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THE INTERACTION PICTURE METHOD FOR SOLVING THE
GENERALIZED NONLINEAR SCHRODINGER EQUATION IN OPTICS

STEPHANE BALACYY, ARNAUD FERNANDEZ!, FABRICE MAHE!, FLORIAN MEHATS!, AND
ROZENN TEXIER-PICARDS

Abstract. The “interaction picture” (IP) method is a very promising alternative to Split-Step methods
for solving certain type of partial differential equations such as the nonlinear Schrédinger equation involved in
the simulation of wave propagation in optical fibers. The method exhibits interesting convergence properties
and is likely to provide more accurate numerical results than cost comparable Split-Step methods such as the
Symmetric Split-Step method. In this work we investigate in detail the numerical properties of the IP method
and carry out a precise comparison between the IP method and the Symmetric Split-Step method.

Key words. Interaction Picture method, Symmetric Split-Step method, Runge-Kutta method, Nonlinear
optics, nonlinear Schrodinger equation.

AMS subject classifications. 65M12, 656M15, 65L06, 65T50, 78A60

1. Introduction. In this paper we study a mathematical model for the propagation of
optical pulses into a single-mode fiber. We make the following usual assumptions, see for
example [1] for a justification:

— the optical wave is assumed to be quasi-monochromatic, i.e. the spectral width of
the pulse spectrum is small compared to the mean pulsation wy;

— the optical wave is supposed to maintain its polarization along the fiber length so
that a scalar model (rather than a full vectorial one) is valid;

— the electric field E is linearly polarized along a direction ey transverse to the direction
of propagation e, defined by the fiber axis and can be represented as a function of
time 7 and position r = (x,y, z) as

E(r,7) = A(z,7) F(z,y) e 07" ey

where A(z,7) represents the slowly varying pulse envelope, F(z,y) is the modal
distribution and & is the wavenumber. The pulse envelope A(z,7) is expressed in a
frame of reference, called the retarded frame, moving with the pulse at the “group
velocity” vy = ¢/ng. The relation between the “local time” ¢ in the retarded frame
and the absolute time 7 is: t = 7 — z/v,.
Under these assumptions, the evolution of the slowly varying pulse envelope A is governed
by the Generalized Nonlinear Schrodinger Equation (GNLSE) [1]
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. +00

+iy <1d + Uj@;) Al t)((1= fr) 1A, ) + fR[ ha() Azt - 9)° ds)

TFOTON UMR 6082, Université de Rennes I, CNRS, UEB, Enssat, 6 rue de Kerampont, CS 80518, 22305
Lannion, France

fIRMAR, Université de Rennes I, CNRS, UEB, Campus de Beaulieu, 35042 Rennes, France

S$JRMAR, ENS Cachan Bretagne, Université de Rennes I, CNRS, UEB, avenue Robert Schuman, 35170
Bruz, France

9 This work has been undertaken under the framework of the Green-Laser project and was partially sup-
ported by Conseil Régional de Bretagne, France.



2 S. Balac, A. Fernandez, F. Mahé, F. Méhats and R. Texier-Picard

where I4 denotes identity operator. The physical effects taken into account in (1.1) are the fol-
lowing. First, some linear effects are expressed through the linear attenuation/gain coefficient
« and the linear dispersion coefficients §,, 2 < n < N (it is assumed that Sy # 0), where
e.g. o expressed in units ps’km ! accounts for chromatic effects. In standard silica fibers
we have o ~ 4.01072km ™! and 35 ~ 50 ps’km ™' for wavelengths in the visible region. In the
anomalous dispersion regime we have Sz < 0 (typically 82 ~ —20 psZkm ! for wavelengths
near 1.5 um) and the fiber can support optical soliton. Nonlinear effects are involved through
the nonlinear parameter v with typical values in the range 1 to 10 W~ 'km™'. In (1.1), first
order partial derivation with respect to time takes into account the dispersion of the non-
linearity through the simplified optical shock parameter Tghoek = 1/wp. Instantaneous Kerr
effect manifests itself through the term (1 — fz) |A|>. The delayed Raman contribution in the
time domain is taken into account through the convolution product between the instantaneous
power |A\2 and the Raman time response function hg. For silica fibers, an expression for hg is
proposed in [1]. The constant fg represents the fractional contribution of the delayed Raman
response to nonlinear polarization and takes a value around 0.2. Equation (1.1) does not take
into account other physical phenomena such as amplified spontaneous emission and Raman
spontaneous emission. Our interest for the GNLSE originates from a study of pulsed laser
systems of MOPFA type (a master oscillator coupled with fiber amplifier usually a cladding-
pumped high-power amplifier based on an ytterbium-doped fiber), see [15] for details. The
PDE (1.1) is to be solved for all z in a given interval [0, L] where L denotes the length of
the fiber and for all “local time” ¢ € R. It is considered together with the following boundary
condition A(0,t) = ap(t) Vt € R, where ag is a given complex valued function.

1.1. Mathematical toolbox. Recently a “fourth-order Runge-Kutta method in the in-
teraction picture method” (RK4-IP method) has been proposed in [20] as an alternative to
Split-Step methods for solving the GNLSE (1.1). The method has been numerically exper-
imented on benchmark problems in optics in [20, 19]. The scope of the present work is to
investigate the mathematical features of the RK4-IP method for solving the GNLSE. The
mathematical study of equation (1.1) itself and the set up of the corresponding functional
framework for the study of the RK4-IP method is arduous due to the complicated expression
of the nonlinear part of the equation. For this reason, to proceed with the mathematical
justification of the RK4-IP method and its numerical analysis, we will consider the follow-
ing simplified version of equation (1.1), corresponding to wg = 400 and fr = 0 (still the
numerical tests in Section 3.3 are done with the general model w < +o0, fgr > 0),

N
9 a 1B O : 2
5. A(R) = —5A() + (;1 T 3mAG) | +1AR)IAG), (1.2)
where the notation A(z) stands for the first partial function of A in =z, ie.
A(z) : t € R — A(z,t) € C. In (1.2), the nonlinear part is actually similar to the one

involved in the standard nonlinear Schrodinger (NLS) equation in optics [1]

82
ot?

We denote by LP(R,C), p € [1,400[ the set of complex-valued functions over R whose
p-th powers are integrable and by H™(R,C) for m € N* the Sobolev set of functions in
L2(R,C) with derivatives up to order m in L?(R,C). For convenience, we will also use the
notation HO(R, C) for L2(R,C) and L>°(R, C) for the space of essentially bounded functions.
The Sobolev spaces H™ (R, C), m € N, are equipped with the usual norms denoted || ||,,,. For
k,n € N and I C R, we denote by C*(I; H"(R, C)) the space of functions u : z € I + u(z) €

0 o

&A(z) =—5A(2) - 352

5 A(z) +iv A(2) |A(2))?. (1.3)
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H"(R, C) with continuous derivatives up to order k (or just continuous when k = 0). For any
m € N and any interval I C R, we define

Lm/N]
EmyN(I) = ﬂ Ck(Iv HmiNk(RaC)% (14)
k=0

where |s| denotes the integer part of s € Ry.

A comprehensive mathematical framework for the NLS equation (1.3) exists in the liter-
ature [8, 9]. Namely, it is known that for ay € H?(R, C) there exists a unique A belonging to
CO(R; H2(R,C)) N C(R; L?(R, C)) solution of equation (1.3) satisfying A(0) = ag. This result
can be extended to the GNLSE with wy = 400 and fr =0, i.e. to (1.2), as follows.

THEOREM 1.1. For all ag € H™(R,C), with m € N*, there erists a unique mazimal
solution A € En, n([0, Z]), with Z €]0,+0o0], to the problem (1.2). This solution satisfies

Al = e %% [laclly,  for all z € [0, Z] (1.5)
and it is mazimal in the sense that

if Z <+4oo then limsup ||A(z)|Le = +o0. (1.6)

z—=7

Moreover, if N is even and m > N/2 then the solution is global, i.e. Z = 4oc.
The proof of this result can be found in Appendix A.

In order to simplify the presentation of the interaction method, we will now reformulate
our problems (1.1) and (1.2) in a more abstract and unified way. To this aim, we need a few
notations and technical results. We denote by D the unbounded linear operator on L?(R, C)
with domain HY (R, C), N € N*, defined as

N
n IBR 6“
D:U e HY(R,C) — 2_:21 +1H%U € L%(R,C).

For N = 2, it is well known [8, 9] that this operator generates a continuous group of bounded
operators on L2(R, C), denoted by exp(zD) with z € R. For N > 2, the same property holds
and we have the following lemma.

LEMMA 1.2. Let ¢ € H™(R,C), where m € N. Then the problem

%U(z) =DU(z) VzeR, U(0)=¢ (1.7)

has a unique solution U(z) = exp(2D)p with U : z € R — U(z) € E,,, n(R) and it satisfies
for all z € R the relations |U(2)|; = [|¢ll; for all j € {0,...,m}.

Let us now denote the two nonlinear operators appearing respectively in the full GNLSE (1.1)
and its simplified version (1.2) by

. 400
N:iur—s —%u +iy (Id + 18) [(1 — fr)ulul* + fRu/ he(s)|u(-—s))* ds

wo ot —o00
and

No:ur— —%u + iy uful?.
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Both A and Ay are considered as unbounded nonlinear operators on L2(R,C). Note that
Ny is nothing but N when wg = 400 and fgr = 0. Problems (1.1) and (1.2) then can be
reformulated respectively as

%A(z) =DA(z) + N(A)(z) VzeR, A(0) = ag (1.8)
and
%A(z) =DA(z) + Ny(4)(2) Vz eR, A(0) = ay. (1.9)

It can be useful to note that another splitting is possible for D and N: the term —3aA(z)
can be added to the linear operator instead of the nonlinear one.

As we said above, the numerical experiments presented below are done on (1.1) (or
equivalently, (1.8)), but the mathematical results concern the simplified problem (1.2) (or
equivalently, (1.9)). Indeed, due to the time derivative, the nonlinearity N is not continuous
on any Sobolev space (unless wg = +00) and the resolution of the Cauchy problem for (1.1)
would rely on the smoothing properties of the linear group connected to the higher-order
dispersion, which goes beyond the scope of this paper on a numerical method. Instead, the
simplified nonlinearity Ay is Lipschitz continuous on every Sobolev space H™ of exponent
m > 1. We recall indeed that for all ¢ € [2,+oc] we have the inclusion H*(R,C) C L4(R)
and we summarize in the following lemma (stated without proof, see [7]) some classical useful
properties of Np:

LEMMA 1.3. The nonlinear operator Ny satisfies a local Lipschitz conditions in any
H™(R,C), m > 1: for all M > 0 and m € N*, there exists Apar > 0 such that, for all
u,v € H™(R, C) such that ||u)lm < M and ||v|l;,m < M, we have

INo(u) = No(0)ll,y, < Amar [lu = o

m

Moreover for all m € N* we have Ny € C*°(H™(R, C),H™(R, C)).

1.2. Presentation of the numerical approach. We describe here the “fourth-order
Runge-Kutta method in the interaction picture method” (RK4-IP method) proposed in [20]
as an alternative to Split-Step methods for solving the GNLSE (1.1). The experimental
investigation undertaken in [20] on benchmark problems in optics indicates that the RK4-
IP method exhibits interesting convergence properties and provides more accurate numerical
results than comparable Split-Step methods such as the Symmetric Split-Step method based
on Strang formula [29]. The main idea of the Interaction Picture (IP) method is a change of
unknown to transform the NLSE or GNLSE for the unknown A into a new equation where
only remains an explicit reference to the partial derivation with respect to the space variable
z and where the time variable t appears as a parameter. This new equation can be solved
numerically, using the usual methods for ordinary differential equations (ODE) such as the
standard fourth order Runge-Kutta (RK4) method. Then, by using the inverse transform we
obtain the approximate values of the unknown A at the grid points of a subdivision of the
fiber length interval [0, L]. This numerical approach is referred to as the RK4-IP method.

The RK4-IP method has been developed by the Bose-Einstein condensate theory group of
R. Ballagh from the Jack Dodd Centre at the University of Otago (New Zealand) in the 90’s
for solving the Gross-Pitaevskii equation which is ubiquitous in Bose condensation. It was
described in the Ph.D. thesis of B. M. Caradoc-Davies [6] and M. J. Davis [11]. In this latter
work an embedded Runge-Kutta scheme based on a Cash-Krap formula was additionally
used in conjunction with the RK4-IP method for adaptive step-size control purposes but
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the efficiency of the method was judged disappointing. However, the RK4-IP method has
been widely used for numerical studies concerning Bose-Einstein condensates, see e.g. [32, 27,
21]. Recently an efficient embedded RK method based on Dormand and Prince RK4(3)-T
formula [12]| and specifically designed for the IP method has been proposed in [3]. The name
“Interaction Picture” and the change of unknown at the heart of the method originate from
quantum mechanics [30, 17] where it is usual to chose an appropriate “picture” in which the
physical properties of the studied system can be easily revealed and the calculation made
simpler. The interaction picture is considered as an intermediate between the Schrodinger
picture and the Heisenberg picture. It is useful in quantum optics for solving problems
with time-dependent Hamiltonians in the form H(t) = Hy + V(t) where Hy is a Hamiltonian
independent of the time and its eigenvalues are easy to compute whereas V' is a time-dependent
potential which can be complicated.

The RK4-IP method can be interpreted as an exponential Runge-Kutta method according
to the general form presented in [24] for the semi-linear parabolic problems, but this method is
not of collocation type as studied in [23] for parabolic problems and in [13] for the Schrédinger
equation.

In this work we investigate the numerical properties of the RK4-IP method for the Gen-
eralized Nonlinear Schrédinger Equation, and we make a precise comparison between the
RK4-IP method and the symmetric Split-Step Fourier method when used with the classi-
cal fourth-order Runge-Kutta formula (S3F-RK4 method). At present time, the S3F-RK4
method is the most widely used method for simulating wave propagation in optical fibers,
see e.g. [1, 28, 31, 25]. We show that both methods are equivalent regarding the numeri-
cal cost, due to similar computational inner structures, but the RK4-IP method exhibits a
convergence rate of order h* where h denotes the spatial discretisation step-size whereas the
S3F-RK4 method is limited by the second order accuracy of Strang splitting formula and
exhibits a convergence rate of order h2.

The outline of the document is the following. In Section 2 we present the IP method,
we detail the various aspects of the numerical implementation of the RK4-IP method and we
analyze the numerical error of the method. Our main result is stated in Theorem 2.5. In
Section 3, we present in a similar way the S3F-RK4 method and we compare the two methods
both from a theoretical point of view (Proposition 3.1) and on numerical simulation examples.

2. Solving the GNLSE by the Interaction Picture method.

2.1. The idea of the Interaction Picture. The integration interval, say [0, L], is
divided into K subintervals where the spatial grid points are denoted 2y, k € {0, ..., K} such
that |0, L] = ka,(;()l]zk,zkﬂ] where 0 = 29 < 21 < -+ < 2g_1 < 2Kg = L. For convenience
we assume a constant grid spacing h = L/K but this assumption is not a limitation of the
method and an adaptive step-size version of the RK4-IP method is propounded in [3]. For
ke{0,..., K} weset z, 1 =z, + 2

We introduce the following auxiliary problems, for 0 < k < K — 1:

%Ak(z) =DAk(2) + N(Ar)(z) Vz € 2k, 2k+1]s Ag(zr) = ag (2.1)

equivalent to solving the sequence of connected problems (2.1), & € {0,...,K — 1}, with
for all k € {1,...,K — 1} a(t) defined for all t € R by ax(t) = Ag—1(zk,t), and for all
ke{0,...,K —1},

where aj, is a given function in H™(R,C). Solving problem (1.8) for ¢y € H™(R,C) is
k

Vz € (21, 2k11]  A(z) = Ak(2).
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For z,( € [zk, zk+1] and t € R, we denote by ¥ the mapping defined by
W(2,C,1) = exp(—(C — 2143 )D)Ar(5:1).

For a fixed value of z, the mapping ((,t) — ¥(z,(,t) coincides with the solution of the
problem
0
B?A(o =—DA(C) V¢ € lzr 2], Alzpyy) = Ar(2).
For solving problem (2.1) we introduce as new unknown the mapping A}Cp defined for (z,t) €
[z, 2zk+1] X R by A (2,t) = ¥(z, z,t), ie.

AP : (2,1) € |21, 2k 41] X R — exp(—(z — 211)D)Ar(z,t) € C. (2.2)

From Lemma 1.2, it can be deduced that Ay € E,, n([2k, 2k+1]) Is equivalent to A}f €
Ep n([2k; 2k+1]), where the space E,, n is defined by (1.4). Moreover, from the chain rule we
have

%Aikp(z,t) = U (z,2,t) + 02 U(z, 2, )

) (2.3)
= exp(—(z — Zk+%)D)$Ak(Z’t) — Dexp(—(z — 2341 ) D) Ax(2, 1),

where 9; denotes the derivative with respect to the i-th position variable. This enables to
reformulate the GNLSE in the Interaction Picture. )
For all k € {0,..., K — 1}, if Ay solves (2.1) then A}’ defined in (2.2) satisfies

a i i i
5.0 () = G(2, A0 () Ve € [ zen], AP (k) = exp(—(2k = 244 y)D)ar,  (2:4)
where Gy, is defined by

Gr(z,v) = exp(=(2 — 2,4.1)D) [./\/ (exp((z - z,H_%)D)v)} . (2.5)

Conversely, if Ag’ is solution to (2.4) then Ay = exp((z — zk+;)D)A}€p is solution to (2.1). At
this level of generality, this statement is formal. However, in the case wo = +00, fr =0, since
N reduces to Ny, we shall see in Section 2.3 that the mapping Gy, is continuous on E,, x and
then that both formulations are equivalent (see in particular Lemma 2.2).

Remark 1. In the above presentation, it is possible to choose any point in the interval
[2k, 2k+1] instead of the middle point 2 1 but as we will see later this particular choice is
very relevant to save computations.

The major interest in doing the above transformation is that on the contrary to prob-
lem (2.1), the new problem (2.4) for the unknown A;” does not anymore involve explicitly
partial derivation with respect to the time variable ¢. Partial derivation with respect to time
now occurs through the operators exp(4(z — 2;,,1)D). The problem (2.4) can be solved
numerically using a standard quadrature scheme for ODE such as the classical 4th order
Runge-Kutta method [5, 10]. Moreover, the initial condition for problem (2.4) is obtained by
computing the mapping exp(—(zx — zk+%)D)ak.

We can summarize the IP method for solving problem (1.8) in the following way. The
fiber length [0, L] is divided into subintervals [z, zx+1], K € {0,..., K — 1}, and over each
subinterval [zj, z;11] the following three nested problems are solved:

0
&Ag(z) =DAf(z) Vze€ [k 24 2], Al (z) = Ag—1(2x), (2.6)
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where Ay_1(zx) represents the solution to (2.1) at grid point zx computed at the previous
step k — 1;

0 Alp Aip Aip A

E ( ) gk(za k (Z)) VZ S [zkvzk-‘rl]; k (Zkvt) = k (Zk:-‘,-%)? (27)
where Gy, is defined by (2.5) and AZ_(Zk+§) = exp(2D)A,_1(z) is the solution to (2.6) at
grid point Zpyds

0  _ _ - i
&Ak (2) =DA, (2) Vz€ [zt 241l Ay (zpy1) = AP (2r41), (2.8)

where Aikp<zk;+1) represents the solution to (2.7) at grid point zx1;. Finally, at grid point
Zk+1, the solution Ay (z41) to (2.1) is given by A, (2k+1). The two linear PDE problems (2.6)
and (2.8) can be numerically solved very efficiently by use of Fourier Transform as detailed
in Section 2.2.2.

2.2. The fourth order Runge-Kutta scheme in the Interaction Picture method.

2.2.1. Approximating the solution to problem (2.7) by one RK4 step. For k €
{0,..., K — 1} we denote by u® (resp. uz) the approximation of AP(z;) (resp. Ag(zi)) the
solution to problem (2.7) (resp. (2.1)) at grid point z;. One step of the classical 4th order
Runge-Kutta formula is used to approximate the solution to problem (2.7) at grid point zg41
as follows:

AP (zrp1) 2wl =l + h® (2wl h) (2.9)

where the mapping ® is the increment function of the RK4 method, defined by

h
q)(zk,uk sh) = 5 (a1 4 200 + 203 + ay)

with
ar = Gi (21, uk)—exp(hD)N(exp(—*D) D)
:gk(zk+ Bl + az) (u}c“r%%)

oy = Gz + h, uk + hag) = exp(—%D)N(exp(%D) [uikp + hag))

Using the change of unknown (2.2) we deduce the following approximation of the solution to
problem (2.1) at grid point zj11

Ak(2k+1) R Ukl = exp(%D) (U}Cp + % (a1 + 209 + 2a3 + a4) ) (2.11)

Actually we are only interested in computing an approximate solution to problem (1.8) given
by (2.11) and the use of the new unknown A}cp is a go-between in the computational approach.
We can therefore recast the above approximation scheme in order to reduce the cost of the
method as follows:

u = exp(LD)uy,
a1 = exp(AD)N (wg), a2 =N + 5a1),  as = N(uf + 5as), (2.12)
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and
ups1 = exp(§D) (w + § (o + 202 + 203) ) + ol (2.13)

Compared to the computational scheme (2.10)—(2.11), the new formulation saves one evalua-
tion of exp(—%D). Of course the key-point in the computational procedure (2.12)—(2.13) lies
in the way the linear operator exp(%D) and nonlinear operator A/ are computed.

2.2.2. Computing the exp(%D) terms. For a given f € H™(R,C), we want to com-

pute numerically terms of the form: exp(%D) f. In other words, we have to solve the linear
PDE problem:

%v(z) = Du(z) Vz € [2ky Zht1], v(z) = f. (2.14)

The solution to problem (2.14) can be computed by using the Fourier Transform (FT) ap-
proach. For a fixed value of the space variable z, we introduce the FT ©(z) of v(z) with respect
to the time variable t. We denote by F the Fourier operator from L?(R, C) to L?(R, C) defined
by continuous extension of

vy € LY(R) NL3(R), Vv eR, F)(v) = @(u) — /Rq’b(ﬂ Q2T gy

From (2.14) we deduce that U satisfies

i@
dz

~

(2) =D, 0(2)  Vz€ [ zhq],  O(zk) = J, (2.15)

where D, : w € L2(R,C) ZnN:2 Bniﬂ%!l(—%ﬂ'y)"w. Hence

‘ ™

N
0(z) = f e ) where  d, =1 —(2m)". (2.16)
n=2 .

n

From (2.16) we deduce that

[~y

exp(%D)f =ov(zp + %) = F~1 [fAe(i” ] (2.17)

where F~! denotes the inverse Fourier Transform operator.
The following lemma provides a first order Taylor expansion of exp(%D) f for small h and
it will be useful later on when the accuracy of the RK4-IP method will be investigated.
LEMMA 2.1. Let f € HNTY(R, C); for h € RY. in a neighbourhood of 0 we have the follow-
ing equalities in H* (R, C): exp(:l:%D)f =f+ %Df +o(h). Moreover, when f € H2N+1(R, C)
we have

exp(£2D)f = f £ ng + O(h?). (2.18)

2.2.3. Computing the nonlinear terms. When the numerical scheme (2.12)—(2.13)
is applied for solving the GNLSE (1.1) one needs to compute for various mappings f : (z,t) €
[0,L] x R f(z,t) € C the nonlinear terms

190

NG = =56+ (1a+ 2 5) [ = Fl IR + frtaxlfP)] - 219)
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where x denotes the convolution product. One way of computing this quantity is by means
of the Fourier Transform. Indeed, time derivation of functions coincides with multiplying the
FT of the function by a factor —2irv. Namely,

Vv eR (/\A/'(f)(z))(u):— Qim/)x

| R

f(f(z))(y) + iy (1 — "
FlF Q= f)IF P + frhr 1)) | )

where we denote by /V(f) the FT of N'(f), for f in the domain of A/. Furthermore, to compute
the convolution product we can use to the properties of the FT with respect to convolution
as follows: hg * |f(2)]? = F~HF(hr) x F(|f(2)*)].

2.2.4. The RK4-IP algorithm for solving the GNLSE. The computation of the 4
terms involving the exp(2D) operator in the computational procedure (2.12)—(2.13) entails
the use of the Fourier and Inverse Fourier Transforms. In order to reduce the number of FT
to achieve we recast the computational procedure.

Taking into account relation (2.17) we compute at step k for k=0,..., K — 1:

. h
ap =e™2 x
s b . 1 ~ PN (Tl =
ar=e™2 x N(ug), a2 =N(F1@P+Ltay)), as=N(F1@>+Lay))
~ ~ h .
ay =N (FHe™2 x [aP + has))) (2.20)

where d,, is defined in (2.16), and

b ~i ~ ~ ~ ~
dvg (ukp + % (41 + 203 +2a3)) + %aﬁl

U1 = F " (Upt)

Uk =€ (2.21)

The algorithm for solving the PDE problem (1.8) with N defined by (2.19) by the RK4-IP
method is given in Appendix B. The number of FT per step is 16.

2.2.5. Some important remarks. An important point to be mentioned about the
1

RK4-TP method concerns the values of the elementary quadrature nodes ¢y = 0, co = %, c3=3
and ¢4 = 1 in the classical 4th order RK formula for the efficiency of the RK4-IP method.
Indeed, in conjunction with the choice of Zpyl = Zp + g in the change of unknown (2.2),
these particular values for the ¢; coefficients enable the cancellation of 4 exponential operator
terms in (2.10) compared to other possible sets of values, and therefore save up computation.
As well, any other value z’ in the set ]zx, zr41] could have been chosen rather than the
particular value 2, 1 in the change of unknown (2.2); however the benefit of the cancellation
of 4 exponential operator terms in (2.10) would have been lost. An embedded Runge-Kutta
scheme for the IP method preserving these nice features has been proposed in [3].

A more immediate way of exploiting the Interaction Picture ideas would be to use a change
of unknown similar to the one given by (2.2) but for the original problem (1.8). We mean
by this to use a unique new unknown on the whole interval [0, L] rather than using various
change of unknowns on each of the subintervals [z, zx11]. The only difference between these 2
approaches, corresponding respectively to a local and a global change of unknown, lies in the
way the subdivision of interval [0, L] is introduced. In the first approach it is used upstream
of the RK4 scheme to set an equivalent sequence of linked problems whereas in the second
one it is inherent to the RK4 discretisation. The advantage of using the local change of
unknown lies in the numerical evaluation of the exp(—(z — 2’)D) operator. We have seen that
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the exp( %D) operator can be efficiently computed by use of FT and that some cancellations
happen reducing the number of terms to be evaluated. It would not be the case with the
second approach where we would have to compute the operator exp(—(zx+1 — 2')D) for all
ked{0,....,K —1}.

2.3. Error analysis of the Interaction Picture method. In this section, we proceed
to the mathematical analysis of the IP method. Hence, we only consider here the simplified
version (1.2) of the GNLSE (1.1). In other terms, we take wy = 400 and fr = 0 and then
the nonlinearity N is reduced to Nj.

From Lemmas 1.2 and 1.3, we deduce the following result on the mapping Gy defined by

gk : [Zk, Zk+1] X Hl(R,C) — HI(R, (C)
(z,v) > exp(—(2 — 2,1.1)D) {/\fo (exp((z — zk+%)D)v)] .

LEMMA 2.2. Let wg = 400, fr = 0. Then, for all m > 1, the function z — Gr(z,v(2))
belongs to Ep, N([2k, zk+1]) whenever v € Ey, n([2k, 2k41]). Moreover, for all M > 0, there

exists Apr > 0 such that

(2.22)

Vu,v € By = {w € H'(R,C) : ||w|, < M},

we have the estimate: |Gy (u) — Gr(v)|l, < Aar |lu—vl, .

Let ap € H™(R,C) with m > 4N + 1 and let us fix once for all the finite integration
interval [0, L] such that 0 < L < Z, where Z is defined in Theorem 1.1 (recall that, if N is
even, then we have Z = 400 and then any L > 0 is allowed). Considering the unique solution
A(z) of (1.2) given by Theorem 1.1, we have A € E,, n([0, L]), and in particular we have the
bound

M := max ||A(2)|1 < +o0. (2.23)
z€[0,L]
Denoting ay, = A(zx) as in Section 2.1, we have then |lax|; < M for all 0 < k < K = L/h.
From Theorem 1.1 and Lemma 2.2 one can deduce that problems (2.1) and (2.4) are equivalent.
Namely, since ap € H™(R, C), each one of the 2 problems has a unique solution belonging to
Ep N([2k, z+1]) and the solutions are related to each other through relation (2.2). However,
one can also deduce from Lemma 2.2 that Aikp is slightly more regular than Aj in the sense
that Ay € B, n([2k, 2k+1]), whereas we have

[m/N]
AP e () (0, L), H™ N [z, 2044), ©)), (2.24)
7=0

with uniformly bounded norms (i.e. independent of h).

The transformation of the initial problem (1.9) into the three nested problems (2.6)—
(2.7)—(2.8) does not imply approximation. As mentioned earlier, problems (2.6) and (2.8) are
solved by means of Fourier Transforms (FT) and the numerical accuracy of the computations
is the one of the Fast Fourier Transform (FFT) algorithm for evaluating continuous FT of
functions [2, 14]. Problem (2.7) is the only one solved using an approximation scheme and
therefore (up to the very small spectral error of the FFT) the error in the IP method is
essentially the approximation error when solving this ODE problem by the 4th order Runge-
Kutta method, with t as a parameter. Therefore, the approximation error in the RK4-IP
method at grid point zi41 (neglecting the FFT computational error) is given by

ert1 = A(2rr1) — g1 = exp(ED) (AP (zr41) — wl,,) (2.25)
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where uika denotes the approximate solution to problem (2.7) computed at grid point zg41
by one step of the RK4 method following the approximation scheme (2.9)—(2.10). Thus, the

difference AP (2441) — uikarl for one step of the RK4-IP method coincides with the local error
ly, of the RK4 method defined by

Aikp(zk+1) = Alkp(zk) + h@(zk, Alkp(zk), h) + 4y, (226)

For the standard RK4 method, provided all the partial derivatives of (2, A) — Gi(z, A) exist
and are continuous up to the order 5, the local error ¢ is known to behave as £, = O(h)
[5, 18, 10]. From (2.24), we infer that, since we have assumed that m > 4N + 1, the z-
derivatives of G, (z,A}f) up to the order 5 are uniformly bounded in H'(R,C). This means
that we have for the local error the following estimate

Vke{0,...,K}  |lxll < CRH® (2.27)

where C' > 0 is independent of h.

In order to estimate the global error for the RK4-IP method, we first need a Lipschitz
estimate for the increment function ®. _

LEMMA 2.3. Let wg = +00, fr =0, let M > 0 and let A = Ap; be the Lipschitz constant
for G given by Lemma 2.2. Then the increment function ® defined in (2.10) satisfies the
following Lipschitz condition: VA, B € By,

|®(2, A;h) — (2, B; h)||1 < A(1+ FhA + 2R°A* + £ 13A%) ||[A— Blx.

Proof. On the one hand, from the expression of the increment function ® given by (2.10),
we have: Vz € [0, L], VA, B € Byy,

1 1
(2, A;h) = ®(z, B h) = (a1’ — ar) + 5(0z' — ag) + 5(af —ag)) + o (aff —af) (228)

where af (resp. af), Jj € {1,...,4} stands for a;(zx,A;h) (resp. a;(zx,B;h)). On the
other hand, from the Lipschitz condition satisfied by Gy we deduce the following inequalities:
Vz €[0,L], VA, B € By,
lag' = af [y = [|Gk(2, A) — Gu(z, B) |1 < Al A= B,
lag' —ag'lly = 1Gk(z + &, A+ Lai) = Gu(z+ &, B+ 2aP) |
SAIA=B+ 5o — o) <A+ 1) A~ Bl

In the same way we obtain

2,2
log' — g lli < AL+ 1+ 205) A - B,

A 242 3473
lag —afli S AQ+ 22 + 20 4 By 14— B,

Applying the triangle inequality to (2.28) and using the above inequalities we obtain the
result. O

We also need the following version of the discrete Gronwall’s lemma (its proof is straight-
forward by mathematical induction).

LEMMA 2.4. Let (0 )ken and (e)ken be two non-negative sequences of real numbers and
let h and A be two non-negative real numbers such that

Orsr < (14 BNy + ek, Yk € N.
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Then, for all k € N*,

k-1

Gk < ekhA 90 + Z e(kilij)h)\é"j.

j=0
We are now in position to prove our main result concerning the error analysis in the RK4-IP
method.

THEOREM 2.5. Let ag € HWHYR C), let A € Enn([0,Z]) be the mazimal solution

to (1.2) given by Theorem 1.1 and let 0 < L < Z. Consider a constant step-size subdivision
of interval [0, L] into K subintervals by the points zy, . .., zx arranged in increasing order. Let

us denote by A the solution of (1.9) (equivalently, of (1.2)) and by (uk)k—o... x the sequence
defined by (2.20)-(2.21). Then there exists C > 0 such that

kzrgyz%}( | A(z) — urll1 < CLh*. (2.29)

Proof. In this proof, we systematically assume that the numerical solution u; defined
by the algorithm (2.20)-(2.21) satisfies the bound ||ug||1 < 2M for all 0 < k < K. In fact,
this bound can be a posteriori checked, for h small enough, thanks to (2.23) and the final
estimate (2.29). Hence, with the notation of Lemma 2.2, we always have

Vk € {07 . ,K} Ak(zk) € Boyy and  ug € Boyg. (230)

When the RK4-IP method is applied for solving problem (1.9) the global error at grid
point zi41 is given by (2.25) and from (2.9) and (2.26) we have

AP (z141) = exp(ED) Ay (21) + h (zk, exp(ED) Ay (2x); h) + £y
u}cp+1 = exp(ED)uy, + h ®(zy, exp(ED)uy; h)
so that
ert1 =exp(hD)[Ar(zi) — ur] + hexp(ED)[® (2, exp(2D) Ag(zx); h) (2.31)
— @ (i, exp(AD)uis )] + exp(E D).

Since ® satisfies the Lipschitz condition of Lemma 2.3, since we have the bounds (2.30) and
since exp(%’D) is an isometry on H!(R, C), we successively have
19 (21, exp(5D) Ar(21); h) = @ (i exp(§ D)us b1 < A || exp(5D) A (zx) — exp(5D)ulx
< A Ak (zx) — urlls (2.32)
where A = A(1 + ShA+ $h2A% + 5;h3A%) and A = Asps (defined in Lemma 2.2). Taking the

norm of (2.31), using the triangle inequality and (2.32), yields |Jexs1]ly < (1 + RA) [lexlr +
[I2k|l1- From Lemma 2.4, we deduce that for all k € {0,..., K — 1}

k—1 k—1
lexlls < ™ fleoll + Y e® 1M 145010 < e (Jleolls + D 1145111)-
j=0 =0

Finally, from the error bound (2.27) for the local error we conclude that

< oA CLhY).
e el = (ol C2)
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When we assume that the initial data is not perturbed, we have

max  ||A(z) — uglly < eM*CLRY. O
ke{o,...,K—-1}

Remark 2. In Theorem 2.5 we have assumed that all the evaluations of the nonlinear
operator Ay and linear exponential operator exp(%D) were achieved without numerical error
by use of the Fourier Transform (FT). Since FT of functions are computed using the Fast
Fourier Transform (FFT) algorithm, there is an additional error in the RK4-IP method. We
refer to [2, 14] for an analysis of the error when the continuous FT of functions is evaluated
by the FFT algorithm. When evaluating FT by the FFT algorithm, once the size T' of the
time interval and the number m of discretisation points are set, the size of the frequency
interval is given by the Nyquist frequency vy = m/T and the sampling step-size is h, = 1/T.
One practical consequence when dealing with problems in nonlinear optics is that the number
of discretisation points m has usually to be chosen very large in order to have a frequency
window wide enough to embrace all the physical relevant information (e.g. the study of
pulsed laser systems with fiber amplifier described in [15] imposes values of m in the range
220-223) " Therefore, although there exists an additional error in the RK4-IP method related
to the computation of FT, this error is generally several orders of magnitude lower than the
approximation error in the RK4-IP method.

3. Comparison of IP and Symmetric Split-Step methods. As shown in Section 2,
the RK4-IP method is based on the change of unknown given by relation (2.2) leading to a set
of three nested PDE problems (2.6)—(2.7)—(2.8) to be solved over each subinterval introduced
with the discretisation of the fiber length. This computational structure is very similar to
what is obtained when solving problem (1.8) by the Split-Step method based on the Strang
splitting formula [29] also termed Symmetric Split-Step (S3) method.

3.1. Solving the GNLSE by the Symmetric Split-Step (S3) method. Here again
the interval [0, L] is divided into K subintervals where the spatial grid points are denoted zj,
ke {0,...,K}, where 0 = 29 < 21 < -+ < zKg—1 < zxg = L. For convenience we assume a
constant grid spacing h = L/K but this assumption is not a limitation of the method and
we set zpy1 = 2 + 4. The S3 method consists in solving over each subinterval [24, z;41] for
k€ {0,...,K — 1}, the following three nested problems with time variable ¢ as a parameter:

0

&Ag(z) =DAf(z) Vze [2ks 24 2], Af (z1) = Ap—1(2x), (3.1)

where Ap_1(zx) represents the approximate solution at grid point zj; computed at step k — 1;
0

5. BE(2) = N(Bu)(2) V2 € [z 20a], Bilze) = A (21y), (3.2)

where A;(Z,H_%,t) represents the solution to problem (3.1) at half grid point zj 1;

g _ _ _
@Ak (2) =DA,(2) Vze [Zk+%72k+1]7 A (Zk+%) = Bi(2k+1), (3:3)
where By (zi4+1,t) represents the solution to problem (3.2) at node zp4+1. An approximate
solution to problem (1.8) at grid node z;41 is then given by Ay (zr41) := AL (2k+1)-

The solutions to problems (3.1) and (3.3) at grid points 2z, 1 and zp41 respectively can
be expressed as

At (z103) = exp(ED) A1 (1)
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and
Ay (zk41) = exp(5D) By (2541

The two linear PDE problems (3.1) and (3.3) are solved according to the computational
procedure outlined in Section 2.2.2 by means of the Fourier Transform. The solution to the
nonlinear ODE problem (3.2) can be approximated using usual numerical schemes for ODE
and the choice of the classical RK4 method is usual. One step of the RK4 scheme applied to
problem (3.2) reads:

h
By (zk+1) =~ ugt+1 = Br(zk) + 6 (a1 + 200 + 203 + ), (3.4)

o] = ./\/(Bk(zk)), g = ./\/'(Bk(zk) + %041), a3 = ./\/(Bk(zk) + %062), oy = N(Bk(zk) + hOég).

As the numerical resolution of the linear PDE problems (3.1) and (3.3) as well as the
evaluation of the nonlinear terms involve the use of the Fourier and Inverse Fourier Transforms,
here again it is convenient to recast the computational procedure in order to reduce the
number of FT to achieve. We make use of the notations introduced in Section 2.2.4. Taking
into account relation (2.17), we transform the computational sequence (3.4) in the following
way: at step k for k =0,..., K — 1 we compute

ar = N(F i, 1)), Gy = N (F (11 + 2a1))
a3 :N(]:_1<ak+1 + 50[2))7 a :N(]: 1(’/Lb\k+% + hag,))
and
o~ ﬁ N =R N =N =N - =
Upt1 = e2 x (“H% + % (qq + 202 + 23 + Q) ), U1 = F 1(Uk+1)~

The above computational scheme is referred to as the Symmetric Split-Step Fourier with 4th
order Runge-Kutta formula (S3F-RK4) method. It has to be compared to the computational
scheme (2.20)—(2.21) for solving the GNLSE (1.1) by the RK4-IP method. The algorithm for
solving the GNLSE by the S3F-RK4 method is given in Appendix C. It involves 16 FFT per
step.

3.2. Theoretical comparison of Interaction Picture method and Symmetric
Split-Step method. Again, in this section, we assume that wg = +o0o and that fr = 0.
From our presentation of both the RK4-IP and S3F-RK4 methods, a formal comparison of
the two methods is straightforward. Over one subinterval [z, zx+1] the three nested problems
(2.6) — (2.7) — (2.8) are solved when the RK4-IP method is used whereas with the S3F-RK4
method the three nested problems (3.1) — (3.2) — ( 3) are solved. Since problems (2.6)
and (3.1) are the same as well as problems (2.8) and (3.3), the difference between the two
computational methods lies in problems (2.7) and (3.2). Both are solved here using the same
4th order Runge-Kutta method. The splitting (2.6) — (2.7) — (2.8) is exact since it originates
from the change of unknown (2.2) whereas the splitting (3.1) — (3.2) — (3.3) deduced from
the Strang formula is second-order accurate. To be comprehensive, we have the following
relationship between the solution to problems (2.7) and (3.2).

PROPOSITION 3.1. Let wg = 400, fr =0. For all k € {0,..., K — 1} let By denote the
solution to problem (3.2) and Azp denote the solution to problem (2.7) with the same initial
data A:<Zk+%) assumed to belong to HPNTY(R, C). Then, for all k € {0,..., K — 1} we have

the following estimate in H (R, C):
Bi(21) = A (141) + O(7).
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Proof. We first consider the second order Taylor expansion of the solution to problems
(3.2) and (2.7) in zj; with respect to the first variable z (as before, the second variable ¢ is
omitted and equalities hold in H'(R, C)):

AP (rin) = AP (1) + B AP () + 5 03 AP (20) + O(A)
By(2r41) = Br(zx) + h 01 By (z1) + %2 0} B (z) + O(h?).
Since the initial condition in (3.2) and (2.7) are identical, by difference we obtain
AP (z41) — Bilzrsr) :h(alA}f(zk.) - 61Bk(zk))

E 2 Aip _ 92 3
+ B 011 Ay (k) — 011 Br(21) | + O(h”).

(3.5)
From the PDE in (3.2) and (2.7) we have 9y By(z) = No(Bg)(zk) = /\/'O(Az)(szr%) and

AP (k) = Gz, AP) = exp(ED)NG (exp(—ED)AP) (21)
= exp(%D)Ng(exp(ng)A:)(z,H_%) (3.6)

=Ny (exp(—4D)A}) (zhy1) + gDNo(exp(—%D)A;r)(zk+%) + O(h?)

where the last relation results from the expansion given in Lemma 2.1. Now consider a Taylor
expansion of the operator ANy between v, = A} (241) and wy, = exp(—2D)Af (2hy1) :

No(wi) = No(vk) +Ng(vk) (wr, — o) + O([lwy, — vi 7). (3.7)
From Lemma 2.1 considered with A} (2, +1) we obtain

h
W — Vg = exp(—%D)Aﬁ(zk_F%) - Aﬁ(zkﬁ%) =3 'DA—]:(Zk_i_%) + O(h?)

so that from (3.7)
1 !
No(wy) — No(vk) = /\/O(AD(ZH%) ) DAZ(ZH%)NO(AD(ZH%W + O(h2)~ (3.8)
Finally, from (3.6) and (3.8) we have
ip _ + h +
NAY () = No(4 )(Zk+%)+§ DNo (45, )(ZIH-%)
]‘ /
— 5 DA (2 INGAD) () + O().

Now, from (3.5) we obtain

AP (1) — Bylzion) = D [No(AD) (s ) — A7 G INGAD) ()] o

+ (042 (20) - 9 Bulen)) + O(R). (3.10)
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Let us consider in (3.10) the term 8% AP (2x) — 8%, By.(21). On the one hand we have

9 No(B) = Ny (B ()0 Be()

so that for z = z, using the PDE in (3.2) and then the initial condition we deduce that
011 B (21) = NG (B) (21)01 Br(2x) = Ni(Br) (21)No(Br) (21)
= No(A) (i1 )No (A (214 1)-
On the other hand from the PDE in (2.7) we have

PAR () = L Gu( AP) = - (exp(~(z — 200 ) DI (xp((= — 204 3)D)AT) ) (2)

= ~DGi(zt, AF) + Nj (exp((z = 244.3)D)AP) () (DAF (2) + AP (2) ).

8121316(2) = (91 (alBk(Z)) =

(3.11)

It follows for z = z;, that

O AR (21) = —DGp (21, t, AF) + Ny (exp(=5D)AY) (z4) (DAikp(Zk) + alA}f(z,g))
From (3.6) we have

G (2, t, A) = L AP (1) = No(AD) (2441) + O(R)

and a Taylor expansion of N/ gives

Ng(exp(=§D)AL) (2k) = No (exp(=§D)AL) (244 1) = NG (A7) (214 1) + O(h),
so that

O AP (21) =D [NGAD) (o ) AT (21 g) = Mo(A) ()]
T NGAD) ey DN (A (2p2) + O(R).

Therefore from (3.11) and (3.12) we deduce that

(3.12)

AR (1) — 21 Brl(2k) = D [N (AT) (21 )AL (21 y) = No(AD) (214 )| + O(). (3.13)

To conclude, from (3.10) and (3.13) we have Ai]f(zkﬂ) — Br(zk+1) = O(h3). 00

As problems (2.6) and (3.1) are identical as well as problems (2.8) and (3.3) (and as-
sumed to be solved without approximation by the way of Fourier Transform), we deduce from
Proposition 3.1 the following corollary.

COROLLARY 3.2. Consider a subdivision of interval [0, L] into K subintervals by the
points zp, . ..,zx arranged in increasing order. For all k € {0,..., K — 1} denote by Ay the
solution to problem (1.9) over the subinterval [zx, z1+1] and denote by By, the approximation

of the solution to problem (1.9) over the subinterval [zy, z+1] computed by solving the three
nested problems (3.1)—(3.2)~(3.3). Then

sup || Ak(zis1) — Bi(ze1) Iy = O(R?).
ke{o,...,K—1}

Remark 3. The convergence of the Split-Step methods applied to various forms of the
Schrodinger equation is studied in e.g. [4, 22] where the authors prove that the convergence
order of the S3F method is 2. As the change of unknown in the IP method does not imply
approximation before discretization, the second order convergence of the S3F method can
alternatively be deduced from Corollary 3.2.



The IP method for solving the GNLSE in optics 17

3.3. Numerical comparison. In the framework of a project on the numerical simula-
tion of incoherent optical wave propagation in nonlinear fibers [15] we have implemented both
the RK4-IP and S3F-RK4 methods for solving the GNLSE (1.1).

3.3.1. Numerical comparison for simulation of wave propagation in optical
fibers. We present in this section numerical results on two selected applications in optics:
the propagation of optical solitons and the propagation of a picosecond pulse into a single-
mode fiber where fiber losses, nonlinear Raman and Kerr effects and high order chromatic
dispersion are taken into account. In both cases, we use the RK4-IP and S3F-RK4 methods
with a constant step-size and with an adaptive step-size strategy based on the embedded
RK4(3) scheme presented in [3].

We first consider the case of the NLSE (1.3) with & = 0. When Sy < 0, there exists
an exact solution known as the optical soliton [1]. Namely, if the source term is given by
agp : t — Ng/(v/vLp cosh(tNg/Ty)) where N is the soliton order, Ty is the pulse half-width
and Lp = —T#/f32 is the dispersion length, then the solution to the NLSE reads

N, eisz/(2LD)

VALp cosh(tN,/Ty)
We carry on comparison with a 3rd order soliton (Ny = 3). The physical parameters of
the numerical experiment are L = 637.21m, v = 43W  km™!, By = —19.83ps?km ™!,
Ty = 2.8365ps. The number of sampling points for the FFT computations is set to 216.

Both algorithms are tested on a Intel Core 2 Quad Q6600, with constant step-size or
adaptive step-size. The CPU time, quadratic error and number of steps are compared in
Table 3.1.

Vz e [0,L], VteR, Az, t) = (3.14)

TABLE 3.1
Comparison of the RK4-IP and S3F-RKJ methods for solving the NLSE. When an adaptive step-size
strategy is used, the tolerance for the local error is set to 1076,

method CPU time | quadratic error | number of steps
RK4-IP adaptive step-size 69 s 1.121077 605
S3F-RK4 adaptive step-size 67s 6.341073 563
RK4-IP constant step-size 4840s 1.41107% 63722
S3F-RK4 constant step-size 4651s 1.401074 63722

We now consider the GNLSE (1.1) with the following set of physical parameters : wy =
1770 Thz, v = 4.3 W 'km ™', 8, = 19.83 ps2km ™}, 85 = 0.031 ps’km " and 8, = 0 for n > 4,
o = 0.046km™', L = 96,77m, fr = 0.245. An expression for the Raman time response
function for silica core fiber is given in [1]. The source term is ag : t — /Py e~ 2(t/T0)* where
Ty = 2.8365 ps is the pulse half-width and Py = 100 W is the pulse peak power. When using
the RK4-IP method with an adaptive step-size strategy with a tolerance of tol = 1075 and an
initial step size of h = 0.1 m, the number of discretisation steps along the fiber is found to be
279 and the computation time is 50s. With the S3F-RK4 method we obtain similar results,
see table 3.2. When the tolerance is set to tol = 10™% with an initial step size of h = 0.1m,
the number of step-size with the RK4-IP method with an adaptive step-size strategy is 1545
steps for a computational time of 221 s and again results obtained with the S3F-RK4 method
are very similar. These very close results in terms of computational time can be related to the
close structure of the two algorithms. For a more complete experimental comparison between
the RK4-TP method and Split-Step methods for solving the GNLSE in optics we refer to [20].
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TABLE 3.2
Comparison of the RK4-IP and SSF-RK/ methods for solving the GNLSE with adaptive step-size strategy
and tolerance for the local error set to 1076 and 1079.

method CPU time quadratic norm number of steps
RK4-IP - tol = 107° 50s 23.01885356801830 279
S3F-RK4 - tol = 1076 455 23.01888354663108 279
RK4-IP - tol = 1077 2218 23.01888060906444 1545
S3F-RK4 - tol = 1079 204s 23.01888063777934 1545

3.3.2. Numerical comparison of convergence rates. In order to illustrate the result
of Theorem 2.5 we have solved the GNLSE (1.1) by the RK4-IP and S3F-RK4 methods with
constant step-size values divided by 2 from one execution to the other. We have obtained
the experimental convergence curves depicted in Figure 3.1. The physical values used for
the computation are the one given in the previous section for the GNLSE. This experimental
result is in a good agreement with the theoretical convergence behavior predicted by Theo-
rem 2.5 for the RK4-IP method (convergence order 4) and by Corollary 3.2 for the S3F-RK4
method (convergence order 2). We also mention that in other simulations where the nonlinear
parameter v and the power of the source term were larger, we have obtained an experimental
convergence order for the S3F-RK4 method close to 4. This can be easily explained as fol-
lows: when the “weight” of the nonlinear ODE in Strang splitting (3.1)—(3.2)—(3.3) is much
larger than the “weight” of the linear PDE problems (3.1) and (3.3), the error due to the
splitting formula (in O(h?)) can be lower than the error of the RK4 formula (in O(h*)) which
dominates. This explains the observed experimental convergence behavior.

—&— RK4-IP

error
>
\

12 i i i
107° 10” 10
step-size

Fia. 3.1. Experimental convergence curves for the RK/-IP and S3F-RK/ methods.

4. Conclusion. We have presented an alternative method to the Split-Step approach
for solving the GNLSE in optics. The Interaction Picture (IP) method has a form very similar
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to the one of the Symmetric Split-Step method. However it is based on a change of unknown
rather than on a splitting formula and therefore does not contain any approximation at this
stage. Actually, the error in the IP method is in the use of an approximation scheme for
solving the nonlinear ODE problem resulting from the change of unknown. We have carried
out a theoretical and experimental study of the IP method and we have compared it to the
Symmetric Split-Step method. It is worth mentioning that the IP method can be used for a
larger number of PDEs than only the GNLSE; actually it is suitable to solve all PDEs where
Split-Step methods are generally used.

Appendix A. Proof of Theorem 1.1. In this section, we analyze the well-posedness
of the Cauchy problem (1.2) (formulated under the form (1.9)). For simplicity, we restrict the
resolution to z > 0. Since the equation is time reversible, this result can be easily extended
to z < 0. We proceed into 3 steps.

Step 1. (Local well-posedness of the Cauchy problem.) Let ap € H™(R,C), with m > 1.
To prove the local existence of a unique solution A to (1.9), we first transform it into an ODE
in infinite dimension, with new unknown V = e *P A4, solution of

%V(z) =F(z,V(2)) Vz € RY, V(0) = ag,

where
F(2,V) = exp(—2D)Noy(exp(zD)V).

From Lemma 1.2 and Lemma 1.3, it can be directly deduced that F is locally Lipschitz
continuous on H™ (R, C). More precisely, for all M > 0, there exists a constant C,, s such
that, if ||ul|,, < M and ||v||, < M, then

Yz e RT |F(z,u) = F(z,0)||m < Cromtl|tt — 0| -

The mapping F being also continuous on R x H™(R,C), the Cauchy-Lipschitz theorem in
Banach spaces gives the local existence of a unique maximal solution V' € C*([0, Z[,H™(R, C))
such that

it Z<+4oo then limsup ||V (z)||m = +o0.

z2—=7Z

Coming back to A, one has A € C%([0, Z[, H™ (R, C)) and, by differentiating (1.9), one gets
A € E,, n([0, Z[). Moreover, since ||A(z)||m = ||V (2)||m, one has clearly

if Z<+oo then limsup|A(2)||m = +oo. (A.1)
z—=Z

In fact, the condition (A.1) can be replaced by (1.6). To prove this, we recall the following
classical tame estimate, see [7]: for all M > 0, there exists Cy, ps > 0 such that, for all
u € H™(R,C) with ||u|jL~ < M, one has

[No(u)llm < Carllttllm. (A.2)
Let us prove (1.6) by contradiction. We assume that Z < +o0, together with
M = || Al ((0,2)xR) < +00.

From (A.2) and from the Duhamel formula

A(z) = exp(zD)ao + /Oz exp((z = Q)D)No(A(Q)) d¢, (A.3)
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one gets

|mummSMﬂm+A|waaomm«swmm+cmMA|mxmm«.

Hence, by the Gronwall lemma,
Vze [0, 2] AE)Im < O] |ag|m,
which implies

limsup [|A(2)(|m < 400,
z2—7Z

and then, by (A.1), Z = +oc0, which is a contradiction. The proof of (1.6) is complete.
Step 2. (L2 estimate.) Introduce the new unknown U(z) = e*A(z), satisfying

%U(z) = DU(2) + Mo(U)(2) Vz € RT, U(0) = ao, (A4)

where No(U)(z) = ive=®* U(2)|U(2)|2. Multiplying (A.4) by iU and integrating with respect
to t, we obtain for the imaginary part

3 (i [U)0.06) at) = S LI =0

because 3(i0.U(2) U(z)) = R(9.U(2) U(z)) = 30.(U(2) U(z)). 1t follows that
vze[0,2]  lUZ)llo = llaollo (A.5)

and therefore ||A(z2)|lo = e~ 2%||agllo, which is (1.5).

Step 3. (A priori bound in H¥ (R, C) and global existence for N = 2P.) From now on,
we assume that N = 2P, with P € N*, and that m > P. To prove that Z = 400, by (1.6)
it suffices to obtain an a priori estimate on the H (R, C) norm of U(z), which will imply an
L> estimate by Sobolev embeddings.

To prove that |U(z)||p is bounded, we derive a second conservation law for (A.4). Mul-
tiply (A.4) by i0,U(z) and integrate with respect to t. The real part reads, Vz € [0, Z],

( Z 5"/3“ 2)0.U(2) dt — ye @ /|U )2 ()6ZU(z)dt>_0. (A.6)

We set I,, = — f]R?R (i"%@tnU(z) BZU(Z)) dt. Using integrations by parts, respectively for
n =2j and n = 25 + 1, we obtain
Iy = _ Py /|8JU W2 dt, I = _ P d /aﬂU( )0 U(2) dt.
/ 2(25)! dz ! 2(2j+ 1)l dz K

The last part of equation (A.6) is rewritten as

Py 2 Py Z*Z —az 4 —az 4 —az
/R|U()|U()8U() dt = /| Slteor dr 4 & /|U [ emo* dt,
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Equation (A.6) then reads

_9 /|U ) e=o% dt =0,

¥ ( b /|an( 2 dt +i %46%%@ 3T (=) dt)

Jj=1
/|aP ()2 dt+ 21 /|U 4 e dr. (A7)

where

It follows that
— _ v ? 4 —aC A
B2 =50 -5 [ [w©e arac (A8)

In particular, if the attenuation/gain coefficient « vanishes, then B is independent of z.
Moreover, this identity implies that the mapping z € R™ — B(z) € R is decreasing in the
case o > 0 and v > 0.

Let us now derive from (A.8) an a priori bound of U in HF (R, C), showing that B(z) is
greater than a quantity depending on ||0f U(2)||2. Using Gagliardo-Nirenberg inequality and
Young inequality, we get for all ¢ > 0 and for all (p;,p}) € R* x R" such that p% + 4 =1,

Pj
R . 1 2541 Ny
/&?U(z)&?“U(z) dt' < =% |0FU(2)|lo 7 7 ()| &5
which becomes, for p; = m and p; = 213_27123],_1,

i— ; 1 1
o]0 (=) 07U (2) dt‘ < —eP 07U )5 + ——7 U ()3
R pj pjeTs

In the same way, with ¢; = 5 and qJ % we obtain for all € > 0

; 1 1
/ BiU()|” dt < e 0P U+~ U
R qj q;e"

Remark that, for all j < P —1, we have 1 < g;, q;-,pj,p;- < 400. Without loss of generality,
we assume that Sop > 0 (otherwise, change z to —z) and we choose € small enough such that

P-1
B2i| 1 40 Boja| 1 1 fBop
> (Wi w i) < 301

Jj=1

Then, from (A.7) and the previous inequalities, we deduce that

1 Bap -
B(z) = 5 3 2P 2) 187U ()3 — CallU ()13 + /lU I dt
where Cy = Y1) ('{;), i el 1) Setting Cy = 227! it follows from (A.8) that

107U ()15 <C2B(0) + CLCa||U (21§

- czg (/R U(2)|* e dt + oz/o/R U e dt d() : (A.9)
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Next, the growth of ||0f'U(z)||o can be controlled for all z € [0, Z] thanks to the Gagliardo-
Nirenberg inequality

4-%

/ U()te o dt < / U dt < U Floru))E.
R R

From (A.9), we get
167U (2) 15 <C2B(0) + CLC2||U ()2

v (eI Irv@If + [ Ol e vl «)

<Cit (uaf ¢ / 1P U )

where C3, C and C5 are positive constants. The following version of Gronwall’s lemma implies
that ||0FU(z)]o is bounded on every finite interval [0, L[C [0, Z[ and then, that |U(z)|/p is
bounded on the same interval. This is enough to conclude that Z = +oo (if Z < 400, take
L = Z). The proof of Theorem 1.1 is complete.

LEMMA A.1. Let a,b > 0, m be a positive integer and y be a positive function with

reqularity C* satisfying y(t) < a + by(t)= + bfot y(s)# ds. Then ¥t € [0, T

- _— m/(m—1)
y(t) < ((a+by(0>>1* +! m Lo 2 m? : 1“(%)) '

Appendix B. The RK4-IP algorithm for solving the GNLSE.

RK4-IP algorithm
Input: Array u contains the input signal amplitude sampled over the time window.
Array [vj]j=1,... s contains the frequency sampling points.
Array [zi]k=0,... x contains the spatial grid points.
Array hr containing the sampling of the FT of the Raman response function.

{Initialisation}
forj=1,...,Jdo
[]%12” znn( Z\r J)
tfeapdlj] « exp(Ldlj])
end for

uy « FFT(u, forward)
{Loop over the propagation subinterval}
for k=1,...,K do
for j=1,...,J do
Tiplj] < tfexpdlj] x Ti[j
end for
a1 + COMPUTE_TFN(u,uy)
for j=1,...,J do
ailj] < tfexpd[j] x ailj]
af] ¢ i [j] + G ]
end for
ug < FFT (ug, backward)
ag — COMPUTEiTFN(’LLQ, az)
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for j=1,...,J do
Us[j] + Uiplj] + §32[s]
end for
uz < FFT(us, backward)
as + COMPUTE _TFN(us,us)
for j=1,...,J do
ualj] = tfexpd[j] x (wiplj] + has[j])
end for
uy < FFT (uy, backward)
a4 + COMPUTE _TFN(uy,uy)
for j=1,...,J do
W |j] « tfexpdlj] x (Tiplj] + Ga11j] + 5@20] + 5@s[]) + §aali]
end for
u < FFT (U1, backward) {Array u contains the values [Ag(zk11,t;)]j=1
of the signal amplitude at step zj }
end for

7 the sampling

.....

FFT(u, forward) stands for a call to the Fast Fourier Transform (FFT) algorithm to compute
the Discrete Fourier Transform (DFT) of array w, FFT(u,backward) stands for a call to
FFT algorithm to compute the inverse DFT of array u, and COMPUTE_TFN refers to the
following function.

FUNCTION § = COMPUTE_TFN(/, f)
{Compute the Fourier Transform of g : t — N (f)(z,t) for a given z}
Input: Array f contains the time sampling of function f for the given 2.
Array f contains the sampled FT of f.
Array [v;]j—1,.. s contains the frequency sampling points.
Array hr containing the sampling of the FT of the Raman response function.
Output: Array g contains the sampled FT of g.
for j=1,...,J do
opilj] - /T2
end for
op1 < FFT(op1, forward)
forj=1,...,Jdo _
op2[j]  op1[j] x hr[j]
end for
opa + FFT(0ps, backward) {Array ops contains the convolution product hr x |f|?*}
for j=1,...,N do
op3[j] < fl3] x ((1 = fr)op1[j] + frop2[])
end for
ops + FFT(ops, forward)
for j=1,...,J do
Opalj] (1 — 2222)5ps]j]
end for
forj=1,...,J do
glj] « =5 fli] + op4lj]
end for

The computational cost in the above algorithm mainly lies in the computation of the
Fourier Transforms. Over one spatial step, the number of Fourier Transforms is 16. The C
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language program we have developed to solve the GNLSE (1.1) by the RK4-IP method uses
the FFTW library for computing the Fourier Transforms [16].

Appendix C. The S3F-RK4 algorithm for solving the GNLSE.

S3F-RK4 algorithm
Input: Array u contains the input signal amplitude sampled over the time window .
Array [v;]j=1,.. s contains the frequency sampling points.
Array [zi]k=0,... x contains the spatial grid points.
Array h r containing the sampling of the FT of the Raman response function.
{Initialisations}
for j=1,...,N do
dlj) = 132,0, S (2m0y)"
t fexpd[j] < exp(5d[j])
end for
ug < FFT(u, forward)
{Loop over the propagation subinterval}
for k=1,...,K do
for j=1,...,N do
wlj] < tfeapdlj] x olj]
end for
uy < FFT(uy, backward)
a1 + COMPUTE _TFN(uq,uy)
for j=1,...,N do
Usj] ¢ Ui [j] + Sanls]
end for
ug < FFT(uz, backward)
ay + COMPUTE _TFN(us,us)
for j=1,...,N do
a3 j] < wls] + 5 @[]
end for
uz < FFT (us, backward)
as + COMPUTE _TFN(us,u3)
for j=1,...,N do
alj] < @lj] + haslj]
end for
uyg < FFT (uy, backward)
ay < COMPUTE_TFN(uy,uy)
for j=1,...,N do
Uolj] < tfexpd[j] x (ui[j] + ganlj] + §a:[j] + §aslj] + §aali])
end for
{The following line can be removed when only the solution at the fiber end is required
and placed after the loop}
u + FFT(up, backward)
end for

The function COMPUTE _TFEN(f, f) is given on p. 23.

One may observe the very similar form of both the RK4-IP and S3F-RK4 algorithms. In
particular, their respective cost is comparable since both require the computation of 16 FT

per step (one more for S3F-RK4 if the solution is required for each step zp and not only at
the end of the fiber).
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