8 12 16 20 0 4 E w 12 16 20

Fig.6

Relative surface concentratiah, = g, (t,)nS/ f of then-particle chain vs. number of particles in the

chain, Sis the cross section of the particle aréajs the total surface concentration of particldsydrcal

parameters of the system are the same as in Bigd &ig. 5. Solid lines - results of analytic miode
dots — simulationd.=0.014. a) Time after the field was switched on, is$H0) t=900s. Size of dots
equals to the simulation error bar.

Theoretical and computer results are in quite gagiitement for any time after onset of
the aggregation. The zigzags of the solid linesl¢dical model) here and below appear because
we deal with integer variations of

Modification of the model to thenoderately concentratexystems leads to the estimate

R = C[@max(gk;gn))_”2 instead of eq.(11). The numerical multipli€has been fitted by

comparison of analytical calculations and compgiarulations. As a result the form has been
chosen:

R = %(max(gk: g,)) " (18)

Figures 7, 8 show distribution functiogg calculated by the model (1), (17), (18) and resoft
computer simulations with the surface concentration0.014 and = 0.05 respectively.
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Same as in Fig.6a; analytical calculations (soilm®)l made in the approximation (18) of moderately
concentrated system instead of (160.014; a}=50s; b)t=900s
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Same as in Fig.7 for the area fractfe.05. a}=50s; b) t=900 s

In spite of the strong simplifications, the thearat model leads to reasonable agreement
with the computer simulations. For the systems wii# concentratiori of about 0.014 both
models (16) and (18) are quite accurate, howeverntodel (16) is significantly simpler for

calculations. That is why it can be recommendedafalysis of chaining in weakly concentrated
systems.

Conclusion

Theoretical model of kinetics of evolution of chdike aggregates in suspensions of non-
Brownian magnetizable particles is proposed. Inespf strong simplifications, results of this
model are in reasonable agreement with result®wipater simulations for the two-dimensional
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version of the model, when the surface concentratibthe particles is about several per cent.
This model can be considered as a robust basikdoretical modeling of kinetics of the chaining
in low- and moderately concentrated magnetorhecédgand other polar suspensions of non-
Brownian particles. In particular it can be usedtiady conductivity percolation in composites in
which metal particles form chains aligned along n&ig field. Since the branch-like, dense drop-
and solid-like aggregates are ignored in this modelcannot be applied to concentrated
suspensions where these bulk structures are gpitat. A further step in the model would be to
take into account lateral agregation between chautéch should increase its range of
applicability. Such improvement is under consideratis well as experiments with a monolayer
of magnetizable patrticles.
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Fig.1.Sketch of the system under consideration

Fig.2. Sketch of the interacting chains

Fig.3. Image charges on the poles of the chains

Fig.4. The snapshots of the simulations for thetim450 s after beginning of aggregation.
Parameters of the system: magnetic field H=13130; Ahe carrier liquid viscosity=20 Pds; diameter
of the nickel particle 3m; the surface concentration of the digk®.014.

Fig.5. Same as in Fig 4, for the time900 s after beginning of aggregation

Fig.6. Relative surface concentratiah, = g,(t,)nS/ f of then-particle chain vs. number of particles

in the chain.Sis the cross section of particle arefa,- the total surface concentration of particles.
Physical parameters of the system are the sanmeRg.i4 and Fig. 5. Solid lines - results of atial

model, dots — simulation§=0.014. a) Time after the field was switched on, is$0) t=900s. Size of

dots equals to the simulation error bar.

Fig.7 Same as in Fig.6a; analytical calculations (safid)lmade in the approximation (18) of moderately
concentrated system instead of (16)0.014; a}=50s; b) t=900s

Fig.8.Same as in Fig.7 for the area fractfef.05. a}x=50s; b) t=900 s
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