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ABSTRACT 

 

 

 In this work, the rheological properties of suspensions of micron-sized gypsum particles 

dispersed in  water were studied in the presence of different fluidizer molecules. The yield stress and the 

shear moduli were measured versus the volume fraction in the presence of these molecules. Using the 

same polyelectrolyte with different molecular weights we investigated the dependence of yield stress 

versus the gyration radius of the polymer; also different sizes of the gypsum particles allowed to check 

the size dependence of the yield stress. A particular attention was brought to the change of  the thickness 

of the polymer layer with the volume fraction. From a model, which relates the steric interaction 

between the two polymer layers to the yield stress and shear modulus, we have found   an important 

compression of the polymer layer with the volume fraction. At higher volume fractions we observed a 

dynamic jamming transition at a  critical volume fraction of 0.485 which does not depend on the 

presence of the fluidizer molecule. Unexpectedly the fluidizer makes this transition to happen at lower 

shear rates although the yield stress has disappeared. 

 

 

Keywords: gypsum, fluidizer, yield stress, shear modulus, jamming, shear thickening  
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I. INTRODUCTION 

 

Superplasticizers are polyelectrolytes which adsorb at the surface of the particles and form a soft steric 

barrier which separates the particles and decreases the attractive forces between them. They are 

extensively used in cement and plaster formulations. Because of their industrial importance most of the 

works dealing with  superplasticizers are devoted to their inteaction with cement slurries despite the 

complexity of these systems. In this paper we shall  adress the effect of these molecules on suspensions 

of gypsum particles in water with controlled pH and ionic concentration of calcium. A widely used 

polyelectrolyte  is based on polycarboxylates polymers (PCP) composed of  non adsorbing side chains 

like polyethylene oxide which can extend in the solvent and then give this steric repulsion [Yamada et al. 

(2000); Plank et al. (2009)] whereas the polymethacrylate backbone adsorbs by exchanging its sodium 

counter-ions with the calcium of the gypsum particles. The repulsion force  induced by the 

polyelectrolyte can  be measured by AFM technique between a spherical probe and a plate of the same 

composition. For instance this technique was applied for silica in the presence of polyethylene oxide 

where electrosatic repulsion was shown to be dominant [Giesbers et al. (1998)] whereas on  MgO in the 

presence of a comb like polyelectolyte, the steric repulsion dominates the electrostatic one [Kauppi et al. 

(2005)]. The thickness of the adsorbed layer is a key parameter since  a large extension in the solvent 

should decrease the attractive force between the particles and then facilitate the destruction of the 

agregates under shear. This thickness, which can be directly measured by AFM, is usually in the range 

of 2 to 5nm for PCP of different molar mass [Houst et al. (2008)]. The thickness of the adsorbed layer of 

PCP on the surface of gypsum particles can also be determined by X-ray photo spectroscopy technology (XPS) 

equipped with Ar-ion etching analyzer [Peng et al. (2005)] but in the absence of the solvent, which can strongly 

alterate the results. One issue is the constancy of this thickness when the volume fraction increases 

because, if it shrinks, then its efficiency will decrease at high volume fraction whereas we need exactly 

the opposite behavior. In concentrated suspensions the thickness of the polymer layer can vary due to 

the reduction of the free volume between particles.   Kapur et al. (1997)    introduced a decreasing value 

of the thickness with the volume fraction in order to fit their experimental results for the yield stress. 

Prestidge and Tadros (1988)  have deduced the thickness of polyethlene oxide chains grafted on latex 

particles from a fit of the viscosity with the hard sphere model of Krieger-Dougherty and an effective 

packing fraction including the thickness of the polymer. In that way, they found an important decrease 

of the thickness with the volume fraction; nevertheless the hard sphere approximation for the grafted 

polymer layer is questionable. On the other hand, for metal oxide particles which were electrostatically 

stabilized, [Zhou et al. (1999)] found that, if the yield stress at different pH was normalized by the 

maximum yield stress corresponding to the isoelectric pH, then   this normalized yield stress did not 
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change too much with the volume fraction for different pH. Then from Debye-Huckel theory they could 

deduce a constant separation distance corresponding to the primary minimum of floculation. In the case 

of sterically stabilized particles, the separation distance between particles is more likely to change with 

the volume fraction due to the softer repulsive force and to the increase of attractive Van der Waals 

forces related to the increase of the coordination number.  

There is, of course; no direct measurement of the layer thickness at high volume fraction, but it 

can be deduced from rheological mesurements of the yield stress or of the shear modulus, since these 

quantities strongly depend on the interaction forces between the particles. The quasi static shear 

modulus and the high frequency shear modulus are   also directly related to the interaction potential 

[Russel et al. (1989); Tadros et al. (1996)  ] but there are very few attempts to link these quantities to the 

thickness of the adsorbed layer. In this paper we use these models for a polydisperse suspension in order 

to compare the evolution of the thickness of the polymer layer obtained respectively from the yield 

stress and of the quasi static shear modulus. In this case the separation distance should be the only 

parameter of the model, contrary to the model developped by [Flatt and Bowen (2006)] where several 

parameters can be used but the separation distance was supposed to be constant with the volume 

fraction.  

The materials were based on a suspension of gypsum particles and are described in section I  

together with the polyelectrolytes. In section II we describe the techniques used to measure the yield 

stress and the shear modulus. In section III the  results concerning the yield stress and the shear modulus 

versus the volume fraction for different polyelectrolytes are presented together with the evolution of the 

thickness of the polymer layer deduced from these measurements. The section IV is devoted to the high 

volume fraction domain where we can observe jamming transitions.  

 

 

 

II. EXPERIMENTAL 

 

A. Materials 

 

 We started from Lubbenau gypsum particles with an average diameter of 75µm. After being grounded 

the sizes in volume of the particles are contained between 1 and 20µm as obtained from Malvern 

mastersizer (cf. Fig.1(a)). We shall see in the next section that the yield stress is evaluated from the 

surface of contact between particles, so the size distribution in surface (Fig.1(b)) is more important than 

the surface distribution in volume. As expected the weight of the smallest particles is enhanced in the 



 5

case of the surface distribution. A picture obtained by electronic microscopy (Fig.2) shows that the 

shapes of the particles are quite irregular with several flat facets; we shall also take this feature into 

account for the model of Van Der Waals interactions. 

We have used three kind of polyelectrolytes. The first one is a polyanion naphtalene sulfonate (PNS) 

with a molecular weight of 251 g/mol per basic unit and the sulfonate groups  in β position on the 

naphtalene; the counter ion is sodium at 93% and Ca at 7%. The average molecular mass was 

10000g/mol. The second one, called PCP, is a comb like polymer with the skeleton made of 

polymethacrylate and the lateral chains are polyoxyethylene units with a molecular weight of 2000g/l. 

Its counter ion is sodium at 98% the average molar mass of the molecule is 27000g/mol and in average 

we have 10 lateral chains per molecule and 55 basic units on the polymethacrylate chain. The last one is 

a polyphosphonate polyoxyethylene (called PPP) with two charged groups PO3 at one extremity and a 

polyoxyethylene chain of variable length: PPP88, PPP1000, PPP2000, PPP3000  corresponding 

respectively to 2, 23, 45, 68 oxyethylene groups.The values of the gyration radii of PNS and PCP where 

measured by capillary rheometry in the dilute regime, they are respectively 4.5nm at 0.5g/l for the PNS 

and 7nm at the same concentration for PCP. Note that these values will change with the concentration of 

the polyelectrolytes and with the calcium concentration, since calcium will exchange with sodium 

conuter ions. An other important parameter to model the interactions between the adsorbed layer of 

polymer is the Flory parameter. It is deduced from osmotic pressure measurements in the presence of 

calcium at the saturation concentration of gypsum. From the slope of Π/ρkT versus ρ we have obtained 

respectively 0.497 and 0.484 for the PNS and the PCP, showing that water is a better solvent for PCP 

than for PNS. 

 

B  Yield stress measurements 

 

The measurement of yield stress in concentrated supensions is often not very reliable, in 

particular because of the possible slippage of the paste on the walls of the cell. In order to rule out this 

problem a special geometry called “vane geometry” can be used; in this geometry which is akin to 

cylndrical Couette geometry, the internal cylinder is replaced by two blades crossing at right angle in 

order to mininimize the sliding  interface between the  paste and the tool. Another popular technique is 

to make the measurements in the oscillatory regime while increasing the stress; if the strain remains very 

small (typically less than 0.001) during the stress ramp, the slippage is not effective and the sudden drop 

of the elastic modulus is associated to the yield stress. More classical ways consist simply in doing a 

stress ramp in cone and plate or plate-plate geometry and to extrapolate at zero shear rate the stress-

shear rate curve. We present in Fig.3 typical curves obtained from these four methods for a suspension 
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of gypsum at 40% volume fraction. The first curve (Fig.3(a)) is obtained with the Vane geometry and 

using a technique presented by [Nguyen and Boger (1992)] where a ramp of shear rate is imposed and 

the stress is followed versus time. In this case the stress will increase during time and then passes 

through a maximum which corresponds to the yield stress (here 138 Pa). In the case of Fig.3(b) the 

suspension is placed between two disks and we apply a stress in oscillatory regime; the shear modulus 

remains constant, at a value of about 106 Pa and then drops suddendly above a stress of 136 Pa. The two 

last curves (Figs 3(c)-3(d)) are obtained with a ramp of stress for the plane-plane geometry and cone-

plane geometry respectively. We remark that the value where the shear rate departs from zero is higher 

for the plane-plane geometry, but it is only due to the use by the software  of a conversion factor 

between the torque and the stress which is only appropriated for a Newtonian fluid. For a more complex 

rheology the Mooney Rabinovitch equation should be used and the true yield stress is 3/4 of the one 

deduced from the stress-shear rate curve produced by the software. Taking into account this correction 

we get 131 Pa for the plane-plane geometry, to be compared with 133 Pa for the cone-plate geometry 

where no correction is needed since the shear rate is constant everywhere. Finally we see that the four  

measurements laid between 131 and 138Pa, so  there is no apparent slippage on the wall of the 

rheometer. In the following all the measurements of yield stress were done with the disk geometry in 

oscillatory regime at a frequency of 5Hz.  

 

 

III. Yield Stress - model and experiments  

 

A- Size and gyration radius dependency at fixed volume fraction 

 

The Yield stress of a suspension has its origin in the attractive forces between the particles which can 

form a percolating network throughout the suspension which will resist to a stress like a solid. The 

origin of the attractive force is more often the Van Der Waals forces between the particles. For two 

spheres of different diameters di and dj whose surfaces are separated by a distance, h, the attractive 

force is: 

)
dd
dd

(
h.12

AF
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ji
2

vdw
ij +

−=           (1) 

Where A is the Hamaker constant and h the separation between the two surfaces, which can, in a first 

approximation, be approximated by two times the gyration radius of the polymer adsorbed on the 

surface of the particles. Each particle is, in average, in contact with K(φ) particles, where K(φ) is the 

coordination number which depends on the volume fraction. The force appearing in Eq.(1) is a radial 
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force and, following the derivation of [Kapur et al. (1997)] , we need to consider its surface weighted 

projection on the axis of traction, which introduces a factor 1/6  ;then considering that we have to 

separate n particles per unit surface, we come to the following result: τy=n K(φ)F/6 . This number, n, is 

also the number of straight columns of particles that could be formed per unit surface: n=φ.d/v 

=(6/π).(φ/d2) where v is the average volume of a particle and d its average diameter. Finally, taking 

Eq.(1) for monodisperse particles, the yield stress is then given by: 

2y
hd24
A)(K

π
φφ=τ      (2) 

 We already see from this simple derivation that the yield stress will grow when the average size of 

particles will decrease. Here it predicts that the yield stress will grow as d-1, but, as we have seen in 

Fig.2, the particles are far from the spherical shape and present flat facets. If we consider that the 

interaction between two particles takes place between two flat surfaces with an effective surface of 

contact Seff rather independent on the size of the particles, then the  Van der Waals force reads: F=A 

Seff/(6πh3) and the yield stress would grow as n, the number of particles that we need to separate per unit 

surface, that is to say as d-2 instead of d-1. In practice intermediate behaviors, closer to d-2, are often 

found [Kapur et al. (1997)]. The last point to notice is, of course, that the gap between the surfaces of the 

particles play a crucial role and that only a careful description of the different forces acting between two 

particles will allow to predict the yield stress (or inversely some parameters entering into the model can 

be obtained from the experimental yield stress). 

We have carried out measurement of yield stress in order to check this dependence on the average 

diameter of the particles and also on the average separation distance by taking the same class of 

polymers (PPP) but with different chains lengths. 

Firstly we compared the yield stress of three suspensions in water of the same gypsum particles 

presenting different average sizes (1.6µm, 2.6 µm, 7µm) obtained with different centrifugation 

velocities. Three volume fractions were used: 30%, 35%, 40%; the result is shown in Fig.4. The lines 

represent a power law fit. For the three volume fraction this power is -1 ±0.15 indicating that here the 

Van-Der Waals interaction between two rounded surfaces is more appropriated than the interaction 

between two planar surfaces. 

Secondly we have measured the yield stress at a given volume fraction for the four different chains of 

PPP. The radius of gyration of these chains was estimated from the Napper formula: Rg=0.06 α (44n)1/2 

where α is a coefficient equals  to 1.3 for the polyoxyethylene chaín [Napper (1983); Ramachadran et al. 

(1998)] and n the numer of monomers. In any event the value of this coeffecient is not important since it 

is the exponent of the power law that we are looking for. The results are presented in Fig.5 for a volume 

fraction of 31% and a mass of polymer of 0.13% of the mass of particles. This proportion of polymer is 
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high enough to be at the adsorption plateau in all the cases. The experimental points are well fitted with 

a coefficient of 2 giving a dependence in 1/h2 , which, once again, is in agreement with Eq.(2). In this 

approach, we are at a given volume fraction and we considered that the polymer layer behave as a hard 

layer which just separates the particles by a given distance. Actually as the polymer layer is soft we can 

expect that the size of this barrier will decrease wihen the volume fraction will increase.  

 

B Compression of the polymer layer from yield stress results 

 

In industrial slurry the size distribution of particles can be very broad and a generalization of Eq.(2) to 

polydisperse suspensions is needed. This generalization was worked out by [Kapur et al. (1997)]; they 

generalized the equation of the monodisperse case by writing: 

ij
j

ij
i

iy FKn
6
1 ��=τ       (3) 

Where ni is the number of particles per unit surface with diameter di and Kij the number of spheres j 

coordinated with a sphere i.  

The expression for ni remains the same as for the monodisperse case: ni=(6/π).(φi/di
2) but now φi=φSi  is 

the volume fraction of particles having their diameter inside a given interval around di and for Kij they 

took the result of the work by  [ Suzuki  and  Oshima   (1985)]: 
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jji
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With Si being the fraction of surface of the solid phase whose diameter is in a given interval around di as obtained 

from light scattering (Fig.1(b)). The value of K(φ) =36 φ/π  for φ<0.47 is taken from [Suzuki et al. (1981)] 

In their derivation, Kapur et al supposed that the average separation between two surfaces decreases with the 

volume fraction and they took an expression derived from their experimental results: 

h=9.5 h0 exp(-4.5φ) and introduced this dependence in the Van-Der-Waals expression (Eq.(1). 

More recently [Flatt and Bowen (2006); Flatt and Bowen (2007)], on the basis of [Zhou et al. (1999] 

experimental results, did not consider a change of interparticle separation with the volume fraction but they 

introduce an effective “lost volume” created by association of pairs of particles. They end up with an expression 

of the yield stress given by: 

 

)(

)(
m

maxmax

0
2

1y
Φ−ΦΦ

Φ−ΦΦ
=τ          (5)     

In this expression the prefactor m1 is related to the maximum of the attractive force and to the particle 

size distribution and appears to be inversely proportional to the square of the average particle radius and 
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to the square of the separation betwen surfaces. The volume fraction Φmax corresponds to the maximum 

packing fraction of the powder and Φ0 is a percolation threshold where the yield stress appears. The 

experimental values of the yield stress versus volume fraction are presented in Fig.6 for a suspension of 

particles of average diameter 2.6µm .The upper curve corresponds to a suspension without fluidizer, 

below is the result obtained with PNS, next is PPP2000 and the lower one corresponds to PCP. It 

appears that the PCP is slightly more efficient than the two other ones to reduce the yield stress. The 

solid line is a fit of the preceeding equation with the Eq.(5) and the 3 parameters of the fit are reported in 

Table I. The value of φmax seems reasonable although we could expect a higher value for a polydisperse 

powder. For the percolating volume fraction, we note a lower value of the percolation threshold in the 

absence of fluidizer which is understandable since we expect less dense aggregates in the case of a quick 

and irreversible aggregation. The value of m1 depends on some approximations on the volume 

associated with pair of particles and we did not try to evaluate this parameter. Actually the approach we 

are using rests on the idea that it is the change of the separation distance with the volume fraction which 

explains the deviation of the yield stress or of the shear modulus from a φ2 dependance This is also true 

for the divergence of the viscosity at a given volume fraction which comes from the divergence of the 

lubrication force when the separation of two spheres tends to zero. The Van der Waals force (Eq. 1) does 

not take into account the presence of the polymer layer. In order to introduce the force due to the loss of entropy 

during the penetration of the two adsorbed polymer layers we follow the analysis of [Vincent et al. (1986)]. They 

took for the energy of interaction between two homopolymer chains: 

62a
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π=              (6) 

 In this equation d is the average diameter of the particles, χ the Flory parameter, ν1 is the molar volume of the 

solvent molecule (in our case water), and δ the thickness of the adsorbed layer that we take equal to the gyration 

radius. Note that this equation holds if h>δ . Lastly φa is the average volume fraction of the segments of polymer 

inside the layer. The total force will be the sum of the attractive Van Der Waals force Eq.(1) and of  the 

repulsive polymer force given by the derivative of Eq.(6) with respect to h. At the equilibrium separation 

separation, h0, the attractive force equilibrates the repulsive one. When a shear strain is applied the 

elastic restoring force between the particles will grow and   pass by a maximum which corresponds to 

the yield stress. We call hmax the separation corresponding to the maximum of this restoring force   

which reads: 
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In this last equation we have replaced the average radius d/2 appearing in Eq.(6) by the same average 

radius as the one appearing in the Wan Der Waals force (cf Eq.(1)). Finally using this force and Eq.(4) 

for the coordination number, the yield stress (Eq.(3)) can be expressed as: 
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As reported in section II-A, the Flory parameter was respectively equal to 0.497 and 0.484 for the PNS 

and the PCP. On the other hand for the Hamaker constant of the gypsum we took the value obtained by 

[Finot (1997)]: A=1.17 10-20 J. Lastly we have to determine φa ; first we fitted the adsorption curve by a 

Langmuir model  which gave  us the energy of adsorption and the gyration radius of the adsorbed molecule; then 

from the adsorbed mass of polyelectrolyte at the adsorption plateau for a given mass of gypsum and a known 

surface S=10m2/g we obtained a coverage ratio of the surface by the polymer of 90% both for PNS and PCP that 

we identify with the value of φa  . From the inflexion point of the total force Eq.(7) we can calculate hmax as 

a function of δ and then with Eq.(8) the yield stress versus δ ; so knowing the experimental value of τy 

we can then deduce the value of δ. The results are reported in Fig.7. We see that we have an important 

decrease of the thickness of the adsorbed layer from about 3nm at a volume fraction of 0.15 to less than 

1nm at φ=0.45. This compression is accelerated in the region between 0.25 and 0.3. Note also that the 

behavior for the two polymers is very similar.  

 

 

 C.  Compression of the polymer layer from shear modulus results 

 

 

Another way to access to the interaction force between the surfaces of the particles is to measure the 

shear modulus which reflects the change of interactions forces with the strain. The measurements made 

at low strain (10-3) correspond to displacement in the nanometric range for particles of  micrometric size, 

so this information is quite sensitive to the shape of the energy well close to its minimum. An expression 

of the shear modulus is obtained by equating the elastic energy: 0.5 G γ2 -where γ is the shear strain, γ = 

δh/d, and G the shear modulus- to the increase of potential energy caused by the displacement δh=h-h0 

[Russel et al. (1991)]: 
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Where N/V= 6 φ/(πd3) is the number of particles per unit volume and d=2a+h0 is the equilibrium distance between 

two particles. The potential energy U(h) is the sum of the Van-Der-Waals energy and of the polymer repulsive 

energy: 
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5
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=              (10) 

 

 

Still taking φa=0.9 for the volume fraction occupied by the adsorbed polymer we can calculate the second 

derivative of the energy at the minimum of energy as a function of the thickness of the polymer layer,δ, for the 

average size of the particles (di=dj=d) and then deduce δ from Eq.(9) and the measurement of G’. 

 

We have plotted in Fig.8 the value of the shear modulus G’ for a suspension of average size 2µm witout fluidizer, 

with PCP and with PNS versus volume fraction. The mass fraction of fluidizer was 0.5%. We have fitted these 

curves by a power law: G’(φ)=kφα, and we found respectively k=2.2 108, α=0.976 for pure water; k= 9.54 108 , 

α=7.99  for PCP and k=1.257 109 , α=7.78 for PNS. This high power for the increase of shear modulus with the 

volume fraction was found by other groups; for instance [Tadros (1996)] found a power between 5 and 8. 

The values of δ predicted from the measurement of the yield stress are compared to those obtained from the shear 

modulus in Fig.9 both for PCP and PNS. We can see that the behavior is similar with a quite strong decrease for 

0.1<φ<0.3  and a smallest compression at higher volume fraction. If both models gave the same layer thickness at 

high volume fraction, the shear modulus model predicted higher values at low volume fraction. The gyration 

radius of PCP measured by capillary rheometry is around 6nm which is coherent with the values obtained from G’ 

at low volume fraction, but not too much from the yield stress measurement. It is the contrary for the PNS, whose 

gyration radius is around 3nm and corresponds better to the one obtained from yield stress measurement. Actually 

at low volume fractions the predictions are more likely to fail because the interactions forces become lower and 

more sensitive to different factors not taken into account in this model like, for instance, the size distribution of 

the polymers or the possible inhomogeneity of the adsorbed polymer layer. Nevertheless it is worth noting that the 

very different behavior of the yield stress (which diverges as 1/(φmax-φ)) and of the shear modulus (which grows 

as φα)  with the volume fraction can be both represented with the same value of the separation distance between 

the particles in the range 0.25<φ<0.45 . This conforts the idea that the compression of the polymer with the 

volume fraction should be taken into account to analyse the change of yield stress or of the shear modulus with 

the volume fraction. 

 

IV Shear thickening 

 

Increasing the volume fraction not only increases the yield stress due to the increase of the number  of contacts 

between the particles and to the decrease of the thickness of the polymer layer but also usually leads to shear 
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thickening and/or jamming phenomena.Two different types of shear thickening can be considered: in a first type 

,which is quite general, there is a change of regime from shear thinning to shear thickening when hydrodynamic 

forces overcome Brownian forces, or in other words when the Peclet number becomes much  larger than unity ; in 

this case the viscosity increases towards a limiting viscosity which is the one of a hard sphere suspension without 

Brownian motion [Brady and Bossis (1985)]. In the second type, we observe a sudden jump of stress at a critical 

shear rate or a sudden decrease of shear rate while increasing the stress. This kind of behavior, first described by 

[Hoffman (1982)] was attributed to an order-disorder transition. when the well organized  structure of the flowing 

suspension  was suddendly destroyed and transformed in rotating aggregates;  it can occur in monodisperse 

suspensions where particles can arrange in planar layers flowing at different velocities. [Boersma et al. (1990)] 

have deduced a crirtical shear rate from the equality between a lubrication force ( h/a2γη∝ � ) and a repulsive force, 

which allows, through the dependency of h on the volume fraction, to relate the critical shear rate to the volume 

fraction. In polydisperse suspensions this transition is not always related to a clear order-disorder transition but 

rather to the creation of a network of particles which carries the stress as in a granular médium [Cates et al. 

(1998)]; these transient solid networks of particles give rise to stress or strain fluctuations which can show a 

regime with well defined oscillations [Lootens et al. (2003)]. The critical shear rate for which the solid network of 

particles will fill the cell and generate normal stresses depend on the size of the cell [Fall et al. (2008)].  

. We have studied this kind of behavior for a suspension of gypsum particles of average diameter 1µm and the 

shear stress versus shear rate are shown in Fig.10 for different volume fractions and whitout fluidizer molecules. 

The experiments have been done with a disk of diameter 35mm and a gap of 200µm.  We can see in this figure 

that we  can even have a decrease of shear rate although the stress is increasing and ,in some cases, the tool of the 

rheometer will be blocked and will stop to turn. This is  interpreted as a transient jamming state where the 

particles have formed a percolating agregate on the compression axis which resists to the stress like a solid. This 

is a kind of yield stress but with the particles forming anisotropic structures which have been caused by the 

previous flow at higher shear rates. This dynamic jamming situation occurs above a critical volume fraction of 

48.5±0.2%. In Fig.12 we have plotted the critical shear rate defined by its maximum before the decreasing 

regime- versus the volume fraction: it decreases almost linearly with a slope of 200s-1 per 1% volume fraction. It 

is also quite remarkable that the volume fraction is a more sensitive quantity than the yield stress since, between 

φ= 48.3% and φ=50.1%, we pass from a non observable critical shear rate to a value of 500s-1 whereas the yield 

stress has only increased of 20%. Actually we could expect, that the higher will be the yield stress the lower will 

be the critical shear rate since attractive forces contribute to the aggregate formation. In general the passage from 

shear thining to shear thickening is the result of a subtle interplay between long range shear induced forces- which 

either break the aggregates which are on  the extensional side or form them on the compressional side- and the 

short range forces which do not change of sign during the relative trajectrory of two particles. When Van Der 

Waals or other attractive forces become important the dynamics of aggregate formation on the compressional side 

is increased and can form percolating aggregates of particles which are in the primary minimum potential and 

likely in the conditions of solid friction. The solid friction prevents the sliding relative motion of particles inside 

these aggregates and favour their  linear growing on the compressional axis instead of their compaction. With this 
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picture in mind for suspensions presenting a yield stress, we can understand that during a ramp of stress, first the 

aggregates will break, but when the suspension begins to flow, the shear induced forces will help the aggregates 

to reform and will block again the flow as observed in Fig.10. At constant imposed stress this mechanism will 

produce oscillations in the shear rate as often observed in these suspensions [Cates et al. (1998)]. The theories 

aiming to model this kind of rheological behavior usually introduce a dynamic variable whose time evolution is 

coupled to the stress in an arbritary way [Guillemet et al. (2002)]; this dynamical variable could perhaps be 

identified to the length of the aggregates whose particles are blocked by solid friction. The importance of solid 

friction in shear thickening was demonstrated in the work by D.Lootens et al [Lootens et al. (2005)] where they 

found that silica particles, treated with NaOH in order  to increase their roughness, presented a lower critical shear 

rate than particles covered with surfactant molecules. Along this line we could expect that the addition of the 

fluidizer molecule will push  the critical volume fraction and the critical shear rate  of jamming  to higher values.  

Actually it is not the case as can be seen in Fig.11 where we have used a mass fraction of PCP of 0.08% 

relatively to the mass of gypsum particles which corresponds to the adsorption plateau of PCP. Firstly we see that, 

thanks to the fluidizer molecule, the yield stress has disappeared for φ=48.5% and φ=50%, but nevertheless the 

shear thickening appears at the same volume fraction as without fluidizer and worse, the critical shear rate is now 

lower than without fluidizer. The critical shear rate is reported in Fig.12 for comparison with the absence of PCP; 

the change with volume fraction is still approximately linear but with a much lower slope.  In the presence of 

PCP, even if the yield stress has disappeared, we are left with a high viscosity (η~5 Pa.s instead of 20mPa.s for 

hard spheres)  which is likely due to sticky contacts between particles and we observe that the jamming at these 

two volume fractions is total (flow stop) and does not differ qualitatively from the one obtained at φ=54% where 

there is a high yield stress. We have seen in the previous section that the thickness of the polymer layer, was of 

the order of 1nm. A possible explanation is that, under flow, the compression of the PCP layer by shear forces, 

favour the formation of bridges between the two gypsum surfaces by a same polymer. From these observations 

we can conclude that the existence of a yield stress is not a necessary condition to observe  a dynamic jamming 

but that strong attractive interactions reinforced  by shear forces like solid friction or sticky interactions play a key 

role in this phenomenon.  

 

 

V Conclusion 

 

The use of different sizes of gypsum particles and of different fluidizer molecules : a comb like polymer: 

PCP, a polynaphtalene sulfonate (PNS) and four different lengths of the same polymer based on a phosphonate 

head and different lengths of the polyoxyethlene chain have allowed to confirm that the yield stress was varying 

as 1/(d.h2) where d is the average diameter of the molecule and h is the separation distance between the surfaces 

given by the polymer layer. The dependence of the yield stress and of the shear modulus on the volume fraction 

were modelled by a function φ2f(h(φ))  where the thickness of the polymer layer between two particles h(φ) was 

deduced from the respective measurement of the yield stress and of the shear modulus. The model of interparticle 
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force used in this derivation to obtain the function f(h) takes into account the size distribution of particles and the 

energy of interaction between the adsorbed polymer layers but does not contain any free parameter. Although the 

behaviour of the yield stress and shear modulus versus the volume fraction was very different from each other, we 

obtained the same values of h(φ) in the range 0.25<φ<0.45  showing a clear decrease of the separation distance 

with the volume fraction. In this range of volume fraction the PCP and PNS layers are quite similar and end up 

with 1nm thickness. At higher volume fraction, we observed a transient jamming at critical shear rates which are a 

decreasing function of the volume fraction. Adding more PCP does not prevent this jamming which appears at the 

same volume fraction: φ=0.485 but surprisingly, it appears at lower shear rates in the presence of fluidizer than 

without. The understanding of the behavior of the fluidizer molecules at high volume fraction still remains a 

challenge because  on one hand the reproducibility of the experiments become more difficult to obtain and on the 

other hand, the increase of forces between two particles makes the interactions between the two polymer layers 

much more complex, not speaking about the possibility of polymer desorption or bridge formation between two 

particles which could   be an explanation for the onset of jamming at lower shear rate in the presence of the PCP 

molecule. 
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Figure captions 
 

 
Fig. 1(a) Size distribution in volume of grounded gypsum particles 
 
Fig. 1(b) Same particles but size distribution in surface 
 
Fig. 2   View of gypsum particles by electronic microscopy 
 
Fig.3. Comparison of different techniques for the measurement of the yield stress of a gypsum 
suspension with 40% volume fraction: a) Vane tool with a ramp from 0.1 to 100s-1; b) Plane-plane 
geometry (d=35mm) in oscillatory regime: logarithmic ramp of stress from 0.1 to 500Pa; c) same as b 
but in stationary regime; d) same as c but with a cone (diameter 35mm, angle 2°) 
 
Fig.4  Yield stress versus average diameter of particles for three volume fractions of gypsum particles in 
water without fluidizer molecules 
 
Fig.5  Yield stress versus the gyration radius of  polymer PPP . The solid particle volume fraction was 
φ=31% with an average diameter of 7µm and the mass fraction of polymer 0.13%. The solid curve is a 
power law fit with exponent -2.03   
 
Fig 6. Yield stress of a suspension of gypsum particles with average diameter 2µm versus volume 
fraction of particles  for fluidizer molecules PNS, PCP, PPP2000. Solid lines are fit of Eq.(5) whose 
parameters are given in table 1 
 
Fig.7  Evolution of the thickness of the adsorbed layer of polymer (PCP and PNS) with the volume 
fraction of gypsum particles. The concentration of polymer was 0.5% in mass relatively to the mass of 
particles 
 
Fig.8  Shear Modulus of a suspension of gypsum particles with average diameter 2.6µm versus volume 
fraction of particles. losanges: no fluidizer; squares :0.5% g/g PNS; dots: 0.5% g/g PCP 
 
Fig.9 Thickness of the polymer layer versus the volume fraction for the PCP and PNS fluidizers obtained from 
yield stress measurement and from shear modulus measurement at 0.5% mass fraction of polymer.   
 
Fig. 10.   Rheogram of Gypsum particles, average diameter 1 µm, without fluidizer for different volume 
fractions 
 
Fig.11 Stress ramp for a suspension of gypsum particles of average diameter 1 µm at different volume 
fractions with PCP (mass fraction 0.08%) 
 
Fig.12  Critical shear rate versus volume fraction obtained :�:without fluidizer;�with 0.08% of PCP 
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Table I:  Parameters for the fit of the yield stress vs volume fraction with Eq.(5) 

 

Suspension  m1 �0 �max 

Water 328 0.112 0.599 

PCP 300 0.196 0.637 

PNS 310 0.189 0.613 

PPP2000 555 0.233 0.692 
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Fig. 1(a): Size distribution in volume of grounded 
gypsum particles  

Fig.1(b)  Same particles but size distribution in 

surface 
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Fig. 2  View of gypsum particles by electronic microscopy 
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Fig.3. Comparison of different techniques for the measurement of the yield stress of a gypsum suspension 
with 40% volume fraction: a) Vane tool with a ramp from 0.1 to 100s-1; b) Plane-plane geometry 
(d=35mm) in oscillatory regime: logarithmic ramp of stress from 0.1 to 500Pa; c) same as b but in 
stationary regime; d) same as c but with a cone (diameter 35mm, angle 2°) 
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Fig.4  Yield stress versus average diameter of particles for three volume fractions of gypsum particles 

in water without fluidizer molecules 
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Fig.5  Yield stress versus the gyration radius of  polymer PPP . The solid particle volume fraction was 
φ=31% with an average diameter of 7µm and the mass fraction of polymer 0.13%. The solid curve is a 
power law fit with exponent -2.03   
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Fig 6: Yield stress of a suspension of gypsum particles with average diameter 2µm versus volume 
fraction of particles for fluidizer molecules PNS, PCP, PPP2000. Solid lines are fit of Eq.(5) whose 
parameters are in table 1 
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Fig.7  Evolution of the thickness of the adsorbed layer of polymer (PCP and PNS) with the volume 
fraction of gypsum particles. The concentration of polymer was 0.5% in mass relatively to the mass of 

particles 
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Fig.8  Shear Modulus of a suspension of gypsum particles with average diameter 2.6µm versus volume 
fraction of particles. losanges: no fluidizer; squares :0.5% g/g PNS; dots: 0.5% g/g PCP 

 

 

 

 

 

 

 

 

 

 



 27

0

1

2

3

4

5

6

7

0,1 0,15 0,2 0,25 0,3 0,35 0,4 0,45 0,5

volume fraction

δδ δδ 
(n

m
)

PNS( from yield stress)

PCP( from yield stress)

PNS(from elastic modulus)

PCP(from elastic modulus)

 
Fig.9 Thickness of the polymer layer versus the volume fraction for the PCP and PNS fluidizers obtained from 
yield stress measurement and from shear modulus measurement at 0.5% mass fraction of polymer.   

 

 

 

 

 

 

 

 

 

 

 

 



 28

 

0

100

200

300

400

500

600

700

800

900

1000

0 100 200 300 400 500 600 700 800 900 1000

shear rate (1/s)

sh
ea

r 
st

re
ss

 (
P

a)

48,32%

48,50%

49,20%

50,10%

51,00%

 
Fig. 10  Rheogram of Gypsum particles,average diameter 1 µm, without fluidizer for different volume 

fractions 
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Fig.11  Stress ramp for a suspension of gypsum particles of average diameter 1 µm at different volume 
fractions with PCP (mass fraction 0.08%) 
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Fig.12  Critical shear rate versus volume fraction obtained :�:without fluidizer;�with 0.08% of PCP 

 

 

 

 

 

 

 

 

 


