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Kinetics of internal structures growth in magnetic suspensions.

G.Bossi$, P.Lancoh, A.Meunier, L.Iskakov&, V.Kostenkd, A.ZubareV
Y| aboratoire de Physique de la Matiére CondenséeRENMR 7336, Université de Nice-

Sophia Antipolis, Parc Valrose, 06108 Nice Cedexrance

Urals Federal University, pr.Lenina 51,EkaterinigyiRussia

The kinetics of aggregation of non Brownian magradile particles in the presence of a
magnetic field is studied both theoretically andigans of computer simulations. Theoretical
approach is based on a system of Smoluchowski iegsdor the distribution function of the
number of particles in linear chain-like aggregaRssults obtained in the two dimensional (2D)
and three dimensional (3D) models are analyzedlation with the size of the cell, containing
the particles, and the particle volume fractjorThe theoretical model reproduces the change of
the aggregation kinetics with the size of the aalil with the particle volume fraction as long as
the lateral aggregation of chains is negligible.

The simulations show that lateral aggregationggiace when, roughly$,,>5% and

$3p>1.5%.

Dependence of the average size of the chains timithcan be described by a power law; the
corresponding exponent decreases with the pavtodiene fraction in relation with the lateral
aggregation.

In the 3D simulations dense labyrinthine-like staues, aligned along the applied field, are
observed when the particle concentration is higlughd;p>5%) .

Keywords:Magnetic suspension; aggregates; kinetics,dipataractions

1. Introduction

Suspensions of micron-sized magnetizable partiolesn magnetic liquids (magnetorheological
suspensions, MRS) attract considerable interesisgfarchers and engineers due to rich set of
unique physical properties, valuable for many modechnologies. An overview of the physics
of these systems as well as their practical apbics can be found in ref.[1].

Without magnetic field MRSs behave like ordinamgpensions of solid particles. When MRS
is subjected to an external magnetic field, th#iglas are magnetized and, under the action of
the magnetic forces, form heterogeneous aggregdiesar chains and dense bulk clusters. The
formation of these aggregates changes dramatitedlynacroscopical properties of MRS. For
example, under applied magnetic field the effectigeosity of MRS can increase up to several
orders of magnitude. When the aggregates entitetiié chamber (channel) containing the
suspension and bond its opposite boundaries,tkelagical behavior of the MRS changes
from viscous to quasi elastic as long as the aghslieess remains lower than the so called yield
stress. Simultaneously the electrical conductigftiMRS increases significantly.

Practical applications of magnetic suspenstmpend on the rate of change of their
properties after application of the magnetic fidltlis is why the study of the growing rate of the
aggregates is important for the prediction of #sponse time of MRS. To our knowledge, the
first model of the kinetics of evolution of the al#engths in the systems of magnetizable
particles has been developed by M. Doi et. allf2{his hierarchical theory all the aggregates
have the same size at a given time, which is & quitde approximation. Nevertheless this
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model takes into account that the force betweeraygregates depend on their respective size
and also that the average distance between aggsdgateases during the aggregation process.
Several numerical simulations have focused onxpereent of the growth of the chain average

sizel with time: I(t) Ot and have found between 0.5 and 0.7 ; the last limit correspondbé

case where dipolar forces dominate Brownian fof8gp}]. A detailed analysis of the power
law exponents was carried out both by Brownian dyna simulation and experimentally, for
large box sizes with energy of the dipole-dipoleiiaction of the particles being between two
and three order of magnitude larger than the thieemergykT [5]. No clear evolution was seen
in this range of dipolar forces; on the other hahd exponentt increased with the volume
fraction. The analysis of the continuum versionhaf Smoluchowski equations in the presence
of the dipolar forces has been investigated i a chain diffusion coefficient inversely
proportional to the length of the chains; some wital form for the size distribution function
was obtained in this work. A model of aggregatibBmwnian magnetic particles in linear
chains has been developed in [7] on the basiseotholuchowski equations for the
distribution function of the number of particlestie chain. The results of this model are in good
agreement with experiments. Nevertheless the thieareesults were determined through the
assumption that the Brownian motion strongly afebe kinetics of the chain formation. At the
same time, in many cases the effect of Browniananoh MRS is negligible because the
energy of magnetic interaction between the micliaaesparticles is usually several order of
magnitudes larger that the thermal endd@y

Recently an analytical model of the kineticshaf chain formation in a system of
magnetizable non Brownian particles has been degdldB]. This model is based on the usual
system of the Smoluchowski equations for the degmdithains of a given length The size
distribution functions obtained from the numerisalution of these equations reproduces well
the distribution obtained from the computer sirtialzs.

In this work we present results of computendations and of analytical modeling of
aggregation in MRS. Both, 2D and 3D systems arsidered. Effect of the size of the cell
containing the MRSon the aggregation kinetics is studied.

The organization of this work is the following in the next part we present the main
features of the analytical model. In section 3 wespnt the model used for the computer
simulations. The comparison between the analyéindlcomputer results is presented in section
4 for 2D simulations and in section 5 for 3D sintidlas. Computer simulations show that the
particles form linear chains when their volume @rication is low enough (about 1-2 per cent).
When the concentration of the particles exceedsdbmeshold magnitude, dense bulk structures
appear instead of the linear chains. The evoluiifdhis system of thick clusters is studied in
the sixth section

2. Analytical model of the chain growth.

The details of the analytical model were describe@f. [8]. Here we will briefly remind the
main points of this model. We consider a suspensigon Brownian magnetizable particles in
a flat gap. The system is subjected to a homogereagsetic field H perpendicular to the gap
boundary. We suppose that, under the field acti@particles coalesce uniquely in linear
chains aligned along the field. It should be seddhat the appearance of any branched or bulk
aggregates is ignored in this model. That is why iiestricted to suspensions of relatively low
volume fraction.

Let us denote the numberreparticle chains per unit volume of the system agr aim is
to determine the evolution of this function witma.
In the framework of the Smoluchowski equations, ¢kelution of the chain population can be
represented by the following system of kinetics ¢iqua:
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d N 1 n-1 N-n
d_gt:Ek:larrkkgn—kgk_gnéan,lgl (1)

Here @n - is a matrix of kinetics coefficient for the tsfarmation of two chains ofh- andl-
particles into a chain witm¢l) particles, N is the maximal number of particles that a chain
can contain; N is determined by the gap thickne8scording to their physical meaning, the
coefficienta, must be symmetrical with respect to the indexesdl. Taking this into account
one can show that Eq(1) automatically satisfiesctiraition of the particle number conservation

N
Y Nng, =CoNnst= /v

n=1

where V is the volume of a particle, apiés the total volume fraction of the particles. r Hwe
kinetic coefficientsam, we will use the following estimate, suggesteddh [

a,, = |v.ds
sj ’ (2)
where
. {v,,v,so
VvV, =
ov, >0
and
_ Ba (mjz B r —dCodd B r +d(k +n-1)Cosf .
r 3 3
6\ )| (r2sirtg+ (rcosg-d)? ) (r?Sine +(rCosg+d(k+n-1)?):
)
r—d(k—-1)Cosf N r—d(n-1)Cosf

3
2

(rsirte+ (rcoss + d(k-1)?) (rZSin20+(rCosH+d(n—l))2)g

The velocity yis the product of a chain mobility times the magniorce of interaction between
two chains. This force corresponds to an interadbetween equivalent charges located at the
extremity of the two interacting chains (see dstail[1,8]).

Heremis the magnetic moment of a particle, estimatedvwgl the diameter of the particle,
the distance between centers of two particlestsitlan the nearest extremities of two
interacting chainsip the magnetic permeability of vacuum, gigdis a coefficient of mutual
hydrodynamical mobility of two chains. In [8] thimrameter has been taken as follows:

1 22
Bin =(ﬁk +ﬁn) B :ﬁ()ﬁ +d”l yl) (4)

2 dA _T dA
ASaoy Pl aeanm &

(A)=(1%d? + 2)(d? + A)(d? + A)

In eq.(2) we integrate over the surf&ef two half spheres with a radingqual to the mean
distance between the chain extremities (see, dismusf this integration in [8]). These half
spheres, located near both extremities of the ¢chaonrespond to areas of attraction between the
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chains and exclude their lateral aggregation. Tinplest estimate for the distancéas the
following form [8]:
r=R=dg™*/2. (5)

It was shown in [8] that for the 2D case an appration like the one of Eq. (5) leads to quite
reasonable estimates gf when the particle surface concentration does nogexk one — two

per cent.

For a maximal simplification of the calculations weglect the effect of magnetic interaction
between patrticles on their magnetic moments. Utfteassumption of a constant permeability
U, of the particle, we have for the magnetic moméht [

S u -1
fy+2

whereo is the vacuum permeability.
Assuming that, at the onset of aggregation, altiggas are isolated, we have the following
initial conditions for Eq. (1)

1
t=0, dn =V¢5n1 @)

Here 9 is the Koneke symbol.
The equations (1-7) can be solved numerically.

3. Computer simulations.

We consider a system of identical magnetic sphdree. magnetic moment of each particle in
the computer simulation, like in the analytical rabds given by Eq; (6). In the simulation we
take into account magnetic interactions betweenpalticles but ignore hydrodynamical
interactions between them.
Neglecting inertia, the equation of motion of tkt& particle is:

dr, 1

o ﬁ(;(ﬁiﬁj +F) )) (8)

Here I'i is the position ofi-th particle, F. and Fs' are the magnetic and sterical forces of
interaction between theth andj-th particlesy; is viscosity of the carrier liquid.

Approximation (8) means that the hydrodynamioability of the particle in the chain is the
same as the mobility of the single particle. Thppraximation is frequently used in computer
simulations of MRS (see, for example, [10,11]). Aee shows that this approximation does not
lead to serious quantitative errors.

In the framework of the dipole-dipole interaat the radial and tangential components of the
magnetic force can be calculated as:

3mm; 1-3cos 8

Fol =

™ Amy rif‘j ©)
Ei :_3mmj 2sindcosd

me Amy, r
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Here'i; is the distance between the particle centars, andm are their magnetic moments

is the angle between the applied fieldand the radius vectoy.

The short range sterical force between particlesguting their overlapping was applied when
the distance between their centers was lower thewdiameter r < d). This force makes the
particles leave the region of the interpenetrationng one time step. At the same time, the force
of magnetic attraction was equated to z&®soon as the particles separated under the repuls
force ;;>d), we put this force equal to zero and reintrodiheemagnetic force.

4. Results of 2D simulation and the effect of the cell size

We took advantage of the 2D geometry to explorddhg time behavior where asymptotic laws
are known for the size distribution and for thevgito of the average size of the clusters with
time. For those 2D simulations, we used periodicaindary conditions in the direction
perpendicular to the field (lateral dimension) ¥oid boundaries effects. The dipolar moment of
the particles is constant and the magnetic intenagtare computed for distance up to the cell
size. The simulations were carried for 4 differemtface fractions (3.5%, 5.6%,7%, 8.9%) and
two different sizes of the box ; the lateral dimengwidth) is 62.5 particles diameters in all
cases and the height is either 62.5 or 31.25gbestdiameters.

The average chain length, Id, the mean numbérof the particles in the chain by definition can
be calculated as:

2k ()
I(t) =“5—— 10§

>N (1)

k
Here n(t) is the number of chains containikgarticles. The results of the computer simulations
have been adjusted by the power I(t) Ot”. The exponeny allows us to predict the growth
of the average chain size with time.

The asymptotic behavior of the size distribatamd the exponegtcan be deduced from the
scaling behavior of the kinetic coefficiesf , which is proportional to the relative velocityof
two chains of respective siz@andj diameters, times the capture surfage:=v; S; [12]. The
relative velocity y is given by the product of the relative mobiliyhich is proportional to
1/i+1/j , by the force between two aggregates wisgbroportional to fR;* [1]. The surface
S; being proportional t:Rijz in 3D and taR; in 2D cases respectively, we end up with the
following relations for the exponeg{13]:

1 2

1 1.1 oy 32 _ _ —
O(HD(T" J_)R_ and ,,=A V8 ;= A B Sy—m ~ g in2D

ij

WhereA and 2o are the self similarity multiplier and exponente flast is equal here to -1 and to
-3/2 in 3D and 2D cases respectively.
In this last equation it is assumed thaindg], the average distané&® between two

1/2
[
aggregates of sideis given by 'R; U d((—pj . Nevertheless we are not dealing with a

hierarchical model where all the chains have timessize at a given moment of time and we are
looking forR; and notR;. An ansatz was to talR; O (max(i, J'))l/2 [8] which gives also the
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exponent 2/5 in 2D. It is worth noting that the Blweory [2] predicts the same exponents, that is
tosay 1/2 in 3D and 2/5in 2D .
In Fig.1 we have plotted the comparison betwberresults of the numerical simulation and

the result of the analytical equations for the tiféerent sizes of the box and the lowest surface

Uoz

fraction ¢=3.54%. The dimensionless timés defined a:T= 2 t where Histhe

magnetic field in the celln our simulations the relation between the dipuolend the field H is
given by Eq.(6) in the limig,>>1.

I(7)

h=124

25

20

15

0 100000 200000 T 300000 400000 500000

Fig.1 Average length of chains (in number of partickes)the dimensionless time for a surface fraofie®.54%.
Blue and green stands respectively for a box ajhitdi=31 and 62 of the particle diamets¥spectively. The

staircase shape is the numerical simulation reswltthe continuous line is the solution of Eq.(lhg Ppurple solid
line is the solution of Eq.(1) for a box of heidi#4 diameters. The upper black line is the 2Diwvarsf See and

Doi theory[2]. At last the tiny red curve is thedf the simulation h =62 by a power law fe115.

The average length of the chains is equdieéatzerage number of particles per chains (10)
multiplied to the particle diameter. This is trigelang as lateral aggregation of the chains is
negligible, since in absence of Brownian motionc¢hains of particles are perfectly straight so
detecting the length of the clusters is equivalermtetecting the number of particles in the
cluster

The two curves with a staircase shape aresthéts of numerical simulations. The lower one
corresponds to the height of 31 diameters for itlnellgtion box and the upper one to 62
diameters. Each curve is the average of three atiouok.

The continuous solid lines are the respectgelts of the kinetic equation Eq;(1). It appears
that this equation reproduces quite well the nucaésimulation except for the smallest sizes.
This is understandabsnce the model of interactions between equivatbatges at the
extremity of the chains (EQ.(3)) is rather poortfoe shortest chains.

The growth of the average size with time is ratheckly sensitive to the size of the box;
for instance the blue curves corresponding to adi@®l diameters begin to diverge from the
green ones corresponding to 62 diameters at appately 7-8 diameters, that is to say when the
average size is about 25% of the box height. Threegamark holds when we compare the result
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of Eq.(1) between 124 and 62 diameters: it bedimbaut 15 diameters which is still 25% of the
size of the smallest box. It corresponds to theasibn where, in the smaller box, the size of

the largest aggregates reach between 1/3 and 12 gfze of the box, thus limiting the
possibility of end to end aggregation. If we areking for the power law behavior, we have to
take into account that it should hold only for mie system, so it can only be deduced from a fit
on the first part of the curve; for instance follB<concerning the simulation with a height of 62
diameters. The result is presented as the red auifvg.1 and corresponds to the equation:

(1) =1+0.0031™** | Now we can use the result of Eq.(1) for a hedgti24 diameters and fit

the curve for n(t)<30; in this case the fit givn(t) =1+ 0.00076°°, We see that the exponent
of the power law can depend of the size of the boany event we are far from the exponent
2/5 that is predicted by the standard theory. st completely surprising because this
exponent is only valid if the kinetic coefficientgsents an homothetic relation versus the size of
the chains, which is satisfied if the length of thains is large enough to keep only the first term
in Eq.(3).

The upper curve in Fig.1 is the one predictethk hierarchical model [2] which follows
the law:

I(r)=cp3’5&f’5 This th lear | i ittigal h of th
el : is theory clearly strongly overestimatesittigal growth of the

chains.
For the higher surface fractiopg<8.91%), the results of the chain average sizeugeime are
presented in Fig.2.

) /// /;—d"ﬁ=/6/
/ _

L~

40 e

30
h=31
20
10
0
0 100000 200000 300000 400000 500000

T

Fig.2 Average dimensionless length of the chains vsditmensionless time for the particle surface foact
@=8.91%. Blue and green lines stand respectieelg box of 31 particle diameter and 62 diametéhe
staircase shape is the numerical simulation reswltthe solid line is the solution of Eq.1 The pengolid line is the
solution of Eq.(1) for a box of height 124 diametérhe black solid line is the 2D version of thedel [2] . At last,

the tiny red curve is the fit of the simulatiorttM=62 by a power law fol(t)<20
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Increasing the concentration enhances the depeadétice results on the box height - the
difference between the curves for the heights re1Lh=62 in Fig.2 is more significant than
the one in Fig.1. Agreement between the computaulations and the solution of the Eq. (1)
is rather good.

However, the decrease of the chain growthisafi@ster in the kinetic equation than in the
simulation; this is due to the lateral aggregatbohains which is not taken into account in the
Eq.(1).

The lateral aggregation contributes to increasentimber of the largest chains and actually is
responsible for the percolation of chains betwéentivo sides of the box. This aspect is
discussed in the next section devoted to the 3Mlations and will be studied in more details in

a future work. Coming back to the power law 1¢r) , when the fit is realized fdx20, where
the simulation begins to diverge from the analytieault withh=124 , we obtainl(t)=1+0.108
1°*®showing a large decrease of the exponent whevalene fraction increases. Nevertheless
this result is still depending on the box heiginid & the analytical result fdi=124 is adjusted
by a power law withl<30 , we find I(T)=1+ 0.0181>°®. At last the hierarchical model (solid
black line) with a power 2/5 is rather close to siraulation result foh=62 but it does not mean
a lot. Actually, since this model does not take imccount the box size its prediction should be
above the analytical result corresponding+d24.

Previous values of the parameters of ttjgpower law were obtained fitting the data from
1=0 to a maximum time such that the average siappsoximately 1/4 of the box size. It is more
usual to calculate the power law exponent onitteal part of a Log-Log plot. In the Figure 3
below we show the Log-Log plot of the results présd in Fig.1 on a longer time scale.

I(r) 8

10 jﬁiﬂ

CRELE

10 10000 T 10000000

Fig.3 Log-Log plot of the average size of clusterstfa particle surfacg= 3.54% and the two heights31 (blue
square)h=62 (green dot)

The linear part corresponding to a power law begpmoximately abovi=5 . The
corresponding exponents are plotted in Fig.4 Herttvo height$=31 andh=62 particles
diameter.
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Fig.4 Long time exponent of the la\(t)=At" obtained by numerical simulation vs. the surfaaetfon; red
lozenge h=62; blue squarh=31

We see here a decrease of the expgnerth the volume fraction. This decrease can be
interpreted by the formation of double chains astérs of chains formed by lateral aggregation.
In this case the length of the chain is growing gliothan the number of particles in the chain,
which explains this decrease with the volume faacflhe other point is that the largest box (red
stars) shows a larger exponent than the smallegtodue square). As discussed previously the
influence of the size of the box, which is to dasethe size of the chains, is felt as soon as the
average length is above one quarter of the boxasideexplains this difference of exponent.
Nevertheless, for applications like pressure senisased on the conductivity of chains of
particles [14}he time needed to obtain a percolation betweeoppesite sides of the cell is the
quantity of interest and it is worth noting thatiate t=40000 the average chain length
respectiveo the size of the box Igh= 0.69 forh=61 and/h=0.84 forh=31. It means that, as
expected intuitively, the percolation time decrsaséh the size of the box. Nevertheless this
decrease is not as strong as expected becausmathaekd can only connect end by end with
a chain of lengthd <hd-kd and side by side aggregation will in practice glas preponderant
role for the realization of the percolation betwéss two sides of the cell. This side by side
aggregation can be quantified by dividing the nundfgarticles inside the aggregate by its
length. When this number is larger than unity iamethat we have lateral aggregation and the
difference with unity measures the proportion atipkes belonging to double chains. This is
plotted versus time in Fig.5 for the highest araation@=8.9% .
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Fig.5. Average overlap between two chains versus timflés the number of particles inside a cluster diglithg its
length and averaged on all cluster sizes

Note that the situation for an intermediate araation@=4.5% was completely different since
we did not observe any overlap. We see clearlyarease with time of this lateral aggregation
and it is more pronounced for the larger cell. Tividue to the fact that a lateral aggregation
between two chains is dictated by the interactietwvben equivalent charges at their extremities,
so they need to be shifted by at least one hdHtaif length to attract each other. This situatsn
less and less possible for small heights of thiendetre the walls block the possibility to have
this shift.

y (h=31) A (h=31) y (h=62) A (h=31)
0.035 0.57 0.0105 0.67 0.004
0.056 0.54 0.0305 0.69 0.007
0.07 0.51 0.054 0.60 0.0235
0.089 0.39 0.24 0.48 0.105

Table 1: values of the parameter A grzbrresponding to the Fig.4

5. Results of 3D simulations and comparison with analytical model.

We have used about 6000-12000 particles in the atengimulations and solved numerically
equations (8) for all particles. At the onset aé #imulations a random patrticle distribution has
been created. The time step has been chosen sthéhparticle displacement for a given step
would not exceedl/20. The particles are situated in a parallelepigggon with boundaries

impenetrable for the particles. Because of the lo@ncentration of the particles, the
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demagnetizing shape effects of the gap are weaklolvs us neglect them, assuming that the
field in the parallelepiped equals to the appliettf

Some results of our simulations for the systentls small concentrations of the particles are
illustrated in Figs. 6 and 7. The viscosity of ttearier liquid, size of the particles and the
magnetic field correspond to experiments made witkel particles that we are currently doing
in order to test this model.

0.12 @

0.08

0.04

40 5 50

_ng.v
Fig.6. Relative numbecD - ¢; of particles in the chains vs. numlveof particles in the chains. Volume of the

particles isp=0.014; dimensionless thickness of the bafb0; viscosity of the carrier liquid is 20 Pa sklagnetic
induction is 16.5 mT. Black line — calculationsngsihe analytical model (1); dots — results of catepmodeling,
averaged over four simulations. The error bahiss. Elapsed time after the field was switchedted50sec.

O
0121

0.08 -

0.04

Fig.7. Same as in Fig.6 for tinte900 sec.

Results of the analytical model and computer sitiaria are in reasonable agreement. Therefore
this analytical model can be applied, at leastafirst estimation of the chain formation in
magnetic suspension with small concentration wdrdn linear aggregates appear in the
suspension. As for 2D case we have fitted our te$oif the average size of the chains (in
diameter or equivalently in number of particlesjsus timel =1+ Ct” (here the time is in

second and not in the reduced units). As in the@&® the exponegtdecreases when the

11



particles volume fractioh increases above 1% and more strongly above Li&%in the case
of the 2D aggregation the decreasg wfiith ¢ can be explained by the lateral aggregation of the

chains.

¢ y C
0.5% 0,753814 0,0223627
0.75% 0,807047 0,0267223
1% 0,774925 0,0491677
1.25% 0,728957 0,0835969
1.5% 0,707 0,115781
2% 0,631208 0,252217

Table2. The parameters of the lel =1+Ct” for a cubic box with the sizes 50x50x50 of the

6. Formation of thick clusters

particle diameter.

Actually when the volume concentration of the eS¢ does not exceed 1.5%, almost only
linear chains are observed in our simulations ksirey the particle concentration leads to

appearance of bulk clusters. Some of these cluatershown in Figs. 8 and 9.

%9
G 0w o0
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Suf
Foy

L
.

o

ST
co@%*? 880

o
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Fig.8. Screenshot of the system of the particles in avgaph thicknes$i= 400. Magnetic field is applied in vertical
direction, in the plane of the Figure. Volume canteation of particle$=0.05; time after the field was switched on :
a =4 s; bt=10s; ¢ +{=50s.
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Fig.9. Same as in Fig.8 when the particle volume conaéotr$=0.1

Figure 10 illustrates the evolution of the intéstauctures in the plane of the gap, i.e.
perpendicular to the applied field direction.

_ : . . ’

Fig.10 Evolution of internal structures in suspensiorhwiblume fraction of particle=0.05. View in a plane
perpendicular to the field. Thickness of the apt00; a) at the moment when the field is switcbepb) after
t=50 sec; c¢) afte=200 sec.

In this plane the projection the structuregeha labyrinth-like shape. This feature of the
dense structures in systems of polar non Browngatigles has been noted in computer
simulations [10]. Experimentally the irregular bbch and labyrinth-like structures in thin layers
of MRS have been observed, for example, in [15h&uld be noted that in layers of
suspensions of magnetic nano-sized particles (fards) subjected to intensive Brownian
motion, thestructures, that appear when a field is applieglugually rather cylindrical, with
quite regular shape (see photos, for example, if).[The principal difference between
structures in ferrofluids and MRS is that in thedéuids the particles, due to the Brownian
motion, can achieve thermodynamically equilibriumspdisition. In MRSs the non Brownian
particles are “frozen” in some local energy miningum

We have also investigated the effect of thethackness on the features of the internal
structures. Our observations show that, like inZ2Decase, if the gap thickness is relatively
small, only linear chains take place in the systiegrease of this size of the gap leads to
appearance of the bulk branched aggregates.
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Summary

A model for the kinetics of chain formation in agnatorheological suspension confined
between two walls is presented. Mathematically thodel is based on the system of the
Smoluchowski equations for the distribution functadrthe number of particles in the chain.
This model well reproduces the results of compsitaulation of the aggregates growth in
confined cells as long as the volume fraction afipl@s remains low enough to avoid lateral
aggregation between the chains. Analysis showdhlealependence of the mean size of the
chain on time can be fitted by a power law. Thepeaters of this power function are sensitive
to the gap size and to the particle concentrafitwe. lateral aggregation of chains, which is
significant when the particle concentration is hégiough, provokes a decrease of the exponent
of the power law. Furthermore when the particlaw fraction exceedsapproximately 5%,
dense aggregates with labyrinthine structures asergbd in the simulations.

In the model as well as in computer simulatithresparticles are not supposed to be attracted
by the walls of the cell. However in many experita¢situations this attraction takes place. We
are now planning to study aggregation in magnetspsnsions when the particles are attracted
to the cell walls.

This work has been supported by the grants of thesian Fund of Fundamental Investigations,
NN 10-01-96002-Ural, 10-02-96001- Ural, 10-02-000B2-01-00132; Federal Goal Program of
Russian, agreemeit 14.A18.21.0867, Scientific Program of Russian Mfiryi of Education,
pr. 2.1267.2011 and by the Europgaommission within the DYNXPERTS project (ref. FP7-
2010-NMP-ICT-FoF-260073)..
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FIGURE CAPTURES

Fig.1 Average length of chains (in number of particles)the dimensionless time for a surface
fraction@=3.54%.  Blue and green stands respectivelg foox of height h=31 and 62 of the
particle diametergespectively. The staircase shape is the numesiicallation result and the
continuous line is the solution of Eq.(1) The parpblid line is the solution of Eq.(1) for a box
of height 124 diameters. The upper black line & ##D version of See and Doi theory[2]. At last
the tiny red curve is the fit of the simulatior62 by a power law fdx15.

Fig.2 Average dimensionless length of the chains vsdifmensionless time for the particle
surface fractionp=8.91%. Blue and green lines stand respectieelg box of 31 particle
diameter and 62 diameters. The staircase shape rsumerical simulation result and the solid
line is the solution of Eq.1 The purple solid lisghe solution of Eq.(1) for a box of height 124
diameters. The black solid line is the 2D versafrthe model [2] . At last, the tiny red curve is
the fit of the simulation withh=62 by a power law fadi(t)<20 .

Fig.3 Log-Log plot of the average size of clusterstfa particle surfacg= 3.54% and the two
heightsh=31 (blue)h=62 (purple)

Fig.4 Long time exponent of the lakir)=At" obtained by numerical simulation vs. the
surface fraction; red lozenge=62; blue squark=31

Fig.5. Average overlap between two chains versus tmies the number of particles inside a
cluster divided by its length and averaged onlaBter sizes

_ng.v . . . , :
Fig.6. Relative numbe® = & of particles in the chains vs. numlmeof particles in the

chains. Volume of the particles¢s0.014; dimensionless thickness of the gab0; viscosity
of the carrier liquid is 20 Pa sec. Magnetic indutis 16.5 mT. Black line — calculations by
using the analytical model (1); dots — resultsarhputer modeling, averaged over four
simulations. The error bar is shown. Elapsed aifter the field was switched otx450sec.

Fig.7. Same as in Fig.6 for time900 sec.

Fig.8. Screenshot of the system of the particles in axgaph thicknes$i= 400. Magnetic field
is applied in vertical direction, in the plane bétFigure. Volume concentration of particles
$=0.05; time after the field was switched on ta4-s; bt=10s; ¢ 4=50s.

Fig.9. Same as in Fig.8 when the particle volume conagatr$¢=0.1

Fig.10 Evolution of internal structures in suspensiornwiblume fraction of particleg=0.05.

View in a plane perpendicular to the field. Thieks of the gap=400; a) at the moment when
the field is switched on; b) after50 sec; ¢) after=200 sec.
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