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Abstract

Let q ≥ 1+ 2

N
. We prove that any positive solution of (E) ∂tu−∆u+uq = 0 in RN×(0,∞)

admits an initial trace which is a nonnegative Borel measure, outer regular with respect to
the fine topology associated to the Bessel capacity C 2

q
,q′ in RN (q′ = q/q−1)) and absolutely

continuous with respect to this capacity. If ν is a nonnegative Borel measure in RN with the
above properties we construct a positive solution u of (E) with initial trace ν and we prove
that this solution is the unique σ-moderate solution of (E) with such an initial trace. Finally
we prove that every positive solution of (E) is σ-moderate.
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1 Introduction

Let q > 1, QT = RN × (0, T ) with T > 0 and Q = RN × (0,∞). It is proved by Marcus and
Véron [19] that for any positive function u ∈ C2,1(QT ) solution of

∂tu−∆u+ uq = 0 (1.1)

there exists a unique couple (S, µ) where S is a closed subset of RN and µ a positive Radon
measure on R := RN \ S such that

lim
t→0

∫

O
u(x, t)dx = ∞ (1.2)

for all open set O of RN such that S ∩ O 6= ∅, and

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ(x) ∀ζ ∈ C∞
0 (R). (1.3)

To this couple (S, µ) it is associated a unique outer Borel measure ν called the initial trace of
u and denoted by tr(u). The set S is the singular set of ν and the measure µ is the regular set
of ν. Conversely, to any outer Borel measure ν we can associate its singular part S(ν) which
is a closed subset of RN and its regular part µν which is a positive Radon measure on R(ν).
We denote ν ≈ (S, µ). When 1 < q < qc :=

N+2
N

Marcus and Véron [19] proved that the trace
operator tr defines a one to one correspondence between the set U+(QT ) of positive solutions of
(1.1) in QT and the set Breg(RN ) of positive outer Borel measures in RN . This no longer the
case if q ≥ qc since not any closed subset of RN (resp. any positive Radon measure) is eligible for
being the singular set (resp. the regular part) of the the initial trace of some positive solution
of (1.1). It is proved in [4] that the initial value problem

∂tu−∆u+ |u|q−1u = 0 in Q
u(., 0) = µ in RN

(1.4)

where µ is a positive bounded Radon measure admits a solution if and only if µ satisfies

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ RN , E Borel, (1.5)

where C 2
q
,q′ stands for the Bessel capacity in RN (q′ = q/(q − 1)). It is shown in [19] that this

result holds even if µ is unbounded; this solution is unique and denoted uµ. If G is a Borel
subset of RN we denote by Mq(G) the set of Borel measures µ in G with the property that

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ G,E Borel, (1.6)

In the same article it is proved that a necessary and sufficient condition in order ν ≈ (S, µ) to
be the initial trace of a positive solution of (1.1) is

µ ∈ Mq(R) (1.7)
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and
S = ∂µS

⋃
S∗ (1.8)

where
∂µS = {z ∈ S : µ(Br(z)

⋂
S) = ∞ , ∀r > 0} (1.9)

and
S∗ = {z ∈ S : C 2

q
,q′((Br(z)

⋂
S) > 0 , ∀r > 0}. (1.10)

The meaning of (1.8) is that the singular set is created either by the local unboundedness of the
Radon measure or because the singular set is localy non-removable. Furthermore the solution
which is constructed is the maximal solution with initial trace (S, µ).

A striking result due to Le Gall [15] shows that if q = 2 and N ≥ 2, a positive solution of
(1.1) is not uniquely determinef by its initial trace ν ≈ (S, µ) if S 6= ∅. The results is actually
extended to any q ≥ qc in [19]. The main point in this counter-example relies on the construction
of a positive solution u of (1.1) with a singular set S = RN , with a blow-up set at t = 0 which
the union of a countable of closed balls Bǫn(an) where {an} is a dense set in RN and the ǫn
are chosen small enough so that u(0, 1) ≤ α for some α > 0 fixed. If UBǫn (an)

denotes the

solution with initial trace (Bǫn(an), 0), then UBǫn(an)
(0, 1) ≤ C(ǫn) with limǫ→0C(ǫ). This is

a consequence of the supercriticality assumption and the estimates in [22]. The solution u is
constructed between a sub-solution and a super-solution

sup
n
{UBǫn(an)

} ≤ u ≤
∞∑

n=0

UBǫn (an)
, (1.11)

the right-hand side being chosen so that
∑∞

n=0 C(ǫn) ≤ α. Denoting E = ∪nBǫn(an), then
|E| <∞ and u satisfies

lim
t→0

u(x, t) = 0 ∀x ∈ RN \ E where |E| <∞, (1.12)

and

lim
t→0

t
1

q−1u(x, t) = cq = (q − 1)
1

1−q uniformly for x ∈ K ⊂
⋃

n

Bǫn(an), K compact. (1.13)

Thus (1.2) holds for any nonempty open set O ⊂ RN . This counter-example points out that the
trace process associated to averaging a positive solution u of (1.1) on open sets and letting t→ 0
is not sharp enough to distinguish among solutions; this process is now called the rough trace.
This is why the introduction of a finer averaging appears to be needed. This finer averaging
method is constructed by using the fine topology associated to the capacity C 2

q
,q′ . It will lead

us to the notion of precise trace.

A similar approach has been carried out if one considers the boundary trace problem for the
positive solutions of the elliptic equation

−∆u+ |u|q−1u = 0 in Ω (1.14)
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where Ω is a bounded C2 domain in RN (N ≥ 2) and q > 1. The boundary trace is defined in a
somewhat similar way as the initial trace, by considering the limit in the weak sense of measures,
of the restriction of u to the set Σǫ := {x ∈ Ω : dist (x,Ωc = ǫ)}, when ǫ → 0. The boundary
trace tr∂Ω(u) is a uniquely determined outer regular Borel measure on ∂Ω, with singular part
S, a closed subset of ∂Ω and regular part µ, a positive Radon measure on R = ∂Ω \ S. This
equation possesses a critical exponent qe = (N + 1)/(N − 1). The main contributions which
lead to a complete picture of the boundary trace problem over a period of twenty years are
due to Gmira and Véron [11], Le Gall [13], [14], Dynkin and Kuznetsov [5],[6], [7] [8], [9],[12],
Marcus and Véron [17],[18],[20],[21],[23], [22], [16], and Mselati [24]. These contributions can be
summarized as follows:

(i) If 1 < q < qe the boundary trace operator establishes a one to one correspondence between
the set U+(Ω) of positive solutions of (1.14) and the set of positive outer regular Borel measures
on ∂Ω.

(ii) If q ≥ qe the boundary value problem

−∆u+ |u|q−1u = 0 in Ω
u = µ in ∂Ω

(1.15)

where µ is a positive Radon measure on ∂Ω admits a solution (always unique) if and only if

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ ∂Ω, E Borel, (1.16)

where C 2
q
,q′ is the Bessel capacity in RN−1.

(iii) If q ≥ qe, a outer regular Borel measure ν ≈ (S, µ) on ∂Ω is the boundary trace of a positive
solution of (1.14) if and only if

C 2
q
,q′(E) = 0 =⇒ µ(E) = 0 ∀E ⊂ S, E Borel,

and (1.8) holds with (1.9) and (1.10) where the capacity is relative to dimension N -1.

(iv) If q ≥ qe a solution is not uniquely determined by its boundary trace whenever S 6= ∅.
However in [23] Marcus and Véron have defined a notion of precise trace for the case q ≥ qe

with the following properties,

(v) If we denote by Tq the fine topology of ∂Ω associated with the C 2
q
,q′-capacity, there exists a

Tq-closed subset Sq of ∂Ω such that for every z ∈ Sq

lim
ǫ→0

∫

Ξ
u(ǫ, σ)dS = ∞ (1.17)

for every Tq-open neighborhood Ξ of z where (r, σ) ∈ [0, ǫ0]× ∂Ω are the flow coordinates near
∂Ω, and for every z ∈ Rq := ∂Ω \ Sq, there exists a Tq-open neighborhood Ξ of z such that

lim sup
ǫ→0

∫

Ξ
u(ǫ, σ)dS <∞. (1.18)
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(vi) There exists a nonnegative Borel measure µ on Rq, outer regular for the Tq-topology, such
that

lim
ǫ→0

uΞǫ = uµχ
Ξ

locally uniformly in Ω, (1.19)

where uΞǫ is the solution of

−∆v + |v|q−1v = 0 in Ωǫ := {x ∈ Ω : dist (x, ∂Ω) > ǫ}
v = u(ǫ, .)χ

Ξ
in Σǫ = ∂Ωǫ.

(1.20)

The couple (Sq, µ) is uniquely determined and it is called the precise boundary trace of u. It can
also be represented by a Borel measure with the Tq-outer regularity. It is denoted by trq∂Ω(u).

Concerning uniqueness Dynkin and Kuznetsov introduced in [9] the notion of σ-moderate
solutions, which are elements u of U+(Ω) with the property that there exists an increasing
sequence {µn} of nonnegative Radon measures on ∂Ω such that uµn → u when n→ ∞. In [23]
Marcus and Véron proved that a σ-moderate positive solution of (1.14) is uniquely determined
by its precise boundary trace. This precise trace is essentially the same, up to a set of zero
C 2

c
,q′-capacity, as the fine trace that Dynkin and Kuznetsov introduced in [9] using probabilistic

tools such as the Brownian motion; however their construction is only valid in the range (1, q]
of values of q. Finally, in [16], Marcus proved that any positive solution is σ-moderate. Notice
that this result was already obtained by Mselati [24] in the case q = 2 and then by Dynkin [6]
for qe ≤ q ≤ 2 by using a combination of analytic and probabilistic techniques.

In this article we define a notion of precise initial trace for positive solutions of (1.1) associated
to the Tq-topology, which denotes the C 2

q
,q′ fine topology of RN . We denote by H[.] the heat

potential in Q expressed by

H[ξ](x, t) =
1

(4πt)
N
2

∫

RN

e−
|x−y|2

4t ξ(y)dy, (1.21)

for all ξ ∈ L1(RN ). We define the singular set of u ∈ U+(QT ) as the set of z ∈ RN such that
for any Tq-open neighborhood O ⊂ RN of z, there holds

∫ ∫

QT

H[χ
O
]uqdxdt = ∞. (1.22)

The singular set, denoted by Sq = Sq(u), is Tq-closed. The regular set is Rq := RN \ Sq; it is
Tq-open. If z ∈ Sq and O ⊂ RN is a Tq-open neighborhood of z such that

∫ ∫

QT

H[χ
O
]uqdxdt <∞, (1.23)

then for any η ∈ L∞ ∩W
2
q
,q′
(RN ) with Tq-support contained in O there exists

limt→0

∫

RN

u(x, t)(η(x))2q
′
dx := ℓO(η). (1.24)

As a consequence there exists a positive Borel measure µ on Rq, outer regular for the Tq-
topology, such that for Tq-open subset Ξ ⊂ Rq there holds

limǫ→0 uǫ,χΞ
(., t) = uχ

Ξ
µ (1.25)
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where uǫ,χΞ
is the solution of

∂tv −∆v + |v|q−1 v = 0 in Qǫ := RN × (ǫ,∞)

v(., ǫ) = χ
Ξ

in RN .
(1.26)

The set (Sq, µ) is called the precise initial trace of u and denoted by trc(u). To this set we can
associate a Borel measure ν on RN . It is absolutely continuous with respect to the C 2

q
,q′-capacity

in the following sense

∀Q ⊂ RN ,Tq - open ,∀A ⊂ RN , A Borel , C 2
q
,q′(A) = 0 =⇒ µ(Q \ A) = µ(Q). (1.27)

It is also outer regular with respect to the Tq-topology in the sense that for every Borel set
E ⊂ RN

µ(E) = inf{µ(Q) : Q ⊃ E, Q Tq - open } = sup{µ(K) : K ⊂ E, K compact }. (1.28)

A measure with the above properties is called Tq-perfect. Similarly to Dynkin, we say that a
positive solution u of (1.1) is σ-moderate if the exists an increasing sequence {µn} of nonnegative
Radon measures in RN such that uµn → u when n → ∞. It is proved in [22] that if F ⊂ RN

is a closed subset, the maximal solution UF with initial trace (F, 0) coincides with the maximal
σ-moderate solution VF with the same trace and which is defined by

VF = sup{uµ : µ ∈ Mq(RN ), µ(F c) = 0}. (1.29)

It is indeed σ-moderate. Following Dynkin we define an addition among the elements of U+(QT )
by

∀(u, v) ∈ U+(QT )× U+(QT ), u⊕ v is the largest element of U+(QT ) dominated by u+ v.
(1.30)

The main results of this article are the following

Theorem A. If ν is a Tq-perfect measure with singular part Sq and regular part µ on Rq then
uµ ⊕ USq is the only σ-moderate element of U+(Q) with precise trace ν.

In order to extend Marcus’s result we need a parabolic counterpart of Ancona’s character-
ization of positive solutions of Schrödinger equation with singular potential [1]. We prove a
representation theorem valid for any positive solution of

∂tu−∆u+ V (x, t)u = 0 in Q, (1.31)

where V is a Borel function which satisfies, for some c ≥ 0,

0 ≤ V (x, t) ≤ c

t
for almost all (x, t) ∈ Q. (1.32)

Let T be fixed and let ψ be defined by

ψ(x, t) =

∫ T

t

∫

RN

1

(4π(s − t))
N
2

e
−

|x−y|2

4(s−t) V (y, s)dyds in QT .

7



Theorem B.There exists a kernel Γ defined in QT ×QT satisfying

c1
e
−a1

|x−y|2

s−t

(t−s)
N
2

≤ Γ(x, t, y, s) ≤ c2
e
−a2

|x−y|2

s−t

(t−s)
N
2

∀(x, t), (y, s) ∈ QT ×QT with s ≤ t. (1.33)

where the aj and cj are positive contants depending on T and V , such that for any positive
solution u of (1.31), there exists a positive Radon measure µ in RN such that

u(x, t) = eψ(x,t)
∫

RN

Γ(x, t, y, 0)dµ(y) for almost all (x, t) ∈ QT . (1.34)

The next result, combined with Theorem A, shows that in the case q ≥ qc the precise trace
operator realizes a one to one correpondence between the set of positive solutions of (1.1) and
the set of Tq-perfect Borel measures in RN .

Theorem C Any positive solution of (1.1) is σ-moderate.

Several proofs in this work are transposition to the parabolic framework of the constructions
performed in [23] and [16]. However, for the sake of completeness and due to the technicalities
involved, we kept many of them, sometimes under an abriged form.

2 The Tq-fine topology

We assume that q ≥ 1 + 2
N

and set q′ = q
q−1 . We recall that a set E ⊂ RN is (2

q
, q′)-thin at a

point a if
∫ 1

0

(
C 2

q
,q′(E ∩Bs(a))

s
N− 2

q−1

)q−1
ds

s
<∞. (2.35)

If the value of the above integral is infinite, the set E is called (2
q
, q′)-thick at a. A set U is a

(2
q
, q′)-fine neighborhood of one of its point a if U c is thin at a. It is (2

q
, q′)-finely open, if U c is

thin at any point a ∈ U . It is (2
q
, q′)-finely closed if it complement is (2

q
, q′)- finely open. For

simplicity we will denote by Tq the (
2
q
, q′)-fine topology associated to these notions (see [2, Chap

6] for a thorough discussion of these notions). We say that a set E ⊂ IRN is Tq-open (resp
Tq-closed) if it is open (resp. closed) in the Tq-topology.

Notation 2.1 Let A, B ⊂ IRN .
a) A is Tq-essentially contained in B, denoted A ⊂q B, if

C 2
q
, q′(A \B) = 0.

b) The sets A, B are Tq-equivalent, denoted A ∼q B, if

C 2
q
, q′(A∆B) = 0.

c)The Tq-closure of a set A is denoted by Ã. The Tq-interior of A is denoted by A⋄.
d) Given ε > 0, Aε denotes the ε−neighbourhood of A for the standard Euclidean distance in
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RN

e) The set of Tq-thick points of A is denoted by bq(A). The set of Tq-thin points of A is denoted
by eq(A).

A is Tq -open ⇔ A ⊂ eq(A
c), B is Tq closed ⇔ bq(B) ⊂ B.

Consequently,

Ã = A
⋃
bq(A), A⋄ = A ∩ eq(Ac).

The capacity C 2
q
, q′ possesses the Kellogg property (see [2, Cor. 6.3.17]), namely,

C 2
q
, q′(A \ bq(A)) = 0. (2.36)

Therefore
A ⊂q bq(A) ∼q Ã,

but, in general, bq(A) does not contain A.

Proposition 2.2 (i) If Q is a Tq-open, then eq(Q
c) is the largest Tq-open set that is Tq-

equivalent to Q.
(ii) If F is a Tq-closed then bq(F ) is the smallest Tq-closed set that is Tq-equivalent to F.

The proof is [23, Prop. 2.1]. We collect below several facts concerning the Tq-topology that are
used throughout the paper.

Proposition 2.3 Let q ≥ 1 + 2
N
.

i) Every Tq-closed set is Tq-quasi closed ([2, Prop 6.4.13]).

ii)If E is Tq-quasi closed then E ∼q Ẽ ([2, Prop 6.4.12]).

iii)A set E is Tq-quasi closed if and only if there exists a sequence {Em} of closed subsets of E
such that C 2

q
, q′(E \Em) → 0 ([2, Prop. 6.4.9]).

iv) There exists a positive constant c such that, for every set E,

C 2
q
, q′(Ẽ) ≤ cC 2

q
, q′(E),

([2, Prop 6.4.11]).

v) If E is Tq-quasi closed and F ∼q E then F is Tq-quasi closed.

vi) If {Ei} is an increasing sequence of arbitrary Borel sets then

C 2
q
, q′(
⋃
Ei) = lim

i→∞
C 2

q
, q′(Ei).

vii) If {Ki} is a decreasing sequence of compact sets then

C 2
q
, q′(
⋂
Ki) = lim

i→∞
C 2

q
, q′(Ki).

viii) Every Suslin set and, in particular, every Borel set E satisfies

C 2
q
, q′(E) = inf{C 2

q
, q′(G) : E ⊂ G, G open}

= sup{C 2
q
, q′(K) : K ⊂ E, K compact}.
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For the last three statements see [2, Sec. 2.3]. Statement (v) is an easy consequence of [2, Prop.
6.4.9]. However note that this assertion is no longer valid if ”Tq-quasi closed” is replaced by
”Tq-closed.” Only the following weaker statements holds:

If E is Tq -closed and A is a set such that C 2
q
, q′(A) = 0 then E ∪A is Tq -closed.

The next corollary is an easy consequence of (iii).

Corollary 2.4 A set E is Tq-quasi closed if and only if there exists a sequence {Em} of Tq-quasi
closed subsets of E such that C 2

q
, q′(E \ Em) → 0.

Definition 2.5 Let E be a Tq-quasi closed set. An increasing sequence {Em} of closed subsets
of E such that C 2

q
, q′(E \ Em) → 0 is called a Tq-stratification of E.

(i) We say that Em is a proper Tq-stratification of E if

C 2
q
, q′(Em+1 \ Em) ≤

1

2m+1
.

(ii) If V is a Tq-open set such that C 2
q
, q′(E \ V ) = 0 we say that V is a Tq-quasi neighborhood

of E.

The following separation statement is valid in any locally compact metric space.

Lemma 2.6 Let K be a closed subset of an open set A. Then there exists an open set G such
that

K ⊂ G ⊂ G ⊂ A.

Proof. Let x ∈ K. We set Bn = Bn(x); n ∈ N and Kn = Bn ∩ K. Since Kn is compact,
we can easily show that there exists a decreasing sequence {εn} converging to 0 such that
Kεn
n ⊂ Kεn

n ⊂ A. Now we have

∞⋃

n=1

K
εn
2
n ⊂

∞⋃

n=1

K
εn
2
n ⊂

∞⋃

n=1

Kεn
n ⊂ A.

If we prove that the set
∞⋃

n=1

K
εn
2
n

is closed then the proof follows with G =
⋃∞
n=1K

εn
2
n . We will prove it by contradiction. We

assume that there exists a sequence xn ∈ ⋃∞
n=1K

εn
2
n such that xn → x and x /∈ ⋃∞

n=1K
εn
2
n .

We have x1 = xn1 such that dist(xn1 ,K) = inf{|xn1 − y| : y ∈ K} ≤ ε1
2 . Also we assert that

there exists xn2 such that dist(xn2 ,K) ≤ ε2
2 . Indeed, If this is not valid then ∀n ∈ N we have

ε2
2 < dist(xn,K) ≤ ε1

2 , which implies x ∈ K1. Thus we have clearly a contradiction. Inductively,
we can construct a subsequence {xnk

} such that dist(xnk
,K) ≤ εk

2 , ∀k ∈ N. If we send k to
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infinite, we reach to a contradiction, since we would have dist(x,K) = 0 and using the fact that
K is closed, we would obtain that x ∈ K. �

In the framework of the Tq-topology, the preceding result admits the following counterpart.

Lemma 2.7 Let E be a Tq-closed set. Then:
(i) Let D be an open set such that C 2

q
, q′(E \Dc) = 0. Then there exists an open set O such that

E ⊂q O ⊂ Õ ⊂q D. (2.37)

(ii) Let D be a Tq-open set such that E ⊂q D. Then there exists a Tq-open set O such that
(2.37) holds.

Proof. (i) Since E ∩D ∼q E, E ∩D is Tq-quasi closed, (see the discussion of the quasi topology
in [2, sec. 6.4]). Thus there exists a proper Tq-stratification of E ∩ D, say {Em} and E ∼q

E′ =
⋃∞
i=1Ei. If E

′ is closed the result follows by Lemma 2.6. We assume that E′ is not closed.
Thus, we can assume without loss of generality that

Em+1 \Em 6= ∅ ∀m ∈ N.

We set E′
m = G, where G is the open set of Lemma 2.6 with K = Em and A = D. Now

since C 2
q
, q′(Em \ Em−1) <

1
2m+1 , there exists an open set Dm ⊃ Em \ Em−1 ;m ≥ 2, such that

C 2
q
, q′(Dm) <

1
2m . Also we set D1 = E′

1. Also we have by Lemma (2.6),

Dm ∩ Em ⊂ ˜Dm ∩ Em ⊂ Ẽm ⊂ D ∀m ∈ N.

Also, since E′ = E1 ∪
⋃∞
m=2(Em \ Em−1) we have that

E′ ⊂
∞⋃

m=1

Dm ∩ E′
m ⊂

∞⋃

m=1

˜Dm ∩E′
m ⊂ D.

Thus, it is enough to prove that the set
⋃∞
m=1

˜Dm ∩E′
m is Tq-quasi closed. Indeed, for each

n > 1, we have

C 2
q
, q′

(
∞⋃

m=1

˜Dm ∩ E′
m \

n⋃

m=1

˜Dm ∩ E′
m

)
≤ C 2

q
, q′

(
∞⋃

m=n+1

˜Dm ∩ E′
m

)
≤

∞∑

m=n+1

C 2
q
, q′(D̃m)

≤ c
∞∑

m=n+1

C 2
q
, q′(Dm) ≤ c

∞∑

m=n+1

2−m.

And the result follows by Corollary 2.4, since
⋃n
m=1

˜Dm ∩ E′
m is Tq-quasi closed.

The proof of (ii) is same as in [23, Lemma 2.4 (ii)]. �

Lemma 2.8 (I) Let E be a Tq-closed set and {Em} a proper Tq-stratification for E. Then there
exists a decreasing sequence of open sets {Qj} such that ∪Em := E′ ⊂ Qj for every j ∈ N and
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(i) ∩jQj = E′, Q̃j+1 ⊂q Qj,
(ii) limj→∞C 2

q
, q′(Qj) = C 2

q
, q′(E).

(II) If A is a Tq-open set, there exists a decreasing sequence of open sets {Am} such that

A ⊂
⋂

m

Am =: A′, C 2
q
, q′(Am \ A′) → 0 as m→ ∞, A ∼q A′.

Furthermore there exists an increasing sequence of closed sets {Fj} such that Fj ⊂ A′ and
(i) ∪Fj = A′, Fj ⊂q F ⋄

j+1

(ii) C 2
q
, q′(Fj) → C 2

q
, q′(A

′) as j → ∞.

Proof. Let {Dj} be a decreasing sequence of open sets such that Dj ⊃ E, ∀j ∈ N and

lim
j→∞

C 2
q
, q′(Dj) = C 2

q
, q′(E

′) = C 2
q
, q′(E).

Case 1: E is closed (thus Em = E for any m ∈ N).
By Lemma 2.6 there exists a decreasing sequence {ε1,n} converging to 0, such that ε1,1 < 1, and

E ⊂ Q1 =

∞⋃

n=1

K
ε1,n
2

n ⊂ Q1 ⊂ D1,

where Kn = Bn(x) ∩ E , x ∈ E. Also we have proven in Lemma 2.6 that the set
⋃∞
n=1K

ε1,n
2

n is
closed.
Again by Lemma 2.6 there exists a decreasing sequence {ε2,n} converging to 0, such that ε2,n ≤
ε1,n for all n and

E ⊂ Q2 =

∞⋃

n=1

K
ε2,n
4

n ⊂ Q2 ⊂ D2.

We note here that

Q2 ⊂
∞⋃

n=1

K
ε2,n
4

n ⊂
∞⋃

n=1

K
ε1,n
2

n ,

and since K
ε2,n
4

n is closed we have
Q2 ⊂ Q2 ⊂ Q1.

By induction, we construct a decreasing sequence {εj,n} converging to 0 with respect to n, such
that ∀n ∈ N : εj,n ≤ εk,n for all j ≥ k,

E ⊂ Qj =

∞⋃

n=1

K

εj,n

2j+1
n ⊂ Qj ⊂ Dj ,

and
Qj ⊂ Qj ⊂ Qj−1.

Now note that
E ⊂ Qj ⊂ E

1

2j ,

12



thus E = ∩Qj. Finally,

C 2
q
, q′(E) ≤ limC 2

q
, q′(Qj) ≤ limC 2

q
, q′(Dj) = C 2

q
, q′(E),

and the result follows in this case.
Case 2: E is not closed.
There exists a proper Tq-stratification of E, say {Em} and E ∼q E′ =

⋃∞
i=1Ei. Also by the

Case 1, we can assume without loss of generality that

Em+1 \Em 6= ∅ ∀m ∈ N.

Let us denote by Qmj the sets denoted by Qj in the previous case if we replace E by Em. Since

there holds C 2
q
, q′(

˜Em \Em−1) ≤ cC 2
q
, q′(Em \ E1), we can choose an open set D1

m such that

C 2
q
, q′(D

1
m) ≤ c

2m . In view of Lemma (2.7) the set

Q1 =

∞⋃

m=1

D1
m ∩Qm1

is open and
E′ ⊂ Q1 ⊂ Q̃1 ⊂ D1.

Furthermore the set
∞⋃

m=1

˜D1
m ∩Qm1

is Tq-quasi closed. By Lemma 2.7 there exists an open set D2
m such that

D2
m ⊂ D̃2

m ⊂ D1
m.

By induction, we construct a sequence of open sets {Dj
m} such that

Dj
m ⊂ D̃j

m ⊂ Dj−1
m C 2

q
, q′(D

j
m) ≤

c

2m
.

Thus in view of Lemma 2.7 the set

Qj =

∞⋃

m=1

Dj
m ∩Qmj

is open and the set
∞⋃

m=1

˜
Dj
m ∩Qmj

is Tq-quasi closed. For any m we have

Dj
m ∩Qmj ⊂ ˜

Dj
m ∩Qmj ⊂ D̃j

m ∩ Q̃mj ⊂ Dj−1
m ∩Qmj−1.

13



Thus

Qj ⊂ Q̃j ⊂
∞⋃

m=1

˜
Dj
m ∩Qmj ⊂

∞⋃

m=1

Dj−1
m ∩Qmj−1 ⊂ Dj.

Since the set
⋃∞
m=1

˜
Dj
m ∩Qmj is Tq- quasi closed we have

Qj ⊂ Q̃j ⊂ Qj−1.

Finally

E′ ⊂ Qj ⊂ E′
1

2j ,

thus E′ = ∩Qj. The result follows in this case since

C 2
q
, q′(E) ≤ limC 2

q
, q′(Qj) ≤ limC 2

q
, q′(Dj) = C 2

q
, q′(E).

(II) The proof is same as in [23, Lemma 2.6 (b)] and we omit it. �

The next results are respectively proved in [23, Lemma 2.5] and [23, Lemma 2.7].

Proposition 2.9 Let E be a bounded Tq-open set and let D be a cover of E consisting of Tq-
open sets. Then, for every ε > 0 there exists an open set Oε such that C 2

q
, q′(Oε) < ε and E \Oε

is covered by a finite subfamily of D.

Proposition 2.10 Let Q be a Tq-open set. Then, for every ξ ∈ Q, there exists a Tq-open set
Oξ such that

ξ ∈ Qξ ⊂ Q̃ξ ⊂ Q. (2.38)

3 Lattice structure of U+(Q)

Consider the equation

∂tu−∆u+ |u|q−1u = 0, in Q∞ = RN × (0, T ], where q ≥ 1 +
2

N
. (3.1)

A function u ∈ Lqloc(QT ) is a subsolution (resp. supersolution) of the equation if ∂tu − ∆u +
|u|q−1u ≤ 0 (resp. ≥ 0) holds in the sense of distributions.

If u ∈ Lqloc(QT ) is a subsolution of the equation then by Kato’s inequality (∂t−∆)|u|+|u|q ≤ 0
in the sense of distributions. Thus |u| is a subsolution of the heat equation and consequently
u ∈ L∞

loc(QT ). If u ∈ Lqloc(QT ) is a solution then u ∈ C2,1(QT ).

Proposition 3.1 Let u be a non-negative function in L∞
loc(QT ).

(i) If u is a subsolution of (3.1), there exists a minimal solution v dominating u,
i.e. u ≤ v ≤ U for any solution U ≥ u.
(ii) If u is a supersolution of (3.1), there exists a maximal solution w dominated by u,
i.e. V ≤ w ≤ u for any solution V ≤ u.
All the above inequalities hold almost everywhere .
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Proof. (i) Let {Jε} be a filter of mollifiers in RN+1. If u is extended by zero outside of QT , then
the function uε = Jε ∗ u belong to C∞(RN+1), limε→0 uε = ũ = u a.e. in RN+1 and uε → u
in Lqloc(QT ). We note that we can choose ε > 0 small enough such that the function uε is a
subsolution in BR(0)× (s,∞) where R > 0 and 0 < s. Let vε be the positive solution of

∂tv −∆v + |v|q−1v = 0, in BR(0)× (s,∞),
v = uε, on ∂BR(0) × (s,∞),

v(., s) = uε(., s) in BR(0).
(3.2)

In view of the proof of Lemma 2.4 and Remark 2.5 in [19] we can prove that vε ≥ uε. Since vε is
a subsolution of the heat equation, we have vε ≤ ||uε||L∞(BR(0)×(s,T ]) ≤ ||u||L∞(BR(0)×(s,T ]). Thus
there exists a decreasing sequence εj converging to 0 such that vεj → v in Lq(BR(0) × (s, T ]),
u ≤ v ≤ ||u||L∞(BR(0)×(s,T ]); 0 < s < T <∞ and v is a positive solution of

∂tv −∆v + |v|q−1v = 0, in BR(0)× (s, T ],
v = u, on ∂BR(0)× (s, T ],

v(., s) = u(., s) in BR(0).
(3.3)

Let {Rj} be an increasing sequence tending to infinity and sj be a decreasing one converging to
0. Let vj be the positive solution of the above problem with R = Rj and s = sj . Since vj ≥ u,
we have by the maximum principle that vj+1 ≥ vj . Thus, by Keller-Osserman inequality and
standard parabolic regularity results, there exists a subsequence, say {vj}, such that vj → v
locally uniformly in QT . The results follows in this case by the construction of v.
(ii) Since u ∈ Lq(BR(0)× (s, T ]) there exists a solution w of the problem

∂tw −∆w + |u|q = 0, in BR(0)× (s, T ]
w = 0, on ∂BR(0) × (s, T ]

w(., s) = 0 in BR(0).
(3.4)

Hence u+w is supersolution of the heat equation with boundary and initial data u. Consequently,
u+ w ≥ z where z is the solution of the heat equation with boundary and initial data u. Also,
the function z −w is a subsolution, thus there exists a solution v ≤ u of the problem (3.3) with
boundary and initial data u. As before, let {Rj} be an increasing sequence tending to infinity
and sj be a decreasing sequence tending to 0. Let vj be the positive solution of the problem
(3.3) with R = Rj and s = sj. Since vj ≤ u, we have by maximum principle that vj+1 ≤ vj.
Thus by standard parabolic arguments, there exists a subsequence, say {vj}, such that vj → v
locally uniformly in Q∞. Again, the construction of v implies the result. �

Proposition 3.2 Let u and v be nonnegative, locally bounded functions in QT .
(i) If u and v are subsolutions (resp. supersolutions) then max(u, v) is a subsolution (resp.
min(u, v) is a supersolution).
(ii) If u and v are supersolutions then u+ v is a supersolution.
(iii) If u is a subsolution and v is a supersolution then (u− v)+ is a subsolution.

Proof. The first two statements are immediate consequence of the parabolic Kato’s inequality.
The third statement is verified in a similar way since

(
d

dt
−∆)(u− v)+ ≤ sign+(u− v)(

d

dt
−∆)(u− v) ≤ −sign+(u− v)(uq − vq) ≤ −(u− v)q+.
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Notation 3.3 Let u, v be nonnegative, locally bounded functions in QT .
(a) If u is a subsolution, [u]† denotes the smallest solution dominating u.
(b) If u is a supersolution, [u]† denotes the largest solution dominated by u.
(c) If u, v are subsolutions then u ∨ v := [max(u, v)]†.
(d) If u, v are supersolutions then u ∧ v := [inf(u, v)]† and u⊕ v = [u+ v]†.
(e) If u is a subsolution and v is a supersolution then u⊖ v := [(u− v)+]†.

Proposition 3.4 (i) Let {uk} be a sequence of positive, continuous subsolutions of (3.1). Then
U := supuk is a subsolution. The statement remains valid if subsolution is replaced by superso-
lution and sup by inf .
(ii) ([5]) Let T be a family of positive solutions of (3.1). Suppose that, for every u1 and u2
belonging to T there exists v ∈ T such that

max(u1, u2) ≤ v, resp. min(u1, u2) ≥ v.

Then there exists a monotone sequence {un} in T such that

un ↑ supT , resp. un ↓ inf T.

Thus supT (resp. inf T ) is a solution.

Proof. (i) Set vj = max (u1, u2, ..., uj) = max (max(u1, u2),max(max(u1, u2), u3), ...,max(max(...), uj)) .
By proposition 3.2 vj is a subsolution and vj+1 ≥ vj . Thus the positive solution [vj ]† is increas-
ing with respect to j. Also by Keller-Osserman inequality, we have that [vj ]† → ṽ, where ṽ is
a positive solution. Thus vj → v where v is a subsolution of (3.1). Now since ui ≤ v for each
i ∈ N, we have that U ≤ v. But vj ≤ U for each j ∈ N, which implies v ≤ U. And thus v = U.
The proof for ”inf” is similar and we omit it.
(ii) The proof is similar as the one in [5]. Let A = (xn, tn) be a countable dense subset of QT and
let unm ∈ T satisfy the condition supm um(xn, tn) = w(xn, tn). Since T is closed with respect to
∨, there exists an increasing sequence of vn ∈ T such that v = limn→∞ vn, coincides with w on
A. We claim that v = w everywhere. Indeed, v ≤ u. Suppose u ∈ T . Then u ≤ w and therefore
u ≤ v on A. Since A is everywhere dense and u, v are continuous, u ≤ v everywhere in Q∞,
which implies u ≥ w = supu. �

As a consequence we have the following result which extends to equation (1.1) what Dynkin
proved for (1.14) [5, Theorem 5.1].

Theorem 3.5 The set U+(QT ) is a complete lattice stable for the laws ⊕ and ⊖.

4 Partition of unity in Besov spaces

Lemma 4.1 Let U ⊂ RN be a Tq-open set and z ∈ U. Then there exists a function f ∈
W

2
q
,q′(RN ) with compact support in U such that f(z) > 0. In particular, there exists a bounded

Tq-open set V such that V ⊂ U.
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Proof. We suppose that z is not an interior point of U with respect to Euclidean topology, since
otherwise the result is obvious. Since U is Tq-open we have that U c is thin at z. Also by the
assumption on z, we have that z ∈ U c \ U. By [2, p. 174], we can find an open set W ⊃ U c,
z ∈W \W and W is thin at z.
We recall that for a set E with positive C 2

q
,q′-capacity, F

E := VµE = G 1
q
∗ (G 1

q
∗ µE)p−1 where

µE is the capacitary measure on E. Then, by [2, Proposition 6.3.14], there exists r > 0 small
enough such that

Vµ(z) < 1

2
,

where µ is the capacitary measure of B(z, r)∩W and Vµ the corresponding Besov potential (see
[2, Theorems 2.2.7, 2.5.6 ]). By [2, Theorem 6.3.9], Vµ ≥ 1 quasi everywhere (abr. q.a.e.) on
B(z, r) ∩W, and by [2, Proposition 2.6.7] Vµ ≥ 1 everywhere on B(z, r) ∩W. Thus

Vµ(z) < 1

2
< 1 ≤ Vµ(x), ∀x ∈ B(z, r) ∩W.

Thus we can find r0 > 0 small enough such that

Vµ(z) < 1

2
< 1 ≤ inf{Vµ(x) : x ∈ B(z, r0) \ U}.

Now let 0 ≤ H(t) be a smooth nondecreasing function such that H(t) = t for t ≥ 1
4 and H(t) = 0

for t ≤ 0. Also let η ∈ C∞
0 (RN ) such that 0 ≤ η ≤ 1, supp η ⊂ B(z, r0) and η(z) = 1. Then the

function
f(z) = ηH(1 − Vµ),

belongs to W
2
q
,q′
(RN ). Since by definition Vµ is lower semicontinuous, the set {1 − u ≥ 0} is

closed. Hence the support of f is compact and

suppf ⊂ suppη ∩ {1 − u ≥ 0} ⊂ U.

�

Lemma 4.2 Let U be a Tq-open set and z ∈ U. Then there exists a Tq-open set V, such that

z ∈ V ⊂ U, and a function ψ ∈W
2
q
,q′
(RN ) such that ψ = 1 q.a.e. on V and ψ = 0 outside U.

Proof. As before, we assume that z is not an interior point of U. Let Vµ be the Besov potential
of the previous lemma, with

Vµ(z) < 1

4
, Vµ = 1 on B(z, r0) \ U.

By [2, Proposition 6.3.10] Vµ is quasi continuous, that we can find a Tq-open set W which
contains z such that

Vµ(x) ≤ 1

4
, q.a.e. on W.

Let η ∈ C∞
0 (RN ) such that 0 ≤ η ≤ 1, supp η ⊂ B(z, r0) and η(x) = 1,∀ x ∈ B(z, r02 ). Set

f = 2ηH

(
1−H

(
1

2
− Vµ(x)

)
− Vµ(x)

)
.
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Then f ∈ W
2
q
,q′
(RN ), 0 ≤ f ≤ 1 and f = 0 on B(z, r0) \ U. Also, f = 1 on B(z, r02 ) ∩W and

f = 0 outside of B(z, r0) ∩ U. �

Lemma 4.3 Let 2
q
≤ 1, K be a compact set and U be a Tq-open set such that K ⊂ U. Also,

let {Uj} be a sequence of Tq-open subsets of U covering U up to a set of zero C 2
q
, q′-capacity Z.

We assume that there exists a nonnegative u ∈W
2
q
,q′
(RN ) ∩L∞(RN ) with Tq-supp u ⊂ K ⊂ U.

Then there exist m(k) ∈ N and nonnegative functions uk,j ∈ L∞(RN ) with Tq-supp uk,j ⊂ Uj,
such that

m(k)∑

j=1

uk,j ≤ u (4.1)

and

lim
k→∞

||u−
m(k)∑

j=1

uk,j||
W

2
q ,q′

(RN )
= 0.

Remark. If u changes sign, the conclusion of Lemma remains valid without inequality (4.1).

Proof. Without loss of generality we can assume that U and the ∪jUj are bounded. For any
j ≥ 0, there exists open sets Gk,j such that C 2

q
, q′(Gk,j) ≤ 2−k−j, Z ⊂ Gk,0 and for j ≥ 1, the

sets Uj ∪Gk,j are open. Also the sets

Gk =

∞⋃

j=0

Gk,j,

∞⋃

j=1

Gk
⋃
Uj

are open and C 2
q
, q′(Gk) → 0 when k → ∞.

Since Gk is open, its Besov potential FGk is larger or equal to 1 everywhere on Gk [2,
Theorems 2.5.6, 2.6.7 ]). Also we have

||Vµk ||q′
W

2
q ,q′

(RN )
≤ AC 2

q
, q′(Gk),

where A is a positive constant which depends only on n, q. Now consider a smooth nondecreasing
function H such that H(t) = 1 for t ≥ 1 and H(t) = t for t ≤ 1

2 , then the function φk = H(Vµk)
belongs toW

2
q
,q′(RN ), satisfies 0 ≤ φk ≤ 1, φk = 1 on Gk and there exists a constant A′(n, q) > 0

such that
||φk||q

′

W
2
q ,q′

(RN )
≤ A′C 2

q
, q′(Gk).

Set ψk = 1− φk. By Lebesgue’s dominated theorem

||u− ψku||q
′

W
2
q ,q′

(RN )
→ 0. (4.2)

Thus it is enough to prove that

uψk =

m(k)∑

j=1

uk,j. (4.3)
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Fix k ∈ N. Then there exist open balls Bk,j,i, for i, j = 1, 2..., such that

Bk,j,i ⊂ Uj
⋃
Gk, and

∞⋃

j=1

Gk
⋃
Uj =

∞⋃

i,j=1

Bk,j,i.

Since K is compact, there exists m(k) ∈ N such that

K ⊂
m(k)⋃

i,j=1

Bk,j,i.

Now consider wk,j,i ∈ C∞
0 (RN ) such that

{wk,j,i > 0} = Bk,j,i.

If we set

uk,j = uψk

∑m(k)
i=1 wk,j,i∑m(k)
i,j=1wk,j,i

,

then uk,j ∈ L∞(RN ), satisfies 1 and

Tq-suppuk,j ⊂ (K \Gk) ∩Bk,j,i ⊂ Uj .

�

Remark. We conjecture that the result still holds if 2
q
> 1, but we have not been able to prove

(4.2).

5 The regular set and its properties

Let q > 1, T > 0. If QT = RN × (0, T ), we recall that U+(QT ) is the set of positive solutions u
of

∂tu−∆u+ uq = 0 in QT . (5.1)

If a function ζ is defined in RN .We denote by Tq-supp(ζ) the Tq-closure of the set where |ζ| > 0.
Let U be a Borel subset of RN and χU be the characteristic function of U. We set

H(χU)(x, t) =
1

(4πt)
N
2

∫

RN

e−
|x−y|2

4t χUdy.

For any ξ ∈ RN the following dichotomy occurs:

(i) either there exists a Tq-open bounded neighborhood U = Uξ of ξ such that
∫ T

0

∫

RN

uqH[χU ]
2q′dxdt <∞, (5.2)

where q′ = q
q−1 ,

(ii) or for any Tq-open neighborhood U of ξ
∫ T

0

∫

RN

uqH[χU ]
2q′dxdt = ∞. (5.3)
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Definition 5.1 The set of ξ ∈ RN such that (i) occurs is Tq-open. It is denoted by Rq(u)
and called the regular set of u. Its complement Sq(u) = RN \ Rq(u) is Tq-closed and called the
singular set of u.

Proposition 5.2 Let η ∈ W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in a Tq-open bounded set U.

Also let u ∈ U+(QT ) satisfy

MU =

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt <∞.

Then there exists

l(η) := lim
t→0

∫

RN

u(x, t)H[η]2q
′

+ dx. (5.4)

Furthermore

|l(η)| ≤ C(MU , q)

(
||η||2q′

W
2
q ,q′

+ ||η||2q′
L∞(RN )

)
. (5.5)

Proof. Put h = H[η] and φ(r) = r2q
′

+ . Since |η| ≤ ||η||L∞χU , there holds

∣∣∣∣
∫ T

0

∫

RN

uqφ(h)dxdt

∣∣∣∣ ≤ ||η||2q′L∞

∫ T

0

∫

RN

uqH[χU ]
2q′dxdt := ||η||2q′L∞MU <∞. (5.6)

Moreover
∫ t

s

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ =

∫

RN

uφ(h)(., s)dx −
∫

RN

uφ(h)(., t)dx. (5.7)

But
∂tφ(h) + ∆φ(h) = 2q′φ(h)h−2

+ (2h+∂th+ (2q′ − 1)|∇h|2).
By Hölder
∣∣∣∣
∫ t

s

∫

RN

u(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣

≤
(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q
(∫ t

s

∫

RN

φ(h)
− q′

q |(∂tφ(h) + ∆φ(h))|q′dxdτ
) 1

q′

≤ 4q′
(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q
(∫ t

s

∫

RN

(h+|∂th|+ |∇h|2)q′dxdτ
) 1

q′

.

By standard regularity properties of the heat kernel

∫ t

s

∫

RN

|∂th|q
′
dxdτ ≤

∫ T

0

∫

RN

|∂th|q
′
dxdτ ≤ ||η||q′

W
2
q ,q′

,

and by Gagliardo-Nirenberg inequality and the maximum principle

∫ t

s

∫

RN

|∇h|2q′dxdτ ≤
∫ T

0

∫

RN

|∇h|2q′dxdτ ≤ C||η||q′L∞ ||∆h||q′
Lq′

= C||η||q′L∞ ||∂th||q
′

Lq′
.
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Therefore,

∣∣∣∣
∫ t

s

∫

RN

u(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣ ≤ C

(∫ t

s

∫

RN

uqφ(h)dxdτ

) 1
q

||η||L∞ ||η||
W

2
q ,q′ . (5.8)

This implies that the left-hand side of (5.7) tends to 0 when s, t→ 0, thus there exists

l(η) := lim
s→0

∫

RN

uφ(h)(x, s)dx.

From (5.7) it follows

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = l(η). (5.9)

Since |uφ(h)(., T )| ≤ C(T )||η||2q′L∞ , we derive

|l(η)| ≤ C1||η||2q
′

L∞ + C||η||q′L∞ ||η||q′
W

2
q ,q′

≤ C
(
||η||L∞ + ||η||

W
2
q ,q′

)2q′
. (5.10)

Proposition 5.3 Let the assumptions of Lemma 5.2 be satisfied. Then

lim
t→0

∫

U

u(x, t)η2q
′

+ (x)dx = l(η). (5.11)

Proof. Using (5.6) with h replaced by hs(x, t) := H[η](x, t− s), we get

∫ T

s

∫

RN

(−u(∂tφ(hs) + ∆φ(hs))) + uqφ(hs)dxdτ +

∫

RN

uφ(hs)(., T )dx =

∫

RN

uφ(hs)(., s)dx.

(5.12)
When s→ 0 ∫

RN

uφ(hs)(., T )dx →
∫

RN

uφ(h)(., T )dx,

and ∫ T

s

∫

RN

uqφ(hs)dxdτ →
∫ T

0

∫

RN

uqφ(h)dxdτ,

by the dominated convergence theorem. Furthermore,

∣∣∣∣
∫ T−s

0

∫

RN

(u(x, t+ s)− u(x, t))(∂tφ(h) + ∆φ(h))dxdt

∣∣∣∣

≤ C

(∫ T−s

0

∫

RN

|u(x, t+ s)− u(x, t)|qh2q′+ dxdt

) 1
q

||η||q′L∞ ||η||q′
W

2
q ,q′

,

which tends to zero with s. Finally,

lim
s→0

∫ T

T−s

∫

RN

uqφ(h)dxdτ = 0.
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Subtracting (5.7) to (5.12), we derive

lim
s→0

∫

RN

u(., s)(φ(h)(., s) − φ(η))dx = 0,

which implies the claim. �

The next statement obtained by contradiction with the use of Lemma 5.2 and Lemma 5.3
will be very useful in the sequel.

Proposition 5.4 Assume that U is a bounded Tq-open set and

lim
t→0

∫

U

u(x, t)η2q
′
(x)dx = ∞, (5.13)

for some 0 ≤ η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in U, then

∫ T

0

∫

RN

uqH[η]2q
′
dxdt = ∞. (5.14)

Proposition 5.5 Let ξ ∈ Sq(u). Then for any Tq-open set G which contains ξ, there holds

lim
t→0

∫

G

u(x, t)dx = ∞. (5.15)

Proof. If ξ ∈ Sq(u) and if G is Tq-open and contains ξ, then by Lemma 4.2 there exist η ∈
W

2
q
,q′(RN ) ∩ L∞(RN ) and a Tq-open set D ⊂ G such that η = 1 on D, η = 0 outside of G and

0 ≤ η ≤ 1. Thus

∞ =

∫ T

0

∫

RN

uqH[χD]
2q′dxdt ≤

∫ T

0

∫

RN

uqH.[η]2q
′
dxdt,

Therefore

lim
t→0

∫

RN

uH[η]2q
′
dx = ∞,

which implies

lim
t→0

∫

RN

uη2q
′
dx = ∞,

and the result follows by the properties of η. �
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5.1 Moderate solutions

We first recall some classical results concerning initial value problem with initial measure data.
A solution u of (3.1) is called moderate if u ∈ Lq(K) for any compact K ⊂ Q∞. Then there
exists a unique Radon measure µ such that

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ ∀ζ ∈ C∞
0 (RN ). (5.16)

Equivalently

−
∫ ∫

Q∞

u(φt +∆φ)dxdt+

∫ ∫

Q∞

|u|q−1uφdxdt =

∫

RN

φ(x, 0)dµ,

for all φ ∈ C1,1;1(Q∞), with compact support.

The above measure has the property that it vanishes on Borel sets with C 2
q
, q′-capacity zero.

There exists an sequence {µn} ⊂W− 2
q
,q(RN ) of Radon measures such that µn ⇀ µ in the weak*

topology. If we assume that u is a positive moderate solution, or equivalently that the initial
measure µ is positive, then the previous sequence can be constructed as being increasing and

particularly {µn} ⊂ W
− 2

q
,q
(RN ) ∩Mb

+(R
N ), where Mb

+(R
N ) is the set of all positive bounded

Radon measures in RN .
If ν ∈ W

− 2
q
,q
(RN ) ∩Mb

+(R
N ), then we have for some constant C > 0 independent on ν(see

Lemma 3.2-[22])
C−1||ν||

W
− 2

q ,q
(RN )

≤ ||H[ν]||Lq(QT ) ≤ C||ν||
W

−2
q ,q

(RN )
, (5.17)

where we recall that H[ν] denotes the heat potential of ν in Q.

Lemma 5.6 Let u be a moderate positive solution with initial data µ. Then for any T > 0 and
bounded Tq-open set we have

∫ T

0

∫

RN

uq(t, x)H2q′ [χO]dxdt <∞.

Proof. Let 0 ≤ η ∈ C∞
0 (RN ) and η = 1 on O and s < T. We define here h = H[η](x, t),

hs = H[η](x, t − s) and φ(r) = |r|2q′ . Then we have
∫ T

s

∫

RN

u(x, t) (∂tφ(hs) + ∆φ(hs)) + |u|qφ(hs)dxdt+
∫

RN

uφ(hs)(., T )dx =

∫

RN

u(x, s)φ(η)dx.

In view of Proposition 5.2, (5.8) and Hölder’s inequality, there exists a constant c = c(q,N) such
that
∫ T

s

∫

RN

|u|qφ(hs)dxdt+
∫

RN

uφ(hs)(., T )dx ≤ c

(∫

RN

u(x, s)φ(η)dx + ||η||2q′L∞ ||η||2q′
W

2
q ,q′

)
.

Using Fatou’s lemma and the fact that, for any bounded Borel set E

lim sup
s→0

∫

E

u(x, s)dx <∞,

we conclude the proof. �
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Theorem 5.7 Let u be a positive moderate solution with µ as initial data, then
(i) µ is regular relative to the Tq-topology.
(ii) For each quasi continuous function φ ∈ L∞(RN ) with bounded Tq-support in RN , we have

lim
t→0

∫

RN

u(x, t)φ(x)dx =

∫

RN

φ(x)dµ.

Proof. The proof is similar to the one given [23].
(i) Every Radon measure on RN is regular in the usual Euclidean topology, i.e.

µ(E) = inf{µ(D) : E ⊂ D, D open}
= inf{µ(K) : K ⊂ E, K compact},

for any Borel set E. But if D is open and contains E, it is Tq-open, hence

µ(E) ≤ inf{µ(D) : E ⊂ D, D Tq-open} ≤ inf{µ(D) : E ⊂ D, D open} = µ(E),

and the result follows.
(ii) Since the measure µt = u(t, x)dx ⇀ µ in the weak* topology we have

lim sup
t→0

µt(E) ≤ µ(E), lim inf
t→0

µt(A) ≥ µ(A),

for any compact set E, respectively, open set A. This extends to any bounded Tq-closed set E
(resp. Tq-open set A).
Indeed, let E be a Tq-closed set and {Kn} be an increasing sequence of closed sets such that
C 2

q
, q′(E \Kn) → 0. Then for any m ∈ N and any open set E ⊂ O we have

lim sup
t→0

µt(E) ≤ lim sup
t→0

µt(Km) + lim sup
t→0

µt(E \Km) ≤ µ(O) + lim sup
t→0

µt(E \Km).

Now we assert that
lim
m→∞

lim sup
t→0

µt(E \Km) = 0.

We will prove it by contradiction. We assume that limm→∞ lim supt→0 µt(E \Km) = ε > 0.
Let {tn} be a decreasing sequence tending to 0 and limn→∞ µtn(E\Km) = lim supt→0 µt(E\Km).
Then there exists subsequence of positive solutions {umk }∞k=1 with initial data µtnk

χE\Km
such

that umk → um for any m ∈ N. Since u is a moderate solution and umk ≤ u, um is a moderate
solution too. Also by construction, the sequence {um} is nonincreasing and um ≤ UE\Km

. By
proposition 5.17 we have UE\Km

→ 0 which implies um → 0 and

lim
m→∞

lim
k→∞

µtnk
(E \Km) = 0.

The proof follows in the case where E is Tq-closed. The proof is similar in the other case.
If A is Tq-open and

µ(A) = µ(Ã),
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then
lim
t→0

µt(A) = µ(A).

Without loss of generality we may assume that φ ≥ 0 (since otherwise we set φ = φ+−φ−) and
φ ≤ 1. Given k ∈ N andm = 0, ..., 2k−1 choose a number am,k in the interval (m2−k, (m+1)2−k)
such that µ(φ−1({am,k})) = 0. Put

Am,k = φ−1((am,k, (am+1,k]), m = 1, ..., 2k − 1, A0,k = φ−1((a0,k, (a1,k]),

then we note that since φ has compact support the above sets are bounded and

lim
t→0

µt(Am,k) = µ(Am,k),∀m ≥ 0, k ∈ N. (5.18)

Consider the step function φk =
∑2k−1

µ=0 m2−kχAm,k
, then φk ↑ φ uniformly, and by (5.18),

lim
t→0

∫

RN

u(x, t)φkdx =

∫

RN

φkdµ, ∀ζ ∈ C∞
0 (RN ).

This completes the proof of (ii). �

5.2 Vanishing properties

Definition 5.8 A continuous function u ∈ U+(QT ) vanishes on a Tq-open subset G ⊂ RN , if

for any η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(η) ⊂q G, there holds

lim
t→0

∫

G

u(x, t)η2q
′

+ (x)dxdt = 0. (5.19)

When this is case we write u ≈G 0. We denote by UG(QT ) the set of u ∈ U+(QT ) which vanish
on G.

We have the following simple result.

Proposition 5.9 Let A be a Tq-open subset of RN and u1, u2 ∈ U+(QT ).
If u2 ≈A 0 and u1 ≤ u2 then u1 ≈A 0.

Proposition 5.10 Let G,G′ be Tq-open sets such that G ∼q G′. If u ∈ UG(QT ) then u ∈
UG′(QT )

Proof. If η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(ζ) ⊂q G, then Tq-supp(ζ) ⊂q G′. Since

|G \G′| = |G′ \G| = 0 the result follows. �

If G is an open subset, this notion coincides with the usual definition of vanishing, since we
can take test function η ∈ C∞

0 (G). In that case u ∈ C(QT ∪ {G × {0}}).

Lemma 5.11 Assume u ∈ UG(QT ). Then for any η ∈W
2
q
,q′(RN )∩L∞(RN ) with Tq-supp(η) ⊂q

G, there holds
∫ T

0

∫

RN

uqH[η]2q
′

+ dxdt+

∫

RN

u(x, T )H[η]2q
′

+ (x, T )dx ≤ C1||η||q
′

L∞ ||η||q′
W

2
q ,q′

. (5.20)
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Proof. If u ∈ UG(QT ) and η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-supp(η) ⊂q G, there holds, with

h = H[η] and φ(r) = r2q
′

+ .

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = 0. (5.21)

Therefore (5.20) follows from (5.8). �

Lemma 5.12 Let G ⊂ RN be a Tq-open set. Then there exists a nondecreasing sequence {un} ⊂
UG(QT ) which converges to supUG(QT ). Furthermore supUG(QT ) ∈ UG(QT ).

Proof. If u1 and u2 belongs to UG(QT ), then u1 + u2 is a supersolution and it satisfies (5.19).
Therefore u1∨u2 is a solution which is smaller than u1+u2, thus u1∨u2 ∈ UG(QT ). By Proposition
3.4 there exists a increasing sequence {un} ⊂ UG(QT ) which converges to u := supUG(QT ). By
(5.21),

∫ T

0

∫

RN

(−un(∂tφ(h) + ∆φ(h))) + uqnφ(h)dxdτ +

∫

RN

unφ(h)(., T )dx = 0. (5.22)

Now, uqnφ(h) ↑ uqφ(h) in L1(QT ) and unφ(h)(., T ) ↑ uφ(h)(., T ) in L1(RN ). If E is any Borel
subset of QT , there holds by Hölder’s inequality, as in (5.8)

∣∣∣∣
∫ T

0

∫

E

un(∂tφ(h) + ∆φ(h))dxdτ

∣∣∣∣ ≤ C

(∫ T

0

∫

E

uqnφ(h)dxdτ

) 1
q

||η||L∞ ||η||
W

2
q ,q′ . (5.23)

The right-hand side tends to zero when |E| → 0, thus by Vitali’s convergence theorem, we derive

∫ T

0

∫

RN

(−u(∂tφ(h) + ∆φ(h))) + uqφ(h)dxdτ +

∫

RN

uφ(h)(., T )dx = 0, (5.24)

from (5.22). Thus u ∈ UG(QT ). �

Definition 5.13 (a) Let u ∈ U+(QT ) and let A denote the union of all Tq-open sets on which
u vanishes. Then Ac is called the fine initial support of u, to be denoted by Tq-supp (u).
(b) Let F be a Borel subset of RN . We denote by UF the maximal element of U

F̃ c(QT ).

5.3 Maximal solutions

Definition 5.14 Let Mb
+(R

N ) be the set of all positive bounded Radon measures in RN . Also
let uµ ∈ U+(QT ) be the moderate solution with initial data µ.
For any Borel set E ⊂ RN of positive C 2

q
, q′-capacity put

Vmod(E) = {uµ : µ ∈W− 2
q
,q′(RN ) ∩M

b
+(R

N ), µ(Ec) = 0}.

VE = supVmod(E).
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The following result due to Marcus and Véron [22] shows that the maximal solution which
vanishes on an open set is indeed σ-moderate. This is obtained by proving a capacitary quasi-
representation of the solution via a Wiener type test.

Proposition 5.15 Let F be a closed subset of RN and q ≥ 1+ 2
N
. Then there exist two positive

constants C1, C2 > 0, depending only on N and q such that

C1t
− 1

q−1

∞∑

k=0

(k + 1)
N
2 e−

k
4C 2

q
, q′

(
F ∩ Fk(x, t)√

(k + 1)t

)
≤ VF (x, t) ≤ UF (x, t)

≤ C2t
− 1

q−1

∞∑

k=0

(k + 1)
N
2 e−

k
4C 2

q
, q′

(
F ∩ Fk(x, t)√

(k + 1)t

)
∀(x, t) ∈ Q,

(5.25)

where Fk(x, t) = {y ∈ RN :
√
kt ≤ |x− y| ≤

√
(k + 1)t}. As a consequence UF = VF .

Remark. We recall that the main argument for proving uniqueness is the fact that

UF ≤ C2

C1
VF in Q. (5.26)

This argument introduced in [17] for elliptic equations has been extended to parabolic equations
in [19], [22].

Definition 5.16 Let F be a Borel subset of RN . We denote by UF the maximal element of
U
F̃ c(QT ).

Proposition 5.17 If {An} is a sequence of Borel sets such that C 2
q
, q′(An) → 0, then UAn → 0.

Proof. Let On be an open set such that An ⊂ On and C 2
q
, q′(On) ≤ C 2

q
, q′(An) +

1
n
. Now since

On is open, C 2
q
, q′ is an outer measure, by (2.36) and (iv)-Proposition 2.3, we have

C 2
q
, q′(On) = C 2

q
, q′

(
(On ∩ bq(On))

⋃
(On ∩ eq(On))

)
≤ C 2

q
, q′(Õn) ≤ cC 2

q
, q′(On).

Thus C 2
q
, q′(On) → 0. The result follows by

UAn ≤ UOn

and by (5.25). �

Corollary 5.18 Let E be a Borel set such that C 2
q
, q′(E) = 0. If u ∈ U

Ẽc(QT ) then u = 0. In

particular UE ≡ 0.

Proposition 5.19 Let E, F be Borel sets.
(i) If E, F are Tq-closed, then UE ∧ UF = UE∩F .
(ii) If E, F are Tq-closed, then

UE < UF ⇔ [E ⊂q F and C 2
q
, q′(F \E) > 0],

UE = UF ⇔ E ∼q F. (5.27)
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(iii) If Fn is a decreasing sequence of Tq-closed sets, then

lim
n→∞

UFn = UF where F = ∩Fn.

(iv) Let A be a Tq-open set and u ∈ U+(QT ). Suppose that u vanishes Tq-locally in A, i.e. for
every point σ ∈ A there exists a Tq-open set Aσ such that

σ ∈ A ⊂ A, u ≈Aσ 0.

Then u vanishes on A. In particular any u ∈ U+(QT ) vanishes on the complement of Tq-supp (u).

Proof. The proof is similar to the one in [23] dealing with elliptic equations.
(i) UE∧UF is the largest solution under inf(UE , UF ) and therefore, by definition, it is the largest
solution which vanishes outside E ∩ F.
(ii) By (5.25) UE and UF satisfies the same capacitary quasi-representation up to universal
constants. By the Remark after Proposition 5.15 ,

E ∼q F ⇒ C1

C2
UE ≤ UF ≤ C2

C1
UE ⇒ UE = UF .

The proof of
E ⊂q F ⇒ UE ≤ UF .

follows from Proposition 5.15 and the fact that UE = VE and UF = VF and VE ≤ VF . In
addition,

C 2
q
, q′(F \E) > 0 ⇒ UE 6= UF .

Indeed, if K is a compact subset of F \ E of positive capacity, then UK > 0 and UK ≤ UF but
UK � UE. Therefore UE = UF implies E ∼q F and UE ≤ UF implies E ⊂q F.
(iii) If V := limn→∞UFn then UF ≤ V. But Tq-supp (V ) ⊂ Fn for each n ∈ N and consequently
V ≤ UF .
(iv) First assume that A is a countable union of Tq-open sets {An} such that u ≈An 0 for each
n. Then u vanishes on ∪ki=1Ak for each k. Therefore we can assume that the sequence Ak is
increasing. Put Fn = Acn. Then u ⊂ UFn and by (iii), UFn ↓ UF where F = Ac. Thus u ≤ UF ,
i.e.,which is equivalent to u ≈A 0.

We turn to the general case. It is known that the Tq-fine topology possesses the quasi-
Lindelöf property (see [2, Sec. 6.5.11]) as any topology associated to a Bessel capacity Cα,p.
Therefore A is covered, up to a set of capacity zero, by a countable subcover of {Aσ : σ ∈ A}.
Therefore the previous argument implies that u ≈A 0. �

Proposition 5.20 (i) Let E be a Tq-closed set. Then

UE = inf{UD : E ⊂ D, D open}
= sup{UK : K ⊂ E, K closed}. (5.28)

(ii) If E, F are two Borel sets then

UE = UF∩E ⊕ UE\F .
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(iii) Let E, Fn, n = 1, 2, ... be Borel sets and let u be a positive solution of (3.1). If either
C 2

q
, q′(E △ Fn) → 0 or F̃n ↓ Ẽ then

UFn → UE.

Proof. (i) Let {Qj} be the decreasing sequence of open sets of Lemma 2.8-(I) such that ∩Qj =
∩Q̃j = E′ ∼q E. Thus by Proposition 5.19 (iii) we have that UQj

→ UE , this implies the first
equality in (i).

Let {Fn} be a nondecreasing sequence of closed subsets of E such that C 2
q
, q′(E \ Fn) → 0.

Let D1 and D2 be open sets such that Fn ⊂ D1 and E \ Fn ⊂ D2. Also set D3 = (D̃1 ∪ D̃2)
c.

Let u
(i)
β be the positive solution of

∂tu−∆u+ uq = 0 in RN × (β, T ]

u(., β) = χ
D̃i
UE(.) on RN , (5.29)

where 0 < β < T. For any (x, t) ∈ RN × (β, T ] we have

UE ≤ u
(1)
β + u

(2)
β + u

(3)
β .

Letting β → 0 (taking an subsequence if it is necessary) we have u
(i)
β → u(i) and

UE ≤ u(1) + u(2) + u(3) in QT ,

But u(i) ≤ UDi
thus

UE ≤ UD1 + UD2 + u(3).

Now u(3) ≤ UD3 and u(3) ≤ UE thus by Proposition 5.20-(i) u(3) ≤ UD3∩E . But D1 ∪D2 is an
open set and thus C 2

q
, q′(D3 ∩E) = 0, which implies by Corollary 5.18 that u(3) = 0. Finally we

have that
UE ≤ UD1 + UD2 .

Since Di is arbitrary, we have by the first assertion of this Proposition

UE ≤ UFn + UE\Fn
. (5.30)

But C 2
q
, q′(E \ Fn) → 0, thus by Proposition 5.17, we have

UE ≤ lim
n→∞

UFn ⇒ UE = lim
n→∞

UFn ,

since UFn ≤ UE for any n ∈ N.
(ii) By similar argument as in the proof of (5.30) we can prove that

UE ≤ UF∩E + UE\F ⇒ UE ≤ UF∩E ⊕ UE\F .

On the other hand both UF∩E and UE\F vanish outside of Ẽ. Consequently UF∩E ⊕ UE\F

vanishes outside Ẽ so that
UE ≥ UF∩E ⊕ UE\F ,
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and the result follows in this statement.
(iii) The previous statement implies,

UE ≤ UFn∩E + UE\Fn
, UFn ≤ UFn∩E + UFn\E . (5.31)

If C 2
q
, q′(E △ Fn) → 0 then Proposition 5.17 implies UE△Fn

→ 0. And the result follows in this

case by (5.31).
If F̃n ↓ Ẽ the result follows in this case by Proposition 5.19(iii). �

This implies the following extension of Proposition 5.15 to merely Tq-closed sets.

Proposition 5.21 If E is a Tq-closed set, then VE and UE satisfy the capacitary estimates
(5.15). Thus UE = VE and the maximal solution UE is σ-moderate.

Remark. Actually the estimates hold for any Borel set E. Indeed by definition, UE = U
Ẽ
and

C 2
q
, q′

(
E ∩ Fn(x, t)√

(n+ 1)t

)
∼ C 2

q
, q′

(
Ẽ ∩ Fn(x, t)√

(n+ 1)t

)
.

Proof. The proof is same as in [23].
Let {Ek} be a Tq-stratification of E. If u ∈ Vmod and µ = tru then uµ = supuµk where
µk = µχEk

. Hence VE = supVEk
. By proposition 5.25, UEk

= VEk
. These facts and Proposition

5.20(c) implies UE = VE. Since UEk
satisfies the capacitary estimates (5.15) and

C 2
q
, q′

(
Ek ∩ Fn(x, t)√

(n+ 1)t

)
→ C 2

q
, q′

(
Ẽ ∩ Fn(x, t)√

(n+ 1)t

)
as n→ ∞.

it follows that UE satisfies the corresponding capacitary estimates. �

5.4 Localization

Definition 5.22 Let A be a Borel subset of RN , we denote by [u]A the supremum of the v ∈
U+(QT ) which are dominated by u and vanishes on Ãc.

We note here that [u]A = u ∧ UA
Lemma 5.23 If G ⊂ RN is a Tq-open set and u ∈ UG(QT ), then

u = sup{v ∈ UG(QT ) : v ≤ u, v vanishes on an open neighborhood of G}.

Proof. Set A = Gc and let {An} be a sequence of closed subsets of A, such that C 2
q
, q′(A\An) →

0. By Proposition 5.20 we have
UA ≤ UAn + UA\An

,

thus
u = u ∧ UA ≤ u ∧ UAn + u ∧ (UA\An

).
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By Proposition 5.17, we have
UA\An

→ 0.

Thus
u = lim

n→∞
u ∧ UAn ,

and the result follows. �

The next result points out the set-regularity of the correspondence E 7→ [u]E .

Proposition 5.24 Let u ∈ U+(QT ).
(i) If E is Tq-closed then,

[u]E = inf{[u]D : E ⊂ D, D open}. (5.32)

= sup{[u]F : F ⊂ E, F closed}. (5.33)

(ii) If E, F are two Borel sets then

[u]E ≤ [u]F∩E + [u]E\F , (5.34)

and
[[u]E ]F = [[u]F ]E = [u]F∩E . (5.35)

(iii) Let E, Fn, n = 1, 2, ... be Borel sets and let u be a positive solution of (3.1). If either
C 2

q
, q′(E △ Fn) → 0 or F̃n ↓ Ẽ then

[u]Fn → [u]E .

Proof. The proof uses a similar argument as in [23].
(i) Let D = {D} be the family of sets in (5.32). By (5.28) (with respect to the family D)

inf(u,UE) = inf(u, inf
D∈D

UD) = inf
D∈D

inf(u,UD) ≥ inf
D∈D

[u]D. (5.36)

Obviously
[u]D1 ∧ [u]D2 ≥ [u]D1∩D2 ,

thus we can apply Proposition 3.4 and obtain that the function v := infD∈D[u]D is a solution of
(3.1). Hence (5.36) implies [u]E ≥ v. The opposite inequality is obvious.

For the equality (5.33), Firstly, we note that the set {v ∈ U+(QT ) : u ≤ u, Tq-supp (v) ⊂q E}
is closed under ∨. Thus, by Proposition 3.4, there exists an increasing sequence {vn} such that
vn ≈Ec= 0 and limn→∞ vn = [u]E . Since vn is an increasing sequence by Proposition 5.23 we can
construct an increasing sequence {wn} such that each wn vanishes on an open neighborhood Bn
of E, Bn ⊂ Bn+1 and limn→∞wn = [u]E . Now set Kn = Bc

n, then

wn ≤ [u]Kn ≤ [u]E .

Letting n tend to infinity, we obtain the desired result.
(ii) Let v ∈ U+(QT ), v ≤ u and Tq-supp (v) ⊂ E. Let D and D′ be open sets such that
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Ẽ ∩ F ⊂ D and Ẽ \ F ⊂ D′. By Lemma 2.8-[19], there exists a unique solution v1j , where
1
[T ] < j ∈ N, of the problem

∂tu−∆u+ |u|q−1u = 0, in RN × (
1

j
, T ]

u(.,
1

j
) = χD(.)v(.,

1

j
) in RN .

Also we consider v2j and v
3
j the unique solutions of the above problem with initial data χD′(x)v(x, 1

j
)

and χ(D1∪D2)c . In view of the proof of Proposition 5.20 we can prove that v ≤ v1j + v2j + v3j .

By standard arguments there exists a subsequence, say {vij}, i = 1, 2, 3, such that vij → vi and

v ≤ v1 + v2 + v3. Since v vanishes outside of E, it vanishes outside of (D1 ∪D2), consequently
v(x, 1

j
)χχ(D1∪D2)

c → 0, as j → ∞, which implies v3j → 0. Thus we have

v ≤ v1 + v2 ≤ [u]D + [u]D′ .

By (5.32) we have
v ≤ [u]F∩E + [u]E\F ,

since v ∈ {w ∈ U+(QT ) : w ≤ u, Tq-supp (w) ⊂q E} is arbitrary the result follows in the case
where E is closed. In the general case the result follows by (5.33).

Put A = Ẽ and B = F̃ . It follows directly from the definition that

[[u]A]B ≤ inf(u,UA, UB).

The largest solution dominated by u and vanishing on Ac ∪Bc is [u]A∩B . Thus

[[u]A]B ≤ [u]A∩B .

On the other hand
[u]A∩B = [[u]A∩B ]B ≤ [[u]A]B,

this proves (5.35).

(iii) By (5.34)
[u]E ≤ [u]Fn∩E + [u]E\Fn

, [u]Fn ≤ [u]Fn∩E + [u]Fn\E .

If C 2
q
, q′(E△Fn) → 0, then by Proposition (5.17)(c) we have that UE△Fn

→ 0. Since [u]E\Fn
, [u]Fn\E ≤

UE△Fn
, the result follows by the above inequalities, if we let n go to infinite.

If F̃n ↓ Ẽ. By Proposition (5.17)(c) we have UEn → UE, thus

[u]E ≤ lim
n→∞

[u]Fn = lim
n→∞

u ∧ UFn ≤ lim
n→∞

inf(u,UFn) ≤ inf(u,UE).

And since [u]E is the largest solution under inf(u,UE) and the function v = limn→∞[u]Fn is a
solution of (3.1), we have that UE ≤ v, and the proof of (5.34) is complete. �
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Definition 5.25 Let µ be a positive Radon measure on RN which vanishes on compact sets of
C 2

q
, q′-capacity zero.

(a) The Tq-support of µ, denoted Tq-supp(µ), is the intersection of all Tq-closed sets F such
that µ(F c) = 0.
(b) We say that µ is concentrated on a Borel set E if µ(Ec) = 0.

Proposition 5.26 If µ is a measure as in the previous definition then,

Tq-supp (µ) ∼q
Tq-supp (uµ).

Proof. Put F = suppquµ. By Proposition 5.19(iv) uµ vanishes on F c and by Proposition 5.23(c)
there exists an increasing sequence of positive solutions un such than each function un vanishes
outside a closed subset F, say Fn, and un ↑ uµ. If Sn := Tq-supp (un) then Sn ⊂ Fn and {Sn}
increases. Thus {Sn} is an increasing sequence of closed subsets of F and, setting µn = µχSn

,
we find un ≤ uµn ≤ uµ so that uµn ↑ uµ. This, in turn, implies

µn ↑ µ, Tq-supp(µ) ⊂q
∞̃⋃

n=1

Sn ⊂ F.

If D is an open set and µ(D) = 0 it is clear that uµ vanishes on D. Therefore uµn vanishes outside
of Sn, thus outside Tq-supp (µ). Consequently uµ vanishes outside Tq-supp(µ), i.e., F ⊂q Tq-
supp (µ).

Second proof. The result follows by Proposition 5.7 and Definition 5.8 �

Definition 5.27 Let u be a positive solution and A a Borel set. Put

[u]A := sup{[u]F : F ⊂q A, F q−closed}.

Definition 5.28 Let β > 0, u ∈ C(QT ). For any Borel set A we denote by uAβ the positive
solution of

∂tv −∆v + |v|q−1v = 0 in RN × (β,∞)

v(., β) = χA(.)u(., β) in RN .

Proposition 5.29 Let u be a positive solution of (3.1) and put E = Tq-supp (u).
(i) If D is a Tq-open set such that E ⊂q D, then

[u]D = lim
β→0

uDβ = [u]D = u. (5.37)

(ii) If A is a Tq-open set, then

u ≈A 0 ⇔ uQ = lim
β→0

uQβ = 0, ∀Q Tq−open : Q̃ ⊂q A. (5.38)

(iii) Finally,
u ≈A 0 ⇔ [u]A = 0. (5.39)
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Proof. The proof is similar as in the one as in [23]
Case 1: E is closed. Since u vanishes in Ec, it yields u ∈ C(Q∞ ∪ Ec) and u = 0 on Ec. If, in
addition, D is an open neighborhood of E, we have

lim
t→0

∫

Ec

φ(x)u(x, t)dx = 0, ∀φ ∈ C0(E
c).

Thus,
lim
β→0

uD
c

β = 0.

Since
uDβ ≤ u ≤ uDβ + uD

c

β , ∀t ≥ β,

it follows
u = lim

β→0
uDβ . (5.40)

If we assume that D is Tq-open and E ⊂q D then, for every ε > 0, there exists an open set Oε
such that D ⊂ Oε, E ⊂ Oε and C 2

q
, q′(O

′
ε) < ε where O′

ε = Oε \D. Therefore

uOε

β (x, t)− uDβ (x, t) ≤ UO′
ε
(x, t− β), ∀t ≥ β.

We note here that limε→0UO′
ε
(x, t−β) = 0 holds uniformly with respect to β. Since limβ→0 u

Oε

β (x, t) =

u it follows that u = limβ→0 u
D
β . The same arguments shows that limβ→0 u

Dc

β = 0. Thus we have

u = lim
β→0

uDβ ≤ [u]D ≤ u.

Hence u = [u]D. By Lemma 2.7, there exists a Tq-open set Q such that E ⊂q Q ⊂ Q̃ ⊂q D, then
u = [u]Q ≤ [u]D. Hence u = [u]D.

In addition, there holds E ⊂q Ac ⊂q Q̃c. Thus the direction ”⇒” in (5.38) follows by the
previous argument if we replace D by Q̃c. For the opposite direction, by Proposition 2.38, for

any ξ ∈ A, there exists a Tq-open set Oξ such that Õξ ⊂q A. Using (i) we infer u = limβ→0 u
Õc

ξ

β .

Finally, since u
Õc

ξ

β ≈Qξ
0 for all β > 0, it implies u ≈Oξ

0 by Proposition 5.17(i), and the result
follows in this case by Proposition 5.19(iv).

Case 2. Assume E is Tq-closed. Let {En} be a Tq-stratification of E such that C 2
q
, q′(E\En) → 0.

If D is a Tq-open such that E ⊂q D then, by the first case we have,

lim
β→0

([u]En)
D
β = [u]En . (5.41)

By (5.34) and the definition of uDβ , and since [u]E = u,

uDβ = ([u]E)
D
β ≤ ([u]E∩En)

D
β +

(
[u]E\En

)D
β
= ([u]En)

D
β +

(
[u]E\En

)D
β
. (5.42)

Let {βk} be a decreasing sequence converging to 0 such that the following limits exist

w := lim
k→∞

uDβk , wn = lim
k→∞

(
[u]E\En

)D
βk
, n = 1, 2, ... .
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Then by (5.41) and (5.42),

[u]En ≤ w ≤ [u]En +wn ≤ [u]En + UE\En
.

Further, by (5.33) and Proposition 5.20(c)

[u]En → [u]E = u, UE\En
→ 0.

Hence w = u. This implies (5.40), which in turn implies (5.37).
To verify (5.38) in the direction ⇒ we apply (5.42) with D replaced by Q. We obtain

([u]E)
Q
β ≤ ([u]En)

Q
β +

(
[u]E\En

)Q
β
.

By the first case we have
lim
β→0

([u]En)
Q
β = 0.

There exists a decreasing sequence converging to 0, still denoted by {βk}, such that the following
limits exist

lim
k→∞

uQβk , lim
k→∞

(
[u]E\En

)Q
βk
, n = 1, 2, ... .

Then
lim
k→∞

uQβk ≤ lim
k→∞

(
[u]E\En

)Q
βk

≤ UE\En
,

since UE\En
→ 0 we obtain (5.38) in the direction ⇒ . The assertion in the opposite direction is

proved as in Case 1. This complete the proofs of (i) and (ii).
Finally we prove (iii). First assume that u ≈A 0. If F is a Tq-closed set such that F ⊂q A,

then by Lemma 2.7 there exists a Tq-open set Tq such that F ⊂q Q ⊂ Q̃ ⊂q A. Therefore,
applying (5.37) to v := [u]F and using (5.38) we obtain

v = lim
β→0

vQβ ≤ lim
β→0

uQβ = 0.

By definition of [u]A, this implies [u]A = 0.
If [u]A = 0, then for any Tq-open set Q ⊂ Q̃ ⊂q A there holds [u]Q = 0.. Now since

Tq-supp (u
Q
β ) ⊂q Q̃ we have for some subsequence βk ↓ 0, limk→∞ uQβk ≤ [u]Q = 0. Thus u ≈Q 0

by (5.38). Applying once again Proposition 2.38 and Proposition 5.19(iv) we conclude u ≈A 0.
�

Definition 5.30 Let u, v ∈ U+(QT ) and let A be a Tq-open set. We say that u = v on A if
u⊖ v and v ⊖ u vanishes on A. This relation is denoted by u ≈A v.

Proposition 5.31 Let u, v ∈ U+(QT ) and let A be a Tq-open set. Then,
(i)

u ≈A v ⇔ lim
β→0

|u− v|Qβ = 0. (5.43)

for every Tq-open set Q such that Q̃ ⊂q A.
(ii)

u ≈A v ⇔ [u]F = [v]F , (5.44)

for every Tq-closed set F such that F ⊂q A.
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Proof. The proof is similar, but in a parabolic framework, to the elliptic one in [23].
By definition u ≈A v is equivalent to u⊖ v ≈A= 0 and v ⊖ u ≈A= 0. Hence, by (5.38) we have
wβ = (u⊖ v)Qβ →β→0 0. Set fβ = ((u− v)+)

Q
β and consider the problem

∂tw −∆w + |w|q = 0, in Bj(0) × (β,∞)

w = 0, on ∂Bj(0)× (β,∞)

w(., β) = µ, in Bj(0).

Let wj and fj be solutions of the above problem, with initial data χQ(u⊖ v)(x, β) and χQ(u−
v)+(x, β). By [19, Lemma 2.7], the sequences {wj} and {fj} are increasing. Also, we recall that
u⊖ v is the smallest solution which dominates the subsolution (u− v)+, thus wj ≥ vj , ∀j ∈ N.
Furthermore, in view of [19, Lemma 2.8], there holds limj→∞wj = wβ and limj→∞ fj = fβ.
Thus wβ ≥ fβ, and letting β → 0 we derive

((u− v)+)
Q
β → 0.

By the same argument we have
((v − u)+)

Q
β → 0,

this implies (5.43) in the direction ⇒.
For the opposite direction, we consider the problem

∂tw −∆w + |w|q = 0, in Bj(0)× (β,∞)

w = h, on ∂Bj(0) × (β,∞)

w(., β) = µ, in Bj(0).

Let Q ⊂ Q̃ ⊂q A be a Tq-open set and wj be the solution of the above problem, with h =
χQ(|u − v|) and µ = χQ|u − v|dx. Also, let fj be the solution of the above problem with
h = χQc|u− v| and µ = χQc |u− v|dx, then

|u− v| ≤ wj + fj.

In view of [19, Lemma 2.8], there exist subsequences, say {wj} and {fj}, satisfying limj→∞wj =
w and limj→∞ fj = f, such that (w, f) solves the problem

∂tv −∆v + |v|q−1v = 0, in RN × (β,∞)

v(., β) = µ in RN ,

with initial data µ = χQ|u − v|dx and µ = χQc|u − v|dx respectively. By uniqueness of the

problem (see [19, Lemma 2.8]), we have w = |u− v|Qβ and f = |u− v|Qc

β . Let βk be a decreasing
sequence such that the following limit exists

lim
k→∞

|u− v|Qc

βk
.

Since limβ→0 |u− v|Qβ = 0, we have

|u− v| ≤ lim
k→∞

|u− v|Qc

βk
.
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Now since |u − v|Qc

βk
≈Q 0, by Proposition 5.17(i) we have limk→∞ |u − v|Qc

βk
≈Q= 0. Using the

fact that u ⊖ v is the smallest solution which dominates the subsolution (u − v)+, there holds
max{u ⊖ v, v ⊖ u} ≤ limk→∞ |u − v|Qc

βk
and the result follows in this case by Propositions 5.23

and 5.19(iv).
(ii) We assume that u ≈A v.
For any two positive solutions u, v we have

u+ (v − u)+ ≤ v + (u− v)+ ≤ v + u⊖ v (5.45)

If F is a Tq-closed set and Q a Tq-open set such that F ⊂q Q, we claim that

[u]F ≤ [v]Q + [u⊖ v]Q. (5.46)

To verify this inequality, we observe first that (see (5.34))

u = [u]RN ≤ [u]Q + [u]Qc ,

thus by (5.45)

[u]F ≤ [u]RN ≤ v + u⊖ v ≤ [v]Q + [v]Qc + [u⊖ v]Q + [u⊖ v]Qc .

The subsolution w := ([u]F − ([v]Q + [u⊖ v]Q))+ is dominated by the supersolution [u⊖ v]Qc +
[v]Qc . By definition we have

w ≤ [w]† ≤ [u⊖ v]Qc ⊕ [v]Qc ≤ [u⊖ v]Qc + [v]Qc .

Thus [w]† ≈Q 0. But w ≤ [u]F which implies [w]† ≤ [u]F , that is Tq-supp ([w]†) ⊂q F ⊂q Q.
Taking into account that [w]† ≈Q 0 we have that w = [w]† = 0 and the proof of (5.46) is
completed.
If we choose a Tq-open set Q such that F ⊂q Q ⊂ Q̃ ⊂q A (see Lemma 2.7), and using the fact
that u⊖ v ≈A= 0 ⇒ [u⊖ v]F = 0 (see (5.39)) and (5.46), we infer

[u]F ≤ [v]Q.

Now by Lemma 2.8(I), we can construct a decreasing sequence {Qj} of open sets such that
∩Qj ∼q F, thus by Proposition 5.24(iii) we have

[u]F ≤ lim
n→∞

[v]Qn = [v]F .

Similarly, [v]F ≤ [u]F and hence the equality holds.
Next we assume that [u]F = [v]F for any Tq-closed set F ⊂q A. If Q is a Tq-open set such

that F ⊂q Q ⊂ Q̃ ⊂q A (see Lemma 2.7), we have

u⊖ v ≤ ([u]Q ⊕ [u]Qc)⊖ [v]Q,

where in the last inequality we have used the fact that

u = [u]RN ≤ [u]Q + [u]Qc ⇒ u ≤ [u]Q ⊕ [u]Qc ≤ [u]Q + [u]Qc .
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Since ([u]Q ⊕ [u]Qc) ⊖ ([v]Q) is the smallest solution dominating (([u]Q ⊕ [u]Qc)− [v]Q)+ , we
have

(([u]Q ⊕ [u]Qc)− [v]Q)+ ≤ (([u]Q + [u]Qc)− [v]Q)+ = [u]Q + [u]Qc − [v]Q = [u]Qc ,

since by assumption we have [u]Q = [v]Q. Thus we have

[u⊖ v]F ≤ u⊖ v ≤ [u]Qc ,

This means Tq-supp ([u⊖ v]F ) ⊂q F and [u⊖ v]F ≈Q 0, which in turn implies [u⊖ v]F = 0, and
by 5.39 u⊖ v ≈A= 0. Similarly, v ⊖ u ≈A 0. �

Corollary 5.32 If A is a Tq-open set, the relation ≈A is an equivalence relation in U+(QT ).

Proof. This is an immediate consequence of (5.43). �

6 The precise initial trace

6.1 The regular initial set

Lemma 6.1 Let u ∈ U+(QT ) and Q be a Tq-open set. Then for any η ∈W
2
q
,q′
(RN )∩L∞(RN )

with Tq-support in Q̃
c, we have

∫ T

0

∫

RN

(u ∧ UQ)q(t, x)H2q′ [η]+dxdt <∞.

Proof. By Proposition 5.9 and the properties of UQ, there holds

lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx = 0,

and the result follows by the estimates in Lemma 5.11. �

Proposition 6.2 Let u ∈ U+(QT ) and Q be a Tq-open set. We assume that u∧UQ is a moderate
solution with initial data µ. Then for any ξ ∈ Q there exists a Tq-open set Oξ ⊂ Q such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χOξ
]+dxdt <∞.

Furthermore, for any η ∈W
2
q
,q′(RN ) ∩ L∞(RN ) with Tq-support in Q, we have

lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′
dµ.
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Proof. Let η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in Q. Since η2q

′

+ is a quasi continuous
function we have by Lemma 5.7 that

lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′
dµ.

Using the properties of UQc,

lim
t→0

∫

Q

u ∧ UQc(x, t)η2q
′

+ (x)dx = 0.

Combining all above and using the fact that u ≤ u ∧ UQ + u ∧ UQc we get
∫

Q

η2q
′
dµ = lim

t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx ≤ lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx

≤ lim
t→0

∫

Q

u ∧ UQ(x, t)η2q
′

+ (x)dx + lim
t→0

∫

Q

u ∧ UQc(x, t)η2q
′

+ (x)dx

=

∫

Q

η2q
′
dµ+ 0.

In view of the proof of Lemma 5.2 and by 5.3 there holds
∫ T

0

∫

RN

(u ∧ UQ)q(t, x)H2q′ [η]+dxdt <∞, (6.1)

for any η ∈ W
2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in Q. By Lemma 4.2, there exists η ∈

W
2
q
,q′(RN ) ∩ L∞(RN ) such that 0 ≤ η ≤ 1, η = 1 on Oξ ⊂ Q and Tq-supp (η) ⊂ Q. Thus we

have by (6.1) and the properties of η,
∫ T

0

∫

RN

(u ∧ UQc)q(t, x)H2q′ [χOξ
]dxdt <∞. (6.2)

�

Definition 6.3 (Section 10.1-[2]) Let Q be a Borel set. We denote W
2
q
,q′(Ec) the closure of

the space of C∞ functions (with respect the norm || · ||
W

2
q ,q′ ) with compact support in Ec.

Proposition 6.4 Let u be a positive solution of (3.1) and Q a bounded Tq-open sets such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χQ]dxdt <∞. (6.3)

(i) Then, there exists an increasing sequence of Tq-open set {Qn} satisfying Qn ⊂ Q, Q̃n ⊂q

Qn+1 and Q0 :=
⋃∞
n=1Qn ∼q Q, such that the solution vn = u ∧ Qn is moderate, vn ↑ [u]Q,

tr(vn) → µQ.

(ii) For any η ∈W
2
q
,q′
(Q) we have

lim
t→0

∫

Q

u(x, t)η2q
′

+ (x)dx =

∫

Q

η2q
′

+ (x)dµQ.
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Proof. We choose a point z ∈ Q. Then by Lemma 4.2 there exist a Tq-open set V, such that

z ∈ V ⊂ Ṽ ⊂ Q, and a function ψ ∈W
2
q
,q′
(RN ) such that ψ = 1 q.a.e. on V and ψ = 0 outside

Q. By Lemma 2.38, there exists a Tq-open set z ∈ Oz ⊂ Õz ⊂ V.
We assert that the function

vz = u ∧ UOz (6.4)

is a moderate solution.
Indeed, let BR(0) be a ball with radius R large enough such that Q ⊂⊂ BR(0). Also, let

0 ≤ η ≤ 1 be a smooth function with compact support in B2R(0) and η = 1 on BR(0). Then the

function ζ = (1− ψ)η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) with compact support in B2R(0) \ Ṽ . Now

∫ T

0

∫

RN

vqz(t, x)H
2q′ [χBR(0)]dxdt ≤

∫ T

0

∫

RN

vqz(t, x)H
2q′ [ψ]dxdt +

∫ T

0

∫

RN

vqz(t, x)H
2q′ [1− ψ]dxdt

≤
∫ T

0

∫

RN

vqz(t, x)H
2q′ [ψ]dxdt +

∫ T

0

∫

RN

vqz(t, x)H
2q′ [ζ]dxdt <∞,

where the first integral in the last inequality is finite by assumption and the second integral is
finite by Lemma 6.1. Thus since BR(0) is arbitrary, the function u∧Oz is a moderate solution.

By the quasi-Lindelöff property there exists a non decreasing sequence of Tq- open set {On}
such that Q ∼q ∪On and (by the above arguments) the solution u ∧ UOn is moderate for any
n ∈ N. Now, by Lemma 2.8 (II)(i)-(ii), for any n ∈ N, there exists an increasing sequence {An,j}
of Tq-open sets such that Ãn,j ⊂q An,j+1 ⊂q En and

⋃∞
j=1An,j ∼q En. Put

Qn =
⋃

k+j=n

Ak,j.

Then
Q̃n ⊂

⋃

k+j=n

Ãk,j ⊂q
⋃

k+j=n

Ãk,j+1 = Qn+1.

Hence,

Q0 :=
⋃
Qn ∼q Q.

Now, we will prove that vn = u ∧ UQn → u ∧ UQ. By Proposition 5.24(ii) we have

u ∧ UQ ≤ u ∧ UQn + u ∧ UQ\Qn
.

Since Q \Qn ↓ F with C 2
q
, q′(F ) = 0, we have by Proposition 5.24(iii) that

u ∧ UQ\Qn
→ 0.

The opposite inequality is obvious and the result follows in this assertion. By Lemma 5.24(ii)
vn = [vn+k]Qn , ∀k ∈ N. Therefore

µn(Qn) = µn+k(Qn) = µQ(Qn). (6.5)
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(ii) First we assume that the function η ∈W
2
q
,q′
(Q) has compact support in Q. Then by Lemma

4.3 there exists a function ηk such that Tq-supp (ηk) ⊂ Qk, and

||η − ηk||
W

2
q ,q′ ≤

1

k
, (6.6)

and |ηk| ≤ |η|. By Lebesgue’s dominated theorem, we can assume that ηk satisfies

∫ T

0

∫

RN

uq(t, x)(H[η − ηk])
2q′dxdt <

1

k

Also in view of Proposition 5.2 and (5.7)-(5.11),

lim
t→0

∫

Q

u(x, t)η2q
′
(x)dx ≤ C||η||q′

L∞(RN )
||η||q′

W
2
q ,q′

+

∫ T

0

∫

RN

uq(t, x)(H[η])2q
′
dxdt,

But by (6.5) and Lemma 6.2 we have

(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

= lim
t→0

(∫

Q

u(x, t)η2q
′

k (x)dx

) 1
2q′

≤ lim
t→0

(∫

Q

u(x, t)η2q
′
(x)dx

) 1
2q′

≤ lim
t→0

(∫

Q

u(x, t) (η − ηk)
2q′ (x)dx

) 1
2q′

+ lim
t→0

(∫

Q

u(x, t)η2q
′

k (x)dx

) 1
2q′

≤
(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

+ C||η − ηk||
1
2

L∞(RN )
||η − ηk||

1
2

W
2
q ,q′

+

(∫ T

0

∫

RN

uq(t, x)(H[η − ηk])
2q′dxdt

) 1
2q′

≤
(∫

Q

η2q
′

k (x)dµQ

) 1
2q′

+ C
1√
k
||η||

1
2

L∞(RN )
+

(
1

k

) 1
2q′

.

The result follows in this case by letting k → ∞.
For the general case, by theorem 10.1.1 in [2], there exists a function ηk with compact support
in Q such that

||η − ηk||
W

2
q ,q′ ≤

1

k
, (6.7)

and |ηk| ≤ |η|. The result follows as above. �

Remark. By Lemma 6.2 and (6.4), we have that the definition of the regular points in the elliptic
case (see [23]) coincides with our definition of the regular points.

Lemma 6.5 Let Q be a Tq-open set and u ∈ U+(QT ) satisfy (6.3). Then
i)

[u]Q = sup{[u]F : F ⊂q Q, F Tq−closed}. (6.8)
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ii) For every Tq-open set O ⊂ Õ ⊂q Q such that [u]O is a moderate solution we have

µQχÕ = tr′[u]O) = tr([uQ]O). (6.9)

Finally, µQ is Tq-locally finite on Q and σ-finite on Q′ := ∪Qn.
iii) If {wn} ⊂ U+(QT ) is a nondecreasing sequence of moderate solutions such that Tq-supp(wn) ⊂q

Q and wn ↑ [u]Q, then tr(wn) = νn ↑ µQ.

Proof. i) Let u∗ denote the right-hand side of (6.8). By Proposition 3.4 there exists a nonde-
creasing sequence {[u]Fn} such that [u]Fn ↑ u∗. We consider the function [u]Qn of Proposition
6.4. Then by Proposition 5.24 we have

[u]Fn ≤ [u]Fn∩Qm + [u]Fn\Qm
.

Now we note that Fn \Qm is a Tq-closed set and ∩∞
m=1Fn \Qm = A with C 2

q
, q′(A) = 0. Thus by

Proposition 5.19 we have that limm→∞ UFn\Qm
= 0 which implies limm→∞[u]Fn\Qm

= 0. Thus
[u]Fn ≤ lim[u]Qm = uQ. Letting n → ∞ we have u∗ ≤ uQ. By definition of u∗ we have that
uQ ≤ u∗, thus u∗ = uQ.

ii) Put µO = tr([u]O). If F is a Tq-closed set such that F ⊂q O , by Proposition 5.24-(ii)
we have

tr([u]F ) = tr([[u]O]F ) = µOχF . (6.10)

In particular the compatibility condition holds: if O′ ⊂ Õ′ ⊂q Q is Tq-open set such that [u]O′

is a moderate solution
µO∩O′ = µOχÕ∩Õ′ = µO′χ

Õ∩Õ′ . (6.11)

With the notation of (6.5), [vn+k]Qk
= vk and hence µn+kχQ̃k

= µk for every k ∈ N.
Since [u]F is moderate, we have by (6.11)

[vn]F = [u]
F∩Q̃n

↑ [u]F . (6.12)

In addition, [uQ]F ≥ limn→∞[vn]F = [u]F , jointly with uQ ≤ u, leads to,

[u]F = [uQ]F . (6.13)

By (6.10) and (6.12), if F is a Tq-closed subset of Rq(u) and [u]F is moderate,

tr([u]F ) = lim
n→∞

tr([vn]F ) = lim
n→∞

µnχF = µRqχF , (6.14)

which implies (6.9).
Since Q′ := ∪Qn ∼q Q, µQ is σ-finite on Q′. The assertion that µQ is Tq-locally finite on Q

is a consequence of the fact that every point in Q is contained in a Tq-open set O ⊂q Õ ⊂ Q
such that [u]O is a moderate solution (see (6.4)).
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iii) If w is a moderate solution and w ≤ uQ and Tq-supp (w) ⊂q Q, then τ := tr(w) ≤ µQ.
Indeed

[w]Qn ≤ [u]Qn = vn, [w]Qn ↑ w ⇒ tr([w]Qn) ↑ τ ≤ lim
n→∞

tr(vn) = µQ.

Now, let {wn} be an increasing sequence of moderate solutions such that Fn := Tq-supp (wn) ⊂q

Q and wn ↑ uQ. We must show that, if νn := tr(wn), then

ν := lim
n→∞

νn = µQ. (6.15)

By the previous argument ν ≤ µQ. The opposite inequality is obtained as follows. Let D be
a Tq-open set such that [u]D is moderate. Also, let K be a compact subset of D such that
C 2

q
, q′(K) > 0.

wn ≤ [wn]D + [wn]Dc ⇒ uQ = lim
n→∞

wn ≤ lim
n→∞

[wn]D + UDc .

The sequence {[wn]D} is dominated by the moderate solution [uQ]D. In addition tr([wn]D) =
νnχD̃ ↑ νχ

D̃
. Hence, νχ

D̃
is a Radon measure which vanishes on sets with C 2

q
, q′-capacity zero.

Also, [wn]D ↑ uνχ
D̃
, where uνχ

D̃
is a moderate solution with initial trace νχ

D̃
. Consequently

uQ = lim
n→∞

wn ≤ uνχ
D̃
+ UDc .

This in turn implies (
[uQ]K − uνχ

D̃

)
+
≤ inf(UDc , UK),

the function on the left being a subsolution and the one on the right a supersolution. Therefore

(
[uQ]K − uνχ

D̃

)
+
≤ [[U ]Dc ]K = 0.

Thus, [uQ]K ≤ uνχ
D̃

and hence µQχK ≤ νχ
D̃
. Further, if O is a Tq-open set such that Õ ⊂q D

then, in view of the fact that

sup{µQχK : K ⊂ O, K compact} = µQχO,

we obtain,
µQχO ≤ νχ

D̃
. (6.16)

Applying this inequality to the sets Qm, Qm+1 we finally obtain

µQχQm ≤ νχ
Q̃m+1

≤ νχQm+2 .

Letting m→ ∞ we conclude that µRq ≤ ν. This completes the proof of (6.15). �
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6.2 Tq-perfect measures

Definition 6.6 Let µ be a positive Borel measure on RN .
(i) We say that µ is essentially absolutely continuous relative to C 2

q
, q′ if the following

condition holds:
If Q is a Tq-open set and A is a Borel set such that C 2

q
, q′(A) = 0 then

µ(Q \ A) = µ(Q).

This relation be denoted by
µ ≺≺f C 2

q
, q′ .

(ii) µ is regular relative to Tq-topology if, for every Borel set E,

µ(E) = inf{µ(D) : E ⊂ D, D Tq−open}
= inf{µ(K) : K ⊂ E, K compact}. (6.17)

µ is outer regular relative to Tq-topology if the first equality in (6.17) holds.
(iii) A positive Borel measure is called Tq-perfect if it is essentially absolutely continuous rel-
ative to C 2

q
, q′ and outer regular relative to Tq-topology. The space of Tq-perfect Borel measures

is denoted by Mq(RN ).

Proposition 6.7 If µ ∈ Mq(RN ) and A is a non-empty Borel set such that C 2
q
, q′(A) = 0, then

µ =

{
∞ if µ(Q \A) = ∞ ∀Q Tq-open neighborhood of A,

0 otherwise.
(6.18)

If µ0 is an essentially absolutely continuous positive measure on RN and Q is Tq-open set such
that µ0(Q) < ∞ then µ0|Q is absolutely continuous with respect to C 2

q
, q′ in the strong

sense, i.e., if {An} is a sequence of Borel subsets of RN

C 2
q
, q′(An) → 0 ⇒ µ0(Q ∩An) → 0.

Let µ0 is an essentially absolutely continuous positive Borel measure on RN and denote

µ(E) = inf{µ0(D) : E ⊂ D, D Tq-open}, (6.19)

for every Borel set E; then

(a) µ0 ≤ µ µ0(Q) = µ(Q) ∀Q Tq-open,

(b) µ|Q = µ0|Q for every Tq-open set Q such that µ0(Q) <∞. (6.20)

Finally µ is Tq-perfect; thus µ is the smallest measure in Mq(RN ) which dominates µ0.
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Proof. The first assertion follows immediately from the definition Mq(RN ). We turn to the
second assertion. If µ0 is an essentially absolutely continuous positive Borel measure on RN , and
Q is a Tq-open set such that µ0(Q) <∞ then µ0χQ is a bounded Borel measure which vanishes
on sets of C 2

q
, q′− capacity zero. If {An} is a sequence of Borel sets such that C 2

q
, q′(An) → 0

and µn = χQ∩An , then by Lemma 2.8-[19], there exists a unique moderate solution uµn . Also in
view of Lemma 2.8-[19] we can prove that the sequence {uµn} is decreasing. Also by Proposition
5.17, we have uµn ≤ UQ∩An → 0, since C 2

q
, q′(Q ∩An) → 0. Thus we have that uµn → 0 locally

uniformly and µn ⇀ 0 weakly with respect to C0(RN ). Hence µ(Q ∩ An) → 0. Thus µ0|Q is
absolutely continuous with respect to C 2

q
, q′ in the strong sense.

Assertion (6.20)(a) follows from (6.19). It is clear that µ, as defined by (6.19), is a measure.
Now if Q is Tq-open set such that µ0(Q) < ∞, then µ(Q) < ∞ and both µ0|Q and µ|Q are
regular. Since they agree on open sets, the regularity implies (6.20) (b).

If A is a Borel set such that C 2
q
, q′(A) = 0 and Q is a Tq-open set then Q \A is Tq-open and

consequently
µ(Q) = µ0(Q) = µ0(Q \ A) = µ(Q \ A).

Thus µ is essentially absolutely continuous. By (6.20) (a) and the definition of µ, we have that
µ is outer regular with respect to C 2

q
, q′ . Thus µ ∈ Mq(RN ). �

6.3 The initial trace on the regular set

Proposition 6.8 Let u ∈ U+(QT ).
(i) There exists an increasing sequence of Tq-open sets {Qn} with the properties Qn ⊂ Rq(u),

Q̃n ⊂q Qn+1 and Rq,0(u) :=
⋃∞
n=1Qn ∼q R(u), such that the solution

vn = u ∧ UQn is moderate vn ↑ vRq , tr(vn) → µRq . (6.21)

(ii)
vRq := sup{[u]F : F ⊂q Rq(u), F Tq−closed}. (6.22)

Thus vRq is σ-moderate.
(iii) If [u]F is moderate and F ⊂q Rq(u), there exists a Tq-open set Q such that F ⊂q Q, [u]Q
is moderate solution and Q ⊂ Rq(u)
(iv) For every Tq-open set Q, such that [u]Q is a moderate solution, we have

µRqχQ̃ = tr([u]Q) = tr([vRq ]Q). (6.23)

Finally, µRq is Tq-locally finite on Rq(u) and σ-finite on Rq,0(u) := ∪Qn.
(v) If {wn} is a sequence of moderate solutions such that wn ↑ uRq then,

µRq = lim
n→∞

tr(wn) := lim
n→∞

νn. (6.24)

(vi) The regularized measure µRq
given by

µRq
(E) = inf{µRq (Q) : E ⊂ Q, Q Tq-open, E Borel}, (6.25)
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is Tq-perfect.
(vii)

u ≈Rq(u) vRq .

(viii) For every Tq-closed set F ⊂q Rq(u) :

[u]F = [vRq ]F . (6.26)

If, in addition, µRq (F ∩K) <∞ for any compact K ⊂ RN , then [u]F is moderate and

tr([u]F ) = µRqχF . (6.27)

(ix) If F is a Tq-closed set and C 2
q
, q′(F ) > 0 then

µRq(F ∩K) <∞ for any compact K ⊂ RN ⇔ [u]F is moderate. (6.28)

Proof. (i) For any z ∈ Rq(u) there exist a bounded Tq-open set Q ⊂ Rq(u) such that

∫ T

0

∫

RN

uq(t, x)H2q′ [χQ]dxdt <∞.

The result follows by similar arguments as in Lemma 6.4. Also, we recall that for any
z ∈ Rq(u) there exists a Tq-open set Oz ⊂ Rq(u) such that

[u]Oz , (6.29)

is moderate.
Also we recall that vn = [vn+k]Qn , ∀k ∈ N and

µn(Qn) = µn+k(Qn) = µRq(Qn). (6.30)

(ii) The proof is same as the one of Lemma 6.5-a)
(iii) First we assume that F is bounded. By definition and (6.29), every point in Rq(u) possesses
a Tq-open neighborhood A such that [u]A is moderate. Then by Proposition 2.9, for any ε > 0
there exists a Tq-open set Qε such that C 2

q
, q′(F \ Qε) < ε and [u]Qε is moderate. Since F is

bounded, we can assume that so is Qε. Let Oε be an open set containing F \ Qε such that
C 2

q
, q′(Oε) < 2ε. Put

Fε := F \Oε. (6.31)

Then Fε is a Tq-closed set, Fε ⊂ F, C 2
q
, q′(F \ Fε) < 2ε and Fε ⊂ Qε.

Assertion 1. Let E be a Tq-closed set, D a Tq-open set such that [u]D is moderate and E ⊂q D.
Then there exists a decreasing sequence of Tq-open sets {Gn} such that

E ⊂q Gn+1 ⊂ G̃n+1 ⊂q Gn ⊂q D, (6.32)
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and
[u]Gn → [u]E in Lq(K) for any compact K ⊂ QT . (6.33)

By Lemma 2.8 and Proposition 5.24-(iii), there exists a decreasing sequence of Tq-open sets
{Gn} satisfying (6.32) and, in addition, such that [u]Gn ↓ [u]E locally uniformly in RN . Since
[u]Gn ≤ [u]D and the later is a moderate solution we obtain (6.33).

Now we assume that F is Tq-closed set (possibly unbounded). Let x ∈ F and Bn =
Bn(x); n ∈ N. Set

En =

n⋃

m=1

(F ∩Bn) 1
2m
,

where (F ∩Bn) 1
2m

is the set in (6.31), if we replace F by F ∩Bn and ε by 1
2m . Also we assume

without loss of generality that {En} is an increasing sequence. Also set

Qn =

n⋃

m=1

Qn1
m

,

where Qn1
m

= (F ∩ Bn) 1
m
. Also we may assume that the sequence of set {Qn} is increasing.

Therefore, we have that En ⊂ E, Qn is Tq-open, [u]Qn is moderate and En ⊂q Qn and ∪En =
E′ ∼q F, since

C 2
q
, q′(F \

∞⋃

n=1

En) ≤
n∑

k=1

C 2
q
, q′


(F ∩Bk) \

∞⋃

j=1

Ej


 +

∞∑

k=n+1

C 2
q
, q′ ((F ∩Bk) \Ek)

≤ 1

2n
+

∞∑

k=n+1

1

2k
, ∀n ∈ N.

Thus by Assertion 1, it is possible to choose a sequence of Tq-open sets {Vn} such that

En ⊂q Vn ⊂ Ṽn ⊂q Qn, ||[u]Vn − [u]En ||Lq(Bn(0))×(0,T ] ≤ 2−n. (6.34)

We note here that since En, Qn are bounded sets, the function [u]Vn , [u]En have compact
support with respect to variable ”x” in RN , thus we can take the norm in (6.34) in whole space
RN × (0, T ].

Because [u]F is moderate, there exists a Radon measure µF where µF = tr([u]F ). Moreover,
[u]F = [u]E′ since F ∼q E′. Finally, we have by (5.35) and the fact that En ⊂q F ,

[u]En = [u]En∩F = [[u]En ]F .

Using the above equality and the fact that [u]F is moderate, we have that tr([u]En) = χEnµF .
Now since En ↑ E′ ∼q F , it implies that [u]En ↑ [u]F Lq(K × [0, T ]), for compact set K ⊂ RN .
Hence, we derive from by (6.34) that [u]Vn → [u]F in Lq(K × [0, T ]) for each compact set
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K ⊂ RN .
Let {Vnk

} be a sequence such that

(∫ 1

0

∫

Bk(0)
|[u]Vnk

− [u]F |qdxdt
) 1

q

≤ 2−k. (6.35)

If Kis a compact set, there exist k0 ∈ N such that K ⊂ Bk(0), ∀k ≥ k0. Set W =
⋃∞
k=1 Vnk

,
then

[u]W ≤
∞∑

k=1

[u]Vnk
.

Thus we have

(∫ T

0

∫

K

|[u]W − [u]F |qdxdt
) 1

q

≤
k0∑

k=1

(∫ T

0

∫

K

|[u]Vnk
− [u]F |qdxdt

)

+

∞∑

k=k0+1

(∫ T

0

∫

Bk(0)
|[u]Vnk

− [u]F |qdxdt
) 1

q

≤
k0∑

k=1

(∫ T

0

∫

K

|[u]Vnk
− [u]F |qdxdt

)
+

∞∑

k=k0+1

2−k

< ∞.

We recall that F ⊂q W and W is a Tq-open set. Using the facts that [u]F is moderate, K is an
abstract compact domain and the above inequality, we obtain that [u]W is moderate. Thus by
Lemma 6.2 we have that W ⊂ Rq(u).
(iv) Let Q be a Tq-open set and [u]Q be a moderate solution, put µQ = tr([u]Q). If F is a
Tq-closed set such that F ⊂q Q then, by Proposition 5.24-(ii),

tr[u]F = tr([[u]Q]F ) = µQχF . (6.37)

In particular the compatibility condition holds: if Q, Q′ are Tq-open regular sets then

µQ∩Q′ = µQχQ̃∩Q̃′ = µQ′χ
Q̃∩Q̃′ . (6.38)

With the notation of (i), [vn+k]Qk
= vk and hence µn+kχQ̃k

= µk for every k ∈ N.
Let F be an arbitrary Tq-closed regular subset of Rq(u). Since [u]F is moderate, we have by

(6.38)
[vn]F = [u]

F∩Q̃n
↑ [u]F . (6.39)

In addition, [vRq ]F ≥ limn→∞[vn]F = [u]F , jointly with vRq ≤ u, leads to,

[u]F = [vRq ]F . (6.40)

By (6.37) and (6.39), if F is a Tq-closed subset of Rq(u) and [u]F is moderate,

tr([u]F ) = lim
n→∞

tr([vn]F ) = lim
n→∞

µnχF = µRqχF , (6.41)
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which implies (6.23).
Since Rq,0(u) has a regular decomposition, µRq is σ-finite on Rq,0(u). The assertion that µRq

is Tq-locally finite on Rq(u) is a consequence of the fact that every point ξ ∈ Rq(u) is contained
in a Tq-open set Oξ ⊂ Rq(u) such that [u]Oξ

is moderate and thus µRqχOξ
<∞ .

(v) If w is a moderate solution and w ≤ vRq and Tq-supp (w) ⊂q Rq(u) then τ := tr(w) ≤ µRq .
Indeed

[w]Qn ≤ [vRq ] = vn, [w]Qn ↑ w ⇒ tr([w]Qn) ↑ τ ≤ lim
n→∞

tr(vn) = µRq .

Now, let {wn} be an increasing sequence of moderate solutions such that Fn := Tq-supp (wn) ⊂q

Rq(u) and wn ↑ vRq . If νn := tr(wn), we have to prove that

ν := lim
n→∞

νn = µRq . (6.42)

By the previous argument ν ≤ µRq . The opposite inequality is obtained as follows. Let D be a
Tq-open set, [u]D be moderate and let K be a compact subset of D such that C 2

q
, q′(K) > 0.

wn ≤ [wn]D + [wn]Dc ⇒ vRq = lim
n→∞

wn ≤ lim
n→∞

[wn]D + UDc .

The sequence {[wn]D} is dominated by the moderate function [vRq ]D. In addition tr([wn]D) =
νnχD̃ ↑ νχ

D̃
. Hence, νχ

D̃
is a Radon measure which vanishes on sets with C 2

q
, q′-capacity zero.

Also, [wn]D ↑ uνχ
D̃
, where the function uνχ

D̃
on the right is the moderate solution with initial

trace νχ
D̃
. Consequently

vRq = lim
n→∞

wn ≤ uνχ
D̃
+ UDc .

This in turn implies (
[vRq ]K − uνχ

D̃

)
+
≤ inf(UDc , UK).

Note that, in the previous relation, the function on the left being a subsolution and the one on
the right a supersolution, we obtain

(
[vRq ]K − uνχ

D̃

)
+
≤ [[U ]Dc ]K = 0.

Thus, [vRq ]K ≤ uνχ
D̃
and hence µRχK ≤ νχ

D̃
. Further, if Q is a Tq-open set such that Q̃ ⊂q D

then, in view of the fact that

sup{µRqχK : K ⊂ Q, K compact} = µRqχQ,

we obtain,
µRqχQ ≤ νχ

D̃
. (6.43)

Applying this inequality to the sets Qm, Qm+1 we finally obtain

µRqχQm ≤ νχ
Q̃m+1

≤ νχQm+2 .

Letting m → ∞ we conclude that µRq ≤ ν. This completes the proof of (6.42) and of assertion
(v).
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(vi) The measure µRq is essentially absolutely continuous relative to C 2
q
, q′ . Clearly this assertion

follows now from Proposition 6.7.
(vii) By (5.34)

u ≤ [u]Qn + [u]Qc
n
.

Now since Qcn is Tq-closed and Qcn ↓ Rc
q,0(u), we have by Proposition 5.24-(iii) that

[u]Qc
n
↓ [u]Rc

q,0(u)
.

Hence
lim
n→∞

(u− [u]Qn) = u− vRq ≤ [u]Rc
q,0(u)

,

therefore u⊖ vRq ≈Rq,0(u) 0. Since vRq ≤ u this is equivalent to the statement u ≈Rq,0(u) vRq .
(viii) (6.26) follows by the previous statement. Now we assume that µRq (F )χK < ∞ for any

compact K ⊂ RN . Now set Fn = F ∩ Q̃n. By (5.34).

[u]F ≤ [u]Fn + [u]F\Fn
= [u]Fn + [u]

F\Q̃n
≤ [u]Fn + [u]F\Qn

.

Now since F \Qn is a Tq-closed set and ∩F \ Qn = G with C 2
q
, q′(G) = 0, we have by Propo-

sition 5.24-(iii) that [u]F\Qn
→ [u]G = 0. Hence [u]F = limn→∞[u]Fn , and tr([u]Fn) = µRqχFn ↑

µRqχF0 = µRqχF . Since µRχF is a Radon measure essentially absolutely continuous relative to
C 2

q
, q′ , [u]F is moderate and (6.27) holds.

(ix) If µRq (F )χK < ∞ for any compact K ⊂ RN then, by (viii), [u]F is moderate. Conversely,
if [u]F is moderate, by (6.23), µRq (F )χK <∞ for any compact K ⊂ RN . �

Example. We give below an example which shows that there exists u ∈ U+(QT ) such that
Rq(u) = RN but u is not a moderate solution. Let η : [0,∞) → [0,∞) be a smooth function
such that η(r) > 0 for any r > 0 and limr→0+ η(r) = 0, (η tends to 0 very fast, for example

η(r) = e−
1
r2 ). Let K be the close set

K = {(x′, xn) ∈ RN : |x′| ≤ η(xn), xn ≥ 0}.
Then K is thin at the origin 0.

Set f(x) = 1
ηn(xn)

if x ∈ K and f = 0 otherwise. We define the measure

µ = fdx.

This measure possesses the following properties:
1. µ is Tq-locally finite.
2. µ(Qn) <∞ where Qn = B2n(0) \B 1

n
(0) and ∪Qn ∼q RN

3. µ(F ) = 0 for any F such that C 2
q
, q′(F ) = 0.

4. There exists a non decreasing sequence of bounded Radon measures µn absolutely continuous
with C 2

q
, q′ such that

(a) Tq-supp (µn) ⊂ Q̃n, µn(A) = µn+k(A) for any A ⊂ Q̃n and any n, k ∈ N.
(b) limn→∞ µn = µ
5. We can construct a solution u ∈ U+(QT ) with respect to this measure.
As we see later this solution is unique since it is σ-moderate (see Proposition 6.12).
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Lemma 6.9 Let µ satisfying the conditions 1-4 as above. Then there exists an open set Rq ∼q

RN such that the measure µ is a Radon measure in Rq.

Proof. We consider the ball BR(0) with R > 1. From [23, Lemma 2.5] there exists a sequence
of open sets {O 1

m
}∞m=1 and n(m) ∈ N such that C 2

q
, q′(O 1

m
) < 1

m
, and

BR(0) \O 1
m

⊂
n(m)⋃

i=i

Qi. (6.44)

Now since O 1
m

is open we have

C 2
q
, q′(O 1

m
) = C 2

q
, q′(Õ 1

m

⋃
(O 1

m
∩ eq(O))) ≤ C 2

q
, q′(Õ 1

m
) ≤ cC 2

q
, q′(O 1

m
) → 0,

where eq(O) is the set of thin points of O.
Thus if x ∈ BR(0) \

⋂∞
m=1O 1

m
there exist r > 0 small enough and N ∈ N such that

Br(x) ⊂ BR(0) \
N⋂

m=1

O 1
m
.

Thus by the properties of µ and (6.44) we have

µ(Br(x)) <∞.

We define
Rq := {x ∈ RN : ∃ r > 0 such that µ(Br(x)) <∞}.

Then the set Rq is open and by the above argument, letting R go to infinity, we have that
Rq ∼q RN . Also by the definition of Rq, it is easy to see that µ(K) < ∞ for any compact
K ⊂ Rq and by the properties of µ we can prove that µ is Radon measure in Rq. �

6.4 The precise initial trace

We are now in condition to define the precise initial trace.

Definition 6.10 Let q ≥ 1 + 2
N

and u ∈ U+(QT ).
a: The solution vRq defined by (6.22) is called regular component of u and will be denoted
by ureg.
b: Let {vn} be an increasing sequence of moderate solutions satisfying condition (6.21) and put
µRq = µRq(u) := limn→∞ tr(vn). Then, the regularized measure µRq

, defined by (6.25), is called
the regular initial trace of u. It will be denoted by trRq (u).
c: The couple (trRq (u),Sq(u)) is called the precise initial trace of u and will be denoted by
trc(u).
d: Let ν be the Borel measure on RN given by

ν =

{
(trRq (u))(E) if E ⊂ Rq(u),

ν(E) = ∞ if E ∩ Sq(u) 6= ∅, (6.45)

for every Borel set E. Then ν is the measure representation of the precise trace of u, to be
denoted by tr(u).
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Note that, by Proposition 6.8-(v), the measure µRq is independent of the choice of the sequence
{vn}.

Theorem 6.11 Assume that u ∈ U+(QT ) is a σ-moderate solution, i.e., there exists an in-
creasing sequence {un} of positive moderate solutions such that un ↑ u. Let µn = limn→∞ tr(un),
µ0 := limn→∞ µn and set, for any Borel set E,

µ(E) = inf {µ0(Q) : E ⊂ Q, Q Tq-open} . (6.46)

Then:
(i) µ is the precise initial trace of u and µ is Tq-perfect. In particular µ is independent of the
sequence {un} which appears in its definition.
(ii) If A is a Borel set such that µ(A) <∞, then µ(A) = µ0(A).
(iii) A solution u ∈ U+(QT ) is σ-moderate if and only if

u = sup{v ∈ U+(QT ) : v moderate, v ≤ u}, (6.47)

which is equivalent to

u = sup{uτ ∈ U+(QT ) : τ ∈W
− 2

q
,q
(RN ) ∩M

b
+(R

N ), τ ≤ tr(u)}. (6.48)

(iv) If u, w are σ-moderate solutions,

tr(w) ≤ tr(u) ⇔ w ≤ u. (6.49)

Proof. The proof is an adaptation of the one in [23].
(i) Let Q be a Tq-open set and A a Borel set such that C 2

q
, q′(A) = 0. Then µn(A) = 0 so that

µ0(A) = 0. Thus µ0 is essentially absolutely continuous and, by Proposition 6.7, µ is Tq-perfect.
Let {Dn} be the family of Tq-open sets as in Proposition 6.8-(i). Put D′

n = Rq(u) \Dn and
observe that D′

n ↓ E where C 2
q
, q′(E) = 0. Therefore, for fixed n,

uµnχD′
m

↓ 0 when m→ ∞.

Thus there exist a subsequence, say {D′
n}, such that

(∫ T

0

∫

Bn(0)
|uµnχD′

n
|qdxdt

) 1
q

≤ 2−n.

Since,
µn(Rq(u)) = µnχDn + µnχD′

n
,

it follows that
lim
n→∞

∣∣∣uµnχRq(u)
− uµnχDn

∣∣∣ ≤ lim
n→∞

uµnχD′
n
= 0.

Thus
un ≤ uµnχDn

+ [u]Sq(u).
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Hence
u− [u]Sq(u) ≤ w := lim

n→∞
uµnχRq(u)

= lim
n→∞

uµnχDn
≤ ureg.

This implies u⊖ [u]Sq(u) ≤ ureg. For the opposite inequality, by Proposition 6.8-(iv) we get

[u]Dn ↑ ureg.

But by (5.46) and using the facts that D̃n ⊂q Dn+1 ⊂ D̃n+1 ⊂q Rq(u), C 2
q
, q′

(
D̃n+1 ∩ Sq(u)

)
=

0,
[u]Dn ≤ [[u]Sq(u)]Dn+1 + [u⊖ [u]Sq(u)]Dn+1 = [u⊖ [u]Sq(u)]Dn+1 ≤ u⊖ [u]Sq(u).

Letting n→ ∞ we derive ureg ≤ u⊖[u]Sq(u). Therefore limn→∞ uµnχDn
= ureg. Thus the sequence

{uµnχDn
} satisfies condition (6.21) and consequently, by Proposition 6.8-(iv) and Definition 6.10,

lim
n→∞

µnχDn = µRq , trRq (u) = µRq
. (6.50)

Next, we claim that, if ξ ∈ Sq(u) then, for every Tq-open bounded neighborhood Q of ξ µn(Q̃) →
∞. Indeed let η ∈ W

2
q
,q′
(RN ) ∩ L∞(RN ) with Tq-support in Q. Put h = H[η] and φ(r) = r2q

′

+ .
Then by Proposition 5.7, Lemma 5.3 and in view of the proof of Lemma 5.2 we have

∫ T

0

∫

RN

(−un(∂tφ(h) + ∆φ(h))) + uqnφ(h)dxdτ +

∫

RN

unφ(h)(., T )dx =

∫

Q

η2q
′
dµn.

In view of Lemma 5.2, we can prove

∫ T

0

∫

RN

uqnφ(h)dxdτ ≤ C(q)

(∫

Q

η2q
′
dµn + ||η||2q′

W
2
q ,q′

+ ||η||L∞

)
.

By Lemma 4.2 there exist η ∈W
2
q
,q′
(RN ) ∩ L∞(RN ) and a Tq-open set D ⊂ Q such that η = 1

on D, η = 0 outside of Q and 0 ≤ η ≤ 1. Letting n→ ∞ we have

lim
n→∞

∫ T

0

∫

RN

uqnH
2q′ [χD]dxdτ ≤ C(q)

(
lim
n→∞

∫

Q

η2q
′
dµn + ||η||2q′

W
2
q ,q′

+ ||η||L∞

)
,

the assertion follows by Lemma 5.4.
In conclusion, if ξ ∈ Sq(u) then µ0(Q̃) = ∞ for every Tq-open neighborhood of ξ. Conse-

quently µ(ξ) = ∞. This fact and (6.50) imply that µ is the precise trace of u.
(ii) If µ(A) < ∞ then A is contained in a Tq-open set D such that µ0(D) < ∞ and, by Propo-
sition 6.7, µ(A) = µ0(A).
(iii) Let u ∈ U+(QT ) be σ-moderate and put

u∗ := sup{v : v moderate, v ≤ u}. (6.51)

By its definition u∗ ≤ u. On the other hand, since there exists an increasing sequence of moderate
solutions {un} converging to u, it follows that u ≤ u∗. Thus u = u∗.

Conversely, if u ∈ U+(QT ) and u = u∗ then by proposition 3.4, there exists an increasing
sequence of moderate solutions {un} converging to u. Therefore u is σ-moderate.

53



Since u is σ-moderate there exist an increasing sequence of moderate solutions {un} con-
verging to u. In view of the discussion at the beginning of subsection 5.1, for any un there exist

an increasing sequence of {wm} such that wm ↑ un and tr(wm) ∈W
− 2

q
,q
(RN ) ∩Mb

+(R
N ). Thus

un ≤ sup{uτ : τ ∈W− 2
q
,q(RN ) ∩M

b
+(R

N ), τ ≤ tr(u)} =: u‡.

Letting n→ ∞, we have u ≤ u‡.

On the other hand, if u is σ-moderate, τ ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ) and τ ≤ tr(u) then

(with µn and un as in the statement of the Proposition), tr(uτ ⊖ un) = (τ − µn)+ ↓ 0. Hence,
uτ ⊖ un ↓ 0, which implies, uτ ≤ u. Therefore u‡ ≤ u. Thus (6.47) implies (6.48) and each of
them that u is σ-moderate. Therefore the two statements are equivalent.
(iv) The assertion ⇒ is a consequence of (6.48). To verify the assertion ⇐ it is sufficient to show
that if w is moderate, u is σ-moderate and w ≤ u, then tr(w) ≤ u. Let {un} be an increasing
sequence of positive moderate solutions converging to u. Then un ∨ w ≤ u and consequently
un ≤ un ∨w ↑ u. Therefore tr(un ∨ w) ↑ µ′ ≤ tr(u) so that tr(w) ≤ tr(u). �

Theorem 6.12 Let u ∈ U+(QT ) and put ν = tr(u).

(i) ureg is σ-moderate and tr(ureg) = trRq(u).

(ii) If v ∈ U+(QT )
v ≤ u⇒ tr(v) ≤ tr(u). (6.52)

If F is a Tq-closed set, then
tr([u]F ) ≤ νχF . (6.53)

(iii) A singular point can be characterized in terms of the measure ν as follows:

ξ ∈ Sq(u) ⇔ ν(Q) = ∞ ∀Q : ξ ∈ Q, Q Tq-open. (6.54)

(iv) If Q is a Tq-open set then:

[u]Q is moderate ⇔ ∃ Borel set A : C 2
q
, q′(A) = 0, ν(K ∩ Q̃ \ A) <∞, (6.55)

for any compact K ⊂ RN .

(v) The singular set of ureg may not be empty. In fact

Sq(u) \ bq(Sq(u)) ⊂ Sq(ureg) ⊂ Sq(u) ∩ R̃q(u), (6.56)

where bq(Sq(u)) is the set of C 2
q
, q′-thick points of Sq(u).

(vi) Put

Sq,0(u) := {ξ ∈ RN : ν(Q \ Sq(u)) = ∞ ∀ Q Tq-open neighborhood of ξ}. (6.57)

Then
Sq(ureg) \ bq(Sq(u)) ⊂ Sq,0(u) ⊂ Sq(ureg)

⋃
bq(Sq(u)). (6.58)
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Remark. This results extends Proposition 6.8 which deals with the regular initial trace.

Proof. (i) By proposition 6.8-(ii) ureg is σ-moderate. The second part of the statement follows
from Definition 6.10 and Proposition 6.11-(i).
(ii) If v ≤ u then Rq(u) ⊂ Rq(v) and by definition vreg ≤ ureg. By Proposition 6.11-(iv)
tr(vreg) ≤ tr(ureg) and consequently tr(v) ≤ tr(u). Inequality (6.53) is an immediate consequence
of (6.52).
(iii) If ξ ∈ Rq(u) there exists a Tq-open neighborhood Q of ξ such that [u]Q is moderate. Hence
ν(Q) = trRq(u)(Q) <∞. If ξ ∈ Sq(u), it follows immediately from the definition of precise trace
that ν(Q) = ∞ for every Tq-open neighborhood Q of ξ.
(iv) If [u]Q is moderate then Q ⊂ Rq(u). Proposition 6.8-(ix) implies (6.55) in the direction ⇒.
On the other hand,

ν(K ∩ Q̃ \ A) <∞, ∀ compact K ⊂ RN ⇒ Q̃ ⊂q Rq(u),

and µRq(K ∩ Q̃) = µRq(K ∩ Q̃ \A) <∞. Hence, by Proposition 6.8-(ix), [u]Q is moderate.

(v) Since Tq-supp (ureg) ⊂ R̃q(u) and Rq(u) ⊂ Rq(ureg) we have

Sq(ureg) ⊂ Sq(u) ∩ R̃q(u).

Next we show that Sq(u) \ bq(Sq(u)) ⊂ Sq(ureg).
If ξ ∈ Sq(u) \ bq(Sq(u)) then Rq(u) ∪ {ξ} is a Tq-open neighborhood of ξ. By (i) ureg is

σ-moderate and consequently (by Proposition 6.11-(i)) its trace is Tq-perfect. Therefore, if Q0

is a bounded Tq-open neighborhood of ξ and Q = Q0 ∩ ({ξ} ∪Rq(u)) then

tr(ureg)(Q) = tr(ureg)(Q \ {ξ}) = tr(u)(Q \ {ξ}),
where in the last equality we have used the fact that Q \ {ξ} ⊂ Rq(u). Let D be a Tq-open set

such that ξ ∈ D ⊂ D̃ ⊂ Q. If tr(u)(D̃ \ {ξ}) <∞ then, by (iv), [u]D is moderate and ξ ∈ Rq(u),

contrary to our assumption. Therefore tr(u)(D̃ \ {ξ}) = ∞ so that tr(ureg)(Q0 \ {ξ}) = ∞ for
every Tq-open bounded neighborhood Q0 of ξ, which implies ξ ∈ Sq(ureg). This completes the
proof of (6.56).
(vi) If ξ /∈ bq(Sq(u)), there exists a Tq-open neighborhood D of ξ such that (D \ {ξ})∩Sq(u) = ∅
and consequently

tr(ureg)(D \ {ξ}) = tr(ureg)(D \ Sq(u)) = tr(u)(D \ Sq(u)). (6.59)

If, in addition ξ ∈ Sq,0(u) then
tr(u)(D \ Sq(u)) = tr(ureg)(D \ Sq(u)) = ∞.

If Q is an arbitrary Tq-open neighborhood of ξ then the same holds if D is replaced by Q ∩D.
Therefore tr(ureg)(Q \ {ξ}) = ∞ for any such Q. Consequently ξ ∈ Sq(ureg), which proves that
Sq,0(u) \ bq(Sq(u)) ⊂ Sq(ureg).

On the other hand, if ξ ∈ Sq(ureg) \ bq(Sq(u)) then there exists a Tq-open neighborhood D
such that (6.59) holds and tr(ureg)(D) = ∞. Since ureg is σ-moderate, tr(ureg) is Tq-perfect
so that tr(ureg)(D) = tr(ureg)(D \ {ξ}) = ∞. Consequently, by (6.59), tr(u)(D \ Sq(u)) = ∞.
If Q is any Tq-open neighborhood of {ξ} then D can be replaced by D ∩ Q. Consequently
tru(Q \ Sq(u)) = ∞ and we conclude that ξ ∈ Sq,0(u). This completes the proof of (6.58). �
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Proposition 6.13 Let F be a Tq-closed set. Then Sq(UF ) = bq(F ).

Proof. Let ξ ∈ RN such that F is C 2
q
, q′-thin at ξ. Let Q be a Tq-open neighborhood of ξ such

that Q̃ ⊂q F c. Then [UF ]Q = U
F∩Q̃

= 0. Therefore ξ ∈ Rq(UF ).

Conversely, assume that ξ ∈ F ∩ Rq(UF ), thus there exists a Tq-open neighborhood Q of ξ

such that [UF ]Q is moderate. But [UF ]Q = U
F∩Q̃ which implies C 2

q
, q′(F ∩Q̃) = 0 and Q ⊂ R(u).

Now, note that C 2
q
, q′(F ) ≤ C 2

q
, q′(F ∩Q) + C 2

q
, q′(Q

c). Thus F is Tq-thin at ξ. �

6.5 The initial value problem

The following notations will be used in the sequel.

Notation 6.14 a: We denote by M+(RN ) the space of positive outer regular Borel measure on
RN .

b: We denote by Cq(RN ) the space of couples (τ, F ) such that F is Tq-closed, τ ∈ M+(RN ),
Tq-supp (τ) ⊂ F̃ c and τχF c is Tq-locally finite.

c: We denote by T : Cq(RN ) → M+(RN ) the mapping given by ν = T(τ, F ) where ν is defined
as in (6.45) with Rq(u), Sq(u) replaced by F, F c respectively. In this setting ν is the measure
representation of the couple (τ, F ).

d: If (τ, F ) ∈ Cq(RN ) the set

Fτ = {ξ ∈ RN : τ(Q \ F ) = ∞ ∀Q Tq-open neighborhood of ξ} (6.60)

is called the set of explosion points of τ.

Remark. Note that Fτ ⊂ F (because τχF c is Tq-locally finite) and Fτ ⊂ F̃ c (because τ vanishes
outside this set). Thus

Fτ ⊂ bq(F
c) ∩ F. (6.61)

Proposition 6.15 Let ν be a positive Borel measure on RN .
(i) The initial value problem

∂tu−∆u+ |u|q−1u = 0, u > 0 in Q∞ = RN × (0, T ), tr(u) = ν in RN × {0}. (6.62)

possesses a solution if and only if ν ∈ Mq(RN ).
(ii) Let (τ, F ) ∈ Cq(RN ) and put ν := T(τ, F ). Then ν ∈ Mq(RN ) if and only if

τ ∈ Mq(RN ), F = bq(F )
⋃
Fτ . (6.63)

(iii) Let ν ∈ Mq(RN ) and denote

Eν := {E : E Tq-quasi-closed, ν(E ∩K) <∞, ∀ compact K ⊂ RN}
Dν := {D : D Tq-open, D̃ ∼q E for some E ∈ Eν}. (6.64)
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Then a solution of (6.62) is given by u = v ⊕ UF where

G :=
⋃

Dν

D, F := Gc, v := sup{uνχE : E ∈ Eν}. (6.65)

Note that if E ∈ Eν then νχE is locally bounded Borel measure which does not charge sets of
C 2

q
, q′-capacity zero. Recall that if µ is a positive measure possessing these properties, then uµ

denotes the moderate solution with initial trace µ.
(iv) The solution u = v ⊕ UF is σ-moderate and it is the unique solution of problem (6.62) in
the class of σ-moderate solutions. Furthermore, u is the largest solution of the problem.

Proof. The proof is similar to the one in [23].
(A) If u ∈ U+(QT )

tr(u) = ν ⇒ ν ∈ Mq(RN ). (6.66)

By Proposition 6.8, ureg is σ-moderate and u ≈Rq(u) ureg. Therefore

tr(u)χRq(u) = tr(ureg)χRq(u).

By Proposition 6.11, µRq
:= tr(ureg) ∈ Mq(RN ). If v is defined as in (6.65) then

v = sup{[u]F : F Tq-closed F ⊂q Rq(u)} = ureg, (6.67)

where the second equality holds by definition. Indeed, by Theorem 6.12, for every Tq-open set

Q, [u]Q is moderate if and only if ν(K ∩ Q̃ \ A) < ∞ for some set A with capacity zero and
for any compact K subset of RN . This means that [u]Q is moderate if and only if there exists

E ∈ Eν such that Q̃ ∼q E. When this is the case,

tr([u]Q) = µRq (u)χQ̃ = µRq (u)χE = νχE.

Thus v ≥ ureg. On the other hand, if E ∈ Eν , then Ẽ ⊂q Rq(u) and µRq(u)(K∩Ẽ) = µRq (u)(K∩
E) < ∞ for any compact K subset of RN . Therefore by Proposition 6.8-(ix), Ẽ is regular, i.e,
there exist a Tq-open regular set Q such that E ⊂q Q. Hence uνχE

≤ [u]Q and we conclude that
v ≤ ureg. This proves (6.67). In addition, if E ∩ Sq(u) 6= ∅ then ν(E) = ∞, by Definition 6.10.
Therefore ν is outer regular with respect to Tq-topology.

Next we must prove that ν is essentially absolutely continuous. Let Q be a Tq-open set and
A a non-empty Tq-closed subset of Q such that C 2

q
, q′(A) = 0. Either ν(Q \ A) = ∞, in which

case ν(Q \A) = ν(Q), or ν(Q \ A) <∞, in which case Q \ A ⊂ Rq(u) and

ν(Q \ A) = µRq
(Q \A) = µRq

(Q) <∞.

Let ξ ∈ A let D be a Tq-open subset of Q such that ξ ∈ D ⊂ D̃ ⊂q Q. Let Bn be a Tq-open

neighborhood of A ∩ D̃ such that C 2
q
, q′(Bn) < 2−n and Bn ⊂q D. Then

[u]D ≤ [u]En + [u]Bn , En = D̃ \Bn.
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Since limn→∞[u]Bn = 0 it follows that [u]D = [u]En . Now since En ⊂ Rq(u), ν(En) ≤ ν(Q\A) <
∞, we have by definition of ν and Proposition 6.8-(ix) that [u]En is moderate. Also in view of
Lemma 2.8 and Lemma 2.7(ii)-[19], we have for some positive constant C

∫ T

0

∫

K

[u]qEn
dxdt ≤ Cν(En) ≤ Cν(Q \ A) <∞,

for any compact K ⊂ RN . Therefore
∫ T

0

∫

K

[u]qDdxdt <∞ ∀ K ⊂ RN ,K compact.

which implies that [u]D is moderate and thusD ⊂ Rq(u). Since every point A has a neighborhood
D as above we conclude that A ⊂ Rq(u) and hence ν(A) = trR(u)(A) = 0. If A is any a non-

empty Borel subset of Q such that C 2
q
, q′(A) = 0, by inequality C 2

q
, q′(Ã) ⊂ cC 2

q
, q′(A), we have

that ν is absolutely continuous and ν ∈ Mq(RN ).
Secondly we prove:

(B) Suppose that (τ, F ) ∈ Cq(RN ) satisfies (6.63) and put ν = T(τ, F ). Then the solution
u = v ⊕ UF , with v as in (6.65), satisfies tr(u) = ν.

By (6.66), this also implies that ν ∈ Mq(RN ).
Clearly v is a σ-moderate solution. The fact that τ is Tq-locally finite in F c and essentially

absolutely continuous relative to C 2
q
, q′ implies that

G := F c ⊂ Rq(v), tr(v)χG = τG. (6.68)

It follows from the definition of v that Fτ ⊂ Sq(v). Hence, by Proposition 6.13 and (6.56) we
have

F = bq(F )
⋃
Fτ ⊂ Sq(v)

⋃
Sq(UF ) ⊂ Sq(u) ⊂ F. (6.69)

Thus, Sq(u) = F, v = ureg and τ = tr(ureg). Thus trc(u) = (τ, F ) which is equivalent to
tr(u) = ν.

Next we show: (C) Suppose that (τ, F ) ∈ Cq(RN ) and that there exists a solution u such
that trc(u) = (τ, F ). Then

τ = trRq (u) = tr(ureg), F = Sq(u). (6.70)

If U := ureg ⊕ UF then tr(U) = tr(u) and u ≤ U . U is the unique σ-moderate solution of
(6.62) and (τ, F ) satisfies condition (6.63). Assertion (6.70) follows by Proposition 6.8-(i) and
Definition 6.10. Since ureg is σ-moderate, it follows, by Theorem 6.11, that τ ∈ Mq(RN ).

By Proposition 6.8 (vi), u ≈Rq(u) ureg. Therefore w := u ⊖ ureg vanishes on Rq(u) so that
w ≤ UF . Note that u− ureg ≤ w and therefore

u ≤ ureg ⊕w ≤ U. (6.71)

By their definitions Sq,0(u) = Fτ and by Theorem 6.12 (vi) and Proposition 6.13,

Sq(U) = Sq(ureg)
⋃

Sq(UF ) = Sq(ureg)
⋃
bq(UF )

= Sq,0(u)
⋃
bq(UF ) = Fτ

⋃
bq(UF ). (6.72)
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On the other hand, Rq(U) ⊃ Rq(uRq ) = Rq(u) and, as u ≤ U, Rq(U) ⊂ Rq(u). Hence Rq(U) =
Rq(u) and Sq(U) = Sq(u). Therefore, by (6.70) and (6.72), F = Sq(U) = Fτ ∪ bq(UF ). Thus
(τ, F ) satisfies (6.63) and trc(U) = (τ, F ). The fact that U is the maximal solution with this
trace follows from (6.71).

The solution U is σ-moderate because both ureg and UF are σ-moderate solutions (concerning
UF , see Proposition 5.21).

The uniqueness of the solution in the class of σ-moderate solutions follows from Proposition
6.11-(iv).

Finally we prove:
(D) If ν ∈ Mq(RN ) then the couple (τ, F ) defined by

v := sup{uνχE : E ∈ Eν}, τ := tr(v), F = Rc
q(v), (6.73)

satisfies (6.63). This is the unique couple in Cq(RN ) satisfying ν = T(τ, F ). The solution v is
σ-moderate so that τ ∈ Mq(RN ).

We claim that u := v ⊕ UF is a solution with initial trace trc(u) = (τ, F ). Indeed u ≥ v so
that Rq(u) ⊂ Rq(v). On the other hand since τ is Tq-locally finite in Rq(v) = F c, it follows that
Sq(u) ⊂ F. Thus Rq(v) ⊂ Rq(u) and we conclude that Rq(u) = Rq(v) and F = Sq(u). This also
implies that v = ureg.

Finally

Sq(u) = Sq(v)
⋃
bq(Sq(UF )) = bq(F )

⋃
Fτ ,

so that F satisfies (6.63).
The fact that, for ν ∈ Mq(RN ), the couple (τ, F ) defined by (6.73) is the only one in Cq(RN )

satisfying ν = T(τ, F ) follows immediately from the definition of these spaces.
At end, statements A-D imply (i)-(iv). �

Remark. If ν ∈ Mq(RN ) then G and v as defined by (6.65) have the following alternative
representation:

G :=
⋃

Eν

E =
⋃

Fν

Q, v := sup{uνχQ : Q ∈ Fν}, (6.74)

Eν := {Q : E Tq-open, ν(Q ∩K) <∞, ∀ compact K ⊂ RN}. (6.75)

To verify this remark we first observe that Lemma 2.8 implies that if A is a Tq-open set then
there exists an increasing sequence of Tq-quasi closed sets {En} such that A = ∪∞

n=1En. In fact,
in the notation of Lemma 2.8 (II)(i)-(ii), we may choose En = Fn \L where L = A′ \A, is a set
of capacity zero.

Therefore ⋃

Dν

D ⊂
⋃

Fν

Q ⊂
⋃

Eν

E := H.

On the other hand, if E ∈ Eν then µRq (u)(K ∩ Ẽ) = µRq(u)(K ∩ E) = ν(K ∩ E) < ∞, for any

compact K ⊂ RN . By Proposition 6.8-(ix), Ẽ is regular, i.e., there exists a Tq-open regular set
Q such that E ⊂q Q. Thus H =

⋃
Dν
D.
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If D is a Tq-open regular set then D = ∪∞
n=1En, where {En} is an increasing sequence of

Tq-quasi closed sets. We infer
uνχD

= lim
n→∞

uνχEn
.

Therefore

sup{uνχQ
: Q ∈ Dν} ≤ sup{uνχQ

: Q ∈ Fν} ≤ sup{uνχQ
: Q ∈ Eν}.

On the other hand, if E ∈ Eν , there exists a Tq-open regular set Q such that E ⊂q Q. Conse-
quently the equality follows.

7 The equation ∂tu−∆u+ V u = 0

Let 0 < T ≤ ∞, QT := RN × (0, T ), C > 0 and V : QT → [0,∞) be a Borel function satisfying

0 ≤ V (x, t) ≤ C

t
∀(x, t) ∈ QT . (7.1)

In this section we prove a general representation theorem for positive solutions of

∂tu−∆u+ V u = 0 in QT . (7.2)

7.1 Preliminaries

We recall that M(RN ) is the set of Radon measures on RN and M+(RN ) its positive cone.

Definition 7.1 Let µ ∈ M(RN ). We say that u is a weak solution of problem

∂tu−∆u+ V u = 0 in QT
u(., 0) = µ in RN ,

(7.3)

if u ∈ L1
loc(QT ), V u ∈ L1

loc(QT ) and there holds

∫ ∫

QT

u(−φt −∆φ)dxdt+

∫ ∫

QT

V uφdxdt =

∫

RN

φ(x, 0)dµ, (7.4)

for all φ ∈ X(QT ), where

X(QT ) = {φ ∈ Cc(RN × [0, T )), φt +∆φ ∈ L∞
loc(QT )}.

Remark. The definition implies that for any ζ ∈ C2
c (R

N ), the function t 7→
∫
ζ(x)u(x, t)dx can

be extended by continuity on [0, T ] as a continuous function and

lim
t→0

∫

RN

ζ(x)u(x, t)dx =

∫

RN

ζdµ. (7.5)

Therefore ‖u(., t)‖L1(Ω) remains uniformly bounded on (0, T ) for any bounded open set Ω ⊂ RN .
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Lemma 7.2 Let µ ∈ M+(RN ) and assume that there exists a positive weak solution u of problem
(7.3) where V satisfies (7.1). Then for any smooth bounded domain Ω there exists a unique
positive weak solution v of problem

∂tv −∆v + V v = 0 in QΩ
T = Ω× (0, T )

v = 0 on ∂lQ
Ω
T = ∂Ω × (0, T )

v(., 0) = χΩµ in Ω,
(7.6)

where χΩ is the characteristic function on Ω and there holds v ≤ u in Ω× (0, T ).

Proof. Let {tj} be a decreasing sequence converging to 0, such that tj < T for all j ∈ N. We
consider the following problem

∂tv −∆v + V v = 0 in Ω× (tj, T )
v = 0 on ∂Ω× (tj , T )

v(., tj) = u(., tj) in Ω.

Since u(., tj) ∈ L1(Ω) and 0 ≤ V ∈ L∞(Ω× (tj, T ]), there exists a unique positive weak solution
vj of the above problem, smaller than the solution HΩ[u(., tj)χΩ], where HΩ is the heat operator
in QΩ := Ω × (0,∞) with zero boundary condition furthermore vj ≤ u in Ω × (tj, T ) for all
j ∈ N. By standard parabolic estimates we may assume that the sequence {vj} converges

locally uniformly in Ω × (0, T ] to a nonnegative function v smaller than u. If φ ∈ C1,1;1(QΩ
T )

vanishes on ∂lQ
Ω
T and satisfies φ(x, T ) = 0, the following identity holds

∫ T

tj

∫

Ω
vj(−φt−∆φ)dxdt+

∫ T

tj

∫

Ω
V vjφdxdt+

∫

Ω
φ(x, T−tj)u(x, T−tj)dx =

∫

Ω
φ(x, 0)u(x, tj)dx,

where, in the above equality, we have take as test function φ(., .−tj). It follows by the dominated
convergence theorem, that v is a weak solution of problem (7.6). �

Lemma 7.3 Assume (7.1) holds and let u be a positive weak solution of problem (7.4) with
µ ∈ M+(RN ). Then for any (x, t) ∈ RN × (0, T ], we have

lim
R→∞

uR = u,

where {uR} is the increasing sequence of the weak solutions of the problem (7.6) with Ω = BR(0).
Moreover, the convergence is uniform in any compact subset of RN × (0, T ].

Proof. By the maximum principle (see [19, Remark 2.5]),

uR ≤ uR′ ≤ u

for all 0 < R ≤ R′. Thus uR → w ≤ u. Also by standard parabolic estimates, this convergence
is locally uniformly. Now by dominated convergence theorem, we have that w is a weak solution
of problem (7.3) with initial data µ. We set w̃ = u− w ≥ 0. Then w̃ satisfies in the weak sense

w̃t −∆w̃ + V w̃ = 0 in RN × (0, T ),

w(x, t) ≥ 0 in RN × (0, T )

w̃(x, 0) = 0 in RN .
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Since w̃ satisfies in the weak sense

w̃t −∆w̃ ≤ 0 in RN × (0, T ),

w(x, t) ≥ 0 in RN × (0, T ),

w̃(x, 0) = 0 in RN ,

We extend w̃ by 0 for t ≤ 0, with the same notation and set w̃n := w̃ ∗ Jǫn where {Jǫn} is a
sequence of mollifiers in RN+1. Then w̃n ≤ 0, therefore w̃ = 0. �

Lemma 7.4 Let u ∈ C2,1(RN × (0, T ]) be a positive solution of

∂tu−∆u+ V u = 0 in RN × (0, T ).

Assume that, for any x ∈ RN , there exists an open bounded neighborhood U of x such that

∫ T

0

∫

U

u(y, t)V (y, t)dxdt <∞

Then u ∈ L1(U × (0, T )) and there exists a unique positive Radon measure µ such that

lim
t→0

∫

RN

u(y, t)φ(x)dx =

∫

RN

φ(x)dµ ∀φ ∈ C∞
0 (RN ).

Proof. Since V u ∈ L1(U × (0, T )) the following problem has a weak solution v (see [19]).

∂tv −∆v = V u, in U × (0, T ],

v(x, t) = 0 on ∂U × (0, T ]

v(x, 0) = 0 in U.

Thus the function w = u + v is a positive solution of the heat equation, thus there exists a
unique Radon measure µ such that

lim
t→0

∫

U

w(y, t)φ(x)dx =

∫

U

φ(x)dµ, ∀φ ∈ C∞
0 (U).

But the initial data of v is zero, thus the result follows by a partition of unity and Lemma 7.3.�

7.2 Representation formula for positive solutions

Assume V satisfies (7.1) in QT and let u be a positive solution of (7.2). If ψ ∈ C2,1(RN × (0, T ]),
we set u(x, t) = eψ(x,t)v(x, t). Then v satisfies

∂tv −∆v − 2∇ψ∇v − |∇ψ|2v − 2∆ψv + (ψt +∆ψ + V ) v = 0 in RN × (0, T ]. (7.7)

We choose ψ to be the solution of the problem

−ψt −∆ψ = V in RN × (0, T ]

ψ(x, T ) = 0 in RN .
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Then

ψ(t, x) =

∫ T

t

∫

RN

1

(4π(s − t))
n
2

e
−

|x−y|2

4(s−t) V (x, s)dxds. (7.8)

By a straightforward calculation we verify that

1. 0 ≤ ψ ≤ C ln T
t
,

2. |∇ψ| ≤ C1(T ) + C2(ln
T
t
).

Thus (7.7) becomes

∂tv −∆v −
n∑

i=1

(2ψxiv)xi − |∇ψ|2v = 0.

Since
∫ 1
0 | ln t|pdt <∞ for all p ≥ 1, we verify by 1 and 2 that

∫ T

0
sup
x∈RN

|ψ|qds < M1 <∞ ∀q ≥ 1

and ∫ T

0
sup
x∈RN

|∇ψ|qds < M2 <∞ ∀q ≥ 1.

For Ai,j = δij , Ai = 2ψxi Bi = 0 and C = |∇ψ|2 we see that the above operator satisfies the
condition H in [3] for R0 = ∞ and p = ∞. Thus there exists a kernel Γ(x, t; y, s), defined in
QT ×QT satisfying the estimates

C1(T, n,M2)
1

(4π(t− s))
n
2

e
−A1

|x−y|2

4(t−s) ≤ Γ(x, t; y, s) ≤ C2(T, n,M2)
1

(4π(t− s))
n
2

e
−A2

|x−y|2

4(t−s) ,

(7.9)
where A1, A2 > 0 depend on T, n, M2 with the property that v admits the following represen-
tation formula:

v(x, t) =

∫

RN

Γ(x, t; y, 0)dµ(y), (7.10)

where µ is a uniquely defined positive Radon measure on RN , and there holds

lim
t→0

∫

RN

∫

RN

Γ(x, t; y, 0)φ(x)dµ(y)dx =

∫

RN

φdµ ∀φ ∈ C∞
0 (RN ).

Furthermore, if e−γ|x|
2
u0 ∈ L2(RN ) for some γ ≥ 0, and if u0 is continuous at y, then

lim
t→0

∫

RN

Γ(x, t; y, 0)u0(x)dx = u0(y). (7.11)

Finally we have

u(x, t) = eψ(x,t)
∫

RN

Γ(x, t; y, 0)dµ(y). (7.12)
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8 σ-moderate solutions

8.1 Preliminaries

Proposition 8.1 Let u ∈ U+(QT ). Then

max(uRq , [u]Sq(u)) ≤ u ≤ ureg + [u]Sq(u). (8.1)

Proof. The principle of the proof is similar as the one in [16].
By Proposition 6.8-(vii), the function v = u⊖ ureg vanishes on Rq(u) i.e., Tq-supp (v) ⊂ Sq(u).
Thus v is a solution dominated by u and supported in Sq(u), which implies that v ≤ [u]Sq(u) by
Definition 5.27. Since u − ureg ≤ v this implies the inequality on the right hand side of (8.1).
The inequality on the left hand side is obvious. �

Proposition 8.2 Let u ∈ U+(QT ) and let A, B be two disjoint Tq-closed subsets of RN . If
Tq-supp (u) ⊂ A ∪B and [u]A, [u]B are σ-moderate then u is σ-moderate. Furthermore

u = [u]A ⊕ [u]B = [u]A ∨ [u]B . (8.2)

Proof. The proof is same as in [16].

By Proposition 6.11-(iii) there exist two increasing sequences {τn}, {τ ′n} ⊂ W
− 2

q
,q
(RN ) ∩

Mb
+(R

N ) such that
uτn ↑ [u]A, uτ ′n ↑ [u]B .

By proposition 5.26, Tq-supp (τn) ⊂q A and Tq-supp (τ
′
n) ⊂q B. Thus C 2

q
, q′ (Tq-supp(τn) ∩ Tq-supp(τ

′
n)) =

0, and
uτn ∨ uτ ′n = utn ⊕ ut′n = uτn+τ ′n .

By (5.34) and Definition 5.27,

max([u]A, [u]B) ≤ u ≤ [u]A + [u]B . (8.3)

Therefore,
max(uτn , u

′
τn) ≤ u⇒ uτn+τ ′n ≤ u.

On the other hand
u− uτn+τ ′n ≤ [u]A − uτn + [u]B − uτ ′n ↓ 0.

Thus
lim
n→∞

uτn+τ ′n = u, (8.4)

so that u is σ- moderate.
The assertion (8.2) is equivalent to the statements: (a) u is the largest solution dominated by
[u]A + [u]B and (b) u is the smallest solution dominating max([u]A, [u]B). Let

u ≤ w := [u]A ⊕ [u]B ≤ [u]A + [u]B .
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Thus we have [u]A ≤ [w]A. But [w]A ≤ w ≤ [u]A + [u]B ⇒ [w]A − [u]A ≤ [u]B . By Notation 3.3
we have

v = [([w]A − [u]A)+]† ≤ [u]B , v ≤ [w]A,

that is
Tq-supp (v) ⊂ A and Tq-supp (v) ⊂ B.

But A ∩B = ∅, which implies v = 0 and [w]A ≤ [u]A. Similarly, we have [w]B ≤ [u]B . Thus

[w]A = [u]A, [w]B ≤ [u]B .

By (8.3) and the fact that for any Borel E [u]E ≤ [u]
Ẽ∩A

+ [u]
Ẽ∩B

, there holds

Sq(u) = Sq(w).

Let Q be a Tq-open regular set in Rq(w), then Q ∈ Rq(u). Using (5.34), (5.35) and the fact that
Tq-supp (w) ⊂ A ∩B, we derive

[w]Q ≤ [w]
Q̃∩A + [w]

Ẽ∩B = [[w]A]Q̃ + [[w]B ]Q̃ = [u]
Q̃∩A + [u]

Q̃∩B .

Since [w]Q, [u]Q are moderate solutions and A∩B = ∅, we have [u]
Q̃∩A ⊕ [u]

Q̃∩B ≤ [u]Q, which

implies [w]Q = [u]Q. Thus by Proposition 6.8-(ii) wRq = uRq , and since u is σ-moderate by
Proposition 6.15 and the remark below we get

u ≤ w ≤ uRq ⊕ UF .

By the uniqueness of σ- moderate solutions (Theorem 6.11-(iv)), w and u coincide. This proves
(a).
For the statement (b), we note that

uτn+τ ′n = uτn ∨ uτ ′n ≤ [u]A ∨ [u]B ,

since uτn ≤ [u]A and uτ ′n ≤ [u]B . Thus the result follows by (8.4) and (8.3), by letting n tend to
infinity. �

8.2 Characterization of positive solutions of ∂tu−∆u+ uq = 0

The following notation is used throughout the subsection.
Let u ∈ U+(QT ). Set

V = uq−1,

then

V ≤
(

1

q − 1

)q−1

t−1.

Thus u ∈ C2,1(RN × (0, T ] and satisfies

∂tu−∆u+ V u = 0, in RN × (0, 1]. (8.5)
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Hence, by the representation formula (7.12), u satisfies

u(x, t) = eψ
∫

RN

Γ(x, t; y, 0)dµ(y), ∀ t ≤ T, (8.6)

where µ is Radon measure (see subsection 7.2). The measure µ is called the extended initial
trace of u.
For any Borel set E set

µE = µχE and (u)E = eψ
∫

RN

Γ(x, t; y, 0)dµE , ∀ t ≤ T.

Lemma 8.3 Let F be a compact subset of RN . Then

(u)F ≤ [u]F , ∀t ≤ T.

Proof. We follow the ideas of [16], adapted to the parabolic framework.
Let A be a Borel subset of RN . Let 0 < β ≤ T

2 and let vAβ be the positive solution of

∂tv −∆v + V v = 0 in RN × (β, T ]
v(., β) = u(., β)χA(.) in RN .

(8.7)

Also let wAβ be the positive solution of

∂tw −∆w + |w|q−1w = 0 in RN × (β, T ]
w(., β) = χA(.)u(., β) in RN .

Then by the maximum principle wAβ ≤ u, which implies

0 =
dwAβ
dt

−∆wAβ + (wAβ )
q ≤

dwAβ
dt

−∆wAβ + V wAβ .

Thus wAβ is a supersolution of (8.7), and by the maximum principle (see [3] or Lemma 7.3), we
have

vAβ ≤ wAβ ≤ u.

For any sequence {βk} decreasing to zero one can extract a subsequence {βkn} such that {wAβkn}
and {vAβkn} converge locally uniformly; we denote the limits wA and vA respectively (the limits

may depend on the sequence). Then wA ∈ U+(QT ) while v
A is a solution of (8.5), and

vA ≤ wA ≤ [u]
Q̃
, ∀Q open, A ⊂ Q. (8.8)

The second inequality follows from the fact that Tq-supp (w
A
β ) ⊂ Q̃ for any β.
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Now we set vAβkn
= eψ ṽn, where ψ is the function in subsection 7.2. Then ṽn is the solution

of

∂tv −∆v − 2∇ψ∇v − |∇ψ|2v − 2∆ψv + (ψt +∆ψ + V ) v = 0 in RN × (βkn , T ].

v(., βkn) = χA(.)

∫

RN

Γ(., βkn ; y, 0)dµ(y) in RN .

Now using the representation formula in [3], we derive that for any open Q ⊃ A, there holds

ṽn(x, t) =

∫

RN

χA(x)Γ(x, t− βkn ; y, 0)

(∫

RN

Γ(x, βkn ; y, 0)dµ(y)

)
dx

=

∫

RN

(∫

RN

χA(x)Γ(x, t− βkn ; y, 0)Γ(x, βkn ; y, 0)dx

)
dxdµ(y)

≤
∫

RN

(∫

RN

χQ(x)Γ(x, t− βkn ; y, 0)Γ(x, βkn ; y, 0)dx

)
dxdµ(y).

Therefore, by (7.11), estimate (7.9) and using the fact that Γ(x, t − s; y, 0) is a continuous
function for any s < t (see [3]), we can let kn → ∞ in the above inequality and get

lim
n→∞

ṽn ≤
∫

RN

Γ(x, t; y, 0)dµ
Q̃
.

Hence
vA ≤ (u)

Q̃
.

We apply the same procedure to the set Ac extracting a further subsequence of {βkn} in
order to obtain the limits vA

c
and wA

c
. Thus

vA
c ≤ wA

c ≤ [u]
Q̃′ , ∀Q′ open, Ac ⊂ Q′.

Note that
vA + vA

c

= u, vA ≤ (u)
Q̃
, vA

c ≤ (u)
Q̃′ .

Therefore
vA = u− vA

c ≥ (u)
(Q̃′)c

. (8.9)

Now, given F compact, let A be a closed set and O an open set such that F ⊂ O ⊂ A. Note
that Ac ∩ F = ∅. By (8.9) with Q′ = Ac

vA ≥ (u)O.

By (8.8)
vA ≤ wA ≤ [u]

Q̃
∀Q open, A ⊂ Q,

and consequently
(u)F ≤ (u)O ≤ [u]

Q̃
. (8.10)

By Lemma 2.8, we can choose a sequence of open sets {Qn} such that ∩Q̃j = E′ ∼q F, thus by
Proposition 5.24-(iii) [u]Qj

↓ [u]F . The result follows by (8.10). �

In the next lemma we prove that the extended initial trace of a positive solution of (3.1) is
absolutely continuous with respect to the C 2

q
, q′-capacity.
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Lemma 8.4 Let u ∈ U+(QT ), µ its extended initial trace. If E is a Borel set and C 2
q
, q′(E) = 0

then µ(E) = 0.

Proof. The proof is similar as the one in [16]. If F is a compact subset of E, then C 2
q
, q′(F ) = 0

and therefore by Proposition 5.17, UF = 0. But [u]F = u ∧ UF = 0. Therefore, by Lemma 8.3
(u)F = 0. Consequently µ(F ) = 0. As this holds for every compact subset of E we conclude that
µ(E) = 0. �

We recall that, if ν ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ), then for any T > 0, there exists a constant

C > 0 independent on ν (see Lemma 2.11-[22]) such that

C−1||ν||
W

− 2
q ,q

(RN )
≤ ||H[ν]||Lq(QT ) ≤ C||ν||

W
−2

q ,q
(RN )

, (8.11)

where H[ν] is the solution of the heat equation in Q∞ with ν as initial data.

Lemma 8.5 Let u ∈ U+(QT ), µ its extended initial trace and ν ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ).

Suppose that there exists no positive solution of (3.1) dominated by the supersolution v =
inf{u,H[ν]}. Then µ ⊥ ν.

Proof. Set V ′ = vq−1, then v is a supersolution of

∂tw −∆w + V ′w = 0 in RN × (0, T ]. (8.12)

We first claim that there exists no positive solution of the above problem dominated by v. We
proceed by contradiction in assuming that there exists a positive solution w ≤ v of (8.12). Then
w satisfies

∂tw −∆w +wq ≤ ∂tw −∆w + V ′w = 0.

Since
‖v‖Lq(QT ) ≤ ‖H[ν]‖Lq(QT ) ≈ ‖ν‖

W
−2

q ,q
(RN )

this implies that w is a positive moderate solution of (3.1) dominated by v, contrary to assump-
tion. Now for any t ≤ T, we have by representation formula (7.12),

inf{u,H[ν]} = inf

{
eψ
∫

RN

Γ(x, t; y, 0)dµ(y),H[ν]

}

≥ inf

{∫

RN

Γ(x, t; y, 0)dµ(y),H[ν]

}

≥ C inf

{
H[µ](

t

A2
, x),H[ν](t, x)

}

≥ C inf

{
H[µ](

t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x)

}
,

where, in the above inequalities, we have used estimates (7.9) and the constants C > 0, A2 > 0
therein.
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Now since inf
{
H[µ]( t

max(A2,1)
, x),H[ν]( t

max(A2,1)
, x)
}
is a supersolution of ∂tw− 1

max(A2,1)
∆w = 0,

there exists a positive Radon measure ν̃ such that

lim
t→0

∫

RN

φ(x) inf

{
H[µ](

t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x)

}
dx =

∫

RN

φ(x)dν̃ ∀φ ∈ C∞
0 (RN ).

Thus in view of Lemmas 7.3 and 7.4, there exists a positive weak solution ṽ ≤ v of the problem

∂tw −∆w + V ′w = 0 in RN × (0, T ].

w(., 0) = ν̃ in RN ,

and by the first claim it yields ν̃ = 0.
By the Lebesgue-Radon-Nikodym Theorem we can write dν = φdµ + dσ, where 0 ≤ φ ∈

L1
loc(R

N , µ) and σ ⊥ µ. Thus we have

0 = lim
t→0

∫

RN

φ(x) inf

{
H[µ](

t

max(A2, 1)
, x),H[ν](

t

max(A2, 1)
, x)

}
dx

≥ lim
t→0

∫

RN

φ(x)h(
t

max(A2, 1)
, x, y)min{f, 1}(y)dµ(y)dx

= lim
t→0

∫

RN

φ(y)min{f, 1}(y)dµ(y) = 0,

where, we recall it, h(t, x, y) in the heat kernel in Q∞. Hence f = 0 and ν ⊥ µ. �

Lemma 8.6 Let u ∈ U+(QT ), µ its extended initial trace and suppose that for every ν ∈
Mb

+(R
N ) ∩W− 2

q
,q(RN ) there exists no positive solution of (3.1) dominated by v = inf(u,H[ν]).

Then u = 0.

Proof. The proof is similar as the one in [16]. By Lemma 8.5,

µ ⊥ ν ∀ν ∈W− 2
q
,q(RN ) ∩M

b
+(R

N ).

Suppose that µ 6= 0. By Lemma 8.4, µ vanishes on sets of C 2
q
, q′-capacity zero. Thus, there exists

an increasing sequence {νk} ⊂ W− 2
q
,q(RN ) ∩Mb

+(R
N ) which converges to µ. Thus µ ⊥ νk and

for every k ∈ N there exists a Borel set Ak ⊂ RN such that

µ(Ak) = 0 and νk(A
c
k) = 0.

Therefore, if A = ∪kAk then

µ(A) = 0 and νk(A
c) = 0 ∀k.

Since νk ≤ µ we have νk(A) = 0 and therefore νk = 0. Contradiction. �

Lemma 8.7 Let u ∈ U+(QT ). Then [u]Sq(u) is σ-moderate.
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Proof. To simplify the notations we put uS = [u]Sq(u) and denote F := Tq-supp (uS). Inciden-
tally, F ⊂ Sq(u); since if Sq(u) is thin at ξ, then Sq(u)c ∪ {ξ} is Tq-open and Sq(u)c ∪ {ξ} ∼q

Sq(u)c. Thus by definition of F, we see that F consists precisely of the C 2
q
, q′-thick points of

Sq(u). The set Sq(u) \ F is contained in the singular set of uRq .

For ν ∈ W− 2
q
,q(RN ) ∩ Mb

+(R
N ) we denote by uν the solution of (3.1) with initial trace ν.

Put
u∗ := sup{uν : ν ∈W− 2

q
,q(RN ) ∩M

b
+(R

N ), uν ≤ uS}. (8.13)

By Lemma 8.6 the family over which the supremum is taken is not empty. Therefore u∗ is a
positive solution of (3.1) and, by Proposition 6.11-(iii), it is σ-moderate, thus it is the largest σ-

moderate solution dominated by uS . We denote by {νn} ⊂W
− 2

q
,q
(RN )∩Mb

+(R
N ) an increasing

sequence such that u∗ = limn n→ ∞uνn .
Let F ∗ = Tq-supp (u

∗). Then F ∗ is Tq-closed and F ∗ ⊂ F. Suppose that

C 2
q
, q′(F \ F ∗) > 0.

Then there exists a compact set E ⊂ F \ F ∗ such that C 2
q
, q′(E) > 0 and (F ∗)c =: Q∗ is a

Tq-open set containing E. Furthermore by Lemma 2.7 there exists a Tq-open set Q′ such that

E ⊂q Q ⊂ Q̃′ ⊂q Q∗. Since Q′ ⊂q Tq-supp (uS), [uS ]Q′ > 0 and therefore by Lemma 8.6, there

exists a positive measure τ ∈W− 2
q
,q(RN )∩Mb

+(R
N ) supported in Q̃′ such that uτ ≤ uS . As the

Tq-supp (τ) is a Tq-closed set disjoint from F ∗, it follows that the inequality u∗ ≥ uτ does not

hold. On the other hand, since τ ∈W
− 2

q
,q
(RN )∩Mb

+(R
N ) and uτ ≤ uS , it follows that uτ ≤ u∗.

This contradiction shows that
C 2

q
, q′(F \ F ∗) = 0. (8.14)

Since uνn ↑ u∗, Tq-supp (uνn) ⊂ Tq-supp (u
∗) := F ∗. Therefore there exists a Tq-closed set

F ∗
0 ⊂ F ∗ such that Sq(u∗) = F ∗

0 and Rq(u
∗) = (F ∗

0 )
c. Suppose that

C 2
q
, q′(F \ F ∗

0 ) > 0.

Let Q′ be a Tq-open subset of Rq(u
∗) such that [uS ]Q′ is a moderate solution, then Q̃′ ⊂q Rq(u

∗)
and [u∗]

Q̃′ is a moderate solution of (3.1), i.e.,

∫ T

0

∫

RN

[u∗]q
Q̃′
φ(x)dxdt <∞ ∀φ ∈ C0(RN ), φ ≥ 0.

On the other hand Q′ is a Tq-open subset of F = Tq-supp (uS); therefore the initial trace of
[u∗]

Q̃′ has no regular part, i.e.,

Rq([u
∗]
Q̃′) = 0 and Sq([u∗]Q̃′) = Tq-supp ([u

∗]
Q̃′)

;

we say that [u∗]
Q̃′ is a purely singular solution of (3.1). It follows that v :=

[
[uS ]Q̃′ − [u∗]

Q̃′

]
†
is

a purely singular solution of (3.1).
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Let v∗ be defined as in (8.13) with u replaced by v. Then v∗ is a singular σ-moderate solution
of (3.1). Since v∗ is smaller than u and since it is σ-moderate it is dominated by u∗. On the

other hand, since v∗ is singular and Tq-supp (v
∗) ⊂q Q̃′ ⊂q Rq(u

∗) it follows that u∗ is not larger
or equal to v∗, i.e. (v∗ − u∗)+ is not identically zero. Since both u∗ and v∗ are σ-moderate,

it implies that there exists τ ∈ W
− 2

q
,q
(RN ) ∩ Mb

+(R
N ) such that uτ ≤ v∗, and (uτ − u∗) is

not identically zero. Therefore u∗ � max(u∗, uτ ). The function max(u∗, uτ ) is a subsolution
of (3.1) and the smallest solution above it, denoted by Z, is strictly larger than u∗. However
uτ ≤ v∗ ≤ u∗ and consequently Z = u∗.

This contradiction proves that C 2
q
, q′(Q

′) = 0, for any set Q′ ⊂ Rq(u
∗) such that [u]Q′ is

moderate solution, that is C 2
q
, q′(Rq(u

∗)) = 0 which implies

C 2
q
, q′(F \ F ∗

0 ) = 0. (8.15)

In conclusion, u∗ is σ-moderate, Tq-supp (u
∗) ⊂ F and F ∗

0 = Sq(u∗) ∼q F. Therefore, by
Proposition 6.15 and the remark below, u∗ = UF . Since by definition u∗ ≤ u ≤ UF , it follows
u∗ = u. �

Theorem 8.8 Every positive solution of (3.1) is σ-moderate.

Proof. We borrow the ideas of the proof to [16]. By Proposition 6.8-(i), Rq(u) has regular
decomposition {Qn}. Furthermore

vn = [u]Qn ↑ uRq .

Thus the solution uRq is σ-moderate and

u⊖ uRq ≤ [u]Sq(u).

Put
un = vn ⊕ [u]Sq(u).

By Lemma 8.7 we have that [u]Sq(u) is σ-moderate solution, thus by Proposition 8.2, as Q̃n ∩
Sq(u) = ∅, it follows that un is σ-moderate. As {un} is increasing it follows that u = limn→∞ un
is a σ-moderate solution of (3.1). In addition

vn ∨ [u]Sq(u) = un = vn ⊕ [u]Sq (u) ⇒ max(uRq , [u]Sq(u)) ≤ u ≤ uRq + [u]Sq(u).

This further implies that Sq(u) = Sq(u). By construction we have

[u]Qn = vn ≤ [u]Qn

Letting n→ ∞ we have by Proposition 6.8

uRq ≤ uRq ⇒ uRq = uRq ,

thus tr(u) = tr(u) and since u ≤ u, we have by Proposition 6.15 and the uniqueness of σ-
moderate solutions that u = u. �
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